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Preface

The past decades have witnessed a revolution in wireless communications and
networking, which has profoundly changed our daily life. Particularly, it has enabled
various innovative Internet of Things (IoT) applications, e.g., smart city, healthcare,
and autonomous driving and drones. The IoT architecture is established by the
proliferation of low-cost and small-size mobile devices. With the explosion of IoT
devices, a heavy burden is placed on the wireless access. A key characteristic of IoT
data traffic is the sporadic pattern, i.e., only a portion of all the devices are active
at a given time instant. In particular, in many IoT applications, devices are designed
to be inactive most of the time to save energy and only be activated by external
events. Thus, with massive IoT devices, it is of vital importance to manage their
random access procedures, detect the active ones, and decode their data at the access
point. Massive IoT connectivity has been regarded as one of the key performance
requirements of 5G and beyond networks.

The emerging IoT applications have stringent demands on low-latency commu-
nications and typically transmit short packets containing both the metadata and
payload. The metadata may include packet initiation and termination information,
logical addresses, security and synchronization information, etc. It also contains
a channel estimation sequence that facilitates channel estimation at the access
point. Additionally, the metadata includes various information about the packet
structure, e.g., the pilot sequences used for random access and device identification
information. Considering the typical small payload size of IoT applications, it is of
critical importance to reduce the size of the overhead message, e.g., identification
information, pilot symbols for channel estimation, control data, etc. Such low-
overhead communications also help to improve the energy efficiency of IoT
devices. Recently, structured signal processing approaches have been introduced
and developed to reduce the overheads for key design problems in IoT networks,
such as channel estimation, device identification, and message decoding. By
exploiting underlying system and problem structures, including sparsity and low
rank structures, these methods can achieve significant performance gains. Chapter 1
provides more background on low-overhead communications in IoT networks and
introduces general structured signal processing techniques.

v
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This monograph shall provide an overview of four structured signal processing
models, i.e., a sparse linear model, a blind demixing model, a sparse blind demixing
model, and a shuffled linear regression model. Chapter 2 introduces a sparse linear
model for joint activity detection and channel estimation in IoT networks with grant-
free random access. A convex relaxation approach based on ℓp-norm minimization
is firstly introduced, followed by a smoothed primal-dual first-order algorithm to
solve it. For this convex relaxation approach, a trade-off between the computational
cost and estimation accuracy is characterized by Proposition 2.1. The theoretical
analysis of the convex relaxation approach is based on the conic integral geometry
theory. This chapter only contains a brief introduction on the conic integral geometry
theory. For more details, the interested reader can refer to Sect. 8.1 and other
related mathematical literature enumerated in this monograph. Besides, an iterative
threshold algorithm, namely approximate message passing (AMP), is introduced
in Chap. 2, followed by the performance analysis based on the state evolution
technique.

Blind demixing is introduced in Chap. 3, which facilitates joint data decoding
and channel estimation without explicit pilot sequences. After presenting the basic
convex relaxation approach for solving the blind demixing problem, we introduce
three nonconvex approaches: the regularized Wirtinger flow, the regularization-free
Wirtinger flow, and a Riemannian optimization algorithm. Theorems 3.1 and 3.2
provide the theoretical analysis of the convex relaxation approach and regularized
Wirtinger flow, respectively. Furthermore, Theorem 3.3 presents the theoretical
guarantees of the Wirtinger flow with the spectral initialization, which provides
readers an easy access to well-round results. Readers who are interested in the intrin-
sic mechanism of the theoretical analysis can refer to Sect. 8.3 for more discussions.
The theoretical analysis of the Wirtinger flow via random initialization is further
provided in Sect. 8.4. Additionally, the basic concepts of Riemannian manifold
optimization are presented in Sect. 8.5, which provide sufficient background for
related algorithms in Chaps. 3 and 4. The extension of blind demixing, i.e., sparse
blind demixing, is introduced in Chap. 4, which further takes device activity into
consideration. The sparse blind demixing formulation is able to jointly consider
device activity detection, data decoding, and channel estimation, for which three
approaches are presented: a convex relaxation approach, a difference-of-convex-
functions approach, and smoothed Riemannian optimization.

A further step to reduce the overhead is to remove the device identification
information from the metadata. To support the joint data decoding and device
identification, shuffled linear regression is introduced in Chap. 5. We first present
maximum likelihood estimation (MLE) based approaches for solving the shuffled
linear regression problem. Theorems 5.1 and 5.2 provide the statistical properties of
the MLE, and both an upper bound and a lower bound on the probability of error
of the permutation matrix estimator are introduced. To solve the MLE problem, two
algorithms are presented: one is based on sorting, and the other algorithm returns an
approximate solution to the MLE problem. Next, theoretical analysis of the shuffled
linear regression problem based on the algebraic–geometric theory is presented.
Based on the analysis, an algebraically initialized expectation–maximization algo-
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rithm is introduced to solve the shuffled linear regression problem, which enjoys
better algorithmic performance than previous works. To give a comprehensive
introduction of the algebraic–geometric theory, besides the concepts mentioned in
this chapter, we introduce several related definitions on the algebraic–geometric
theory in Sect. 8.7, including the geometric characterization of dimension, algebraic
characterization of dimension, homogenization, and regular sequences.

Furthermore, Chap. 6 provides some cutting-edge learning augmented techniques
for structured signal processing on the aspects of structured signal model design
(e.g., structured signal processing under a generative prior) and algorithm design
(e.g., deep-learning-based algorithm). We begin with compressed sensing under a
generative prior, and other structure signal processing techniques under a generative
model are worth further investigating, e.g., blind deconvolution. We next consider
the joint design of measurement matrix and sparse support recovery for the sparse
linear model (e.g., compressed sensing). Some basic methods are firstly presented,
i.e., sample scheduling and sensing matrix optimization, and then learning aug-
mented techniques are introduced. Additionally, for estimating the sparse linear
model, several deep-learning-based AMP methods are introduced in this chapter:
learned AMP, learned Vector-AMP, and learned ISTA for group row sparsity. In
Chap. 7, we summarize the book and discuss some potential extensions of the area
of interest. Tables 7.1 and 7.2 list the main theorems, propositions, and algorithms
presented in this monograph.

The monograph is not only suitable for beginners in structured signal processing
for applications in IoT networks but also helpful to experienced researchers who
intend to work in-depth on the theoretical analysis of structured signals. For
beginners, the background of both low-overhead communications and structured
signal processing in Chap. 1 is helpful, and the problem formulation section in each
chapter may be referred for further details with respect to each model. Tables 1.1,
7.1, and 7.2 provide quick references for the main results. Readers who are more
interested in the intrinsic mechanism of the theoretical analysis of the specific
models can refer to Chap. 8.

Low-overhead communications supported by structured signal processing
approaches have received significant attention in recent years. The main motivation
of this monograph is to provide an overview of the major structured signal
processing models, along with their applications in low-overhead communications
in IoT networks. Practical algorithms, via both convex and nonconvex optimization
approaches, and theoretical analysis, using various mathematical tools, will be
introduced. While the structured signal models concerned in this monograph have
certain limitations, we hope the presented results will galvanize researchers into
investigating this influential and intriguing area.
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Mathematical Notations

• The set of real numbers is denoted by R and the set of positive real numbers is
denoted by R+. The set of complex numbers is denoted by C. Denote S+ as the
set of Hermitian positive semidefinite matrices. Moreover, N represents the set
of natural numbers.

• The boldface and lowercase alphabets, e.g., x, y, denote vectors. The zero vector
is denoted by 0. A vector x ∈ Rd is in the column format. The transpose of
a vector is denoted by x⊤. The complex conjugate of x is represented as x̄.
The conjugate transpose of a vector is denoted by xH or x∗. xi denotes the i-th
coordinate of a vector x.

• For a complex vector x or a complex matrix X, the real parts of them are
represented by ℜ{x} and ℜ{X}, respectively. Likewise, the imaginary parts are
denoted as ℑ{x} and ℑ{X}.

• The boldface and uppercase alphabets, e.g., A,B, denote matrices. Aij denotes
the element at the i-th row and the j -th column.

• The support function of a vector x is denoted as

supp(x) := {i : xi ̸= 0}.

A vector x such that |supp(x)| ≤ s is defined as s-sparse.
• For a vector x ∈ Rd or x ∈ Cd , its ℓp-norm is given by

∥x∥p =
d∑

i=1

|xi |p.

In certain cases, we define ℓ0-norm as ∥x∥0 := |supp(x)|.
• For a matrix A ∈ Rm×n or A ∈ Cm×n, the Frobenius norm of A is defined as

∥A∥F :=
√∑

i,j

|Aij |2 =
√∑

i

σi (A)2,

xiii
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where σ1(A) ≥ σ2(A) ≥ . . . ≥ σmin{m,n}(A) denote its singular values. The
nuclear norm of A is denoted as ∥A∥∗ := ∑

i σi (A). The spectral norm of a
matrix A is denoted as

∥A∥ := max
i

σi (A).

• The cardinality of a set S is denoted by |S |.
• Random variables or events are denoted as uppercase letters, i.e., X, Y , E.
• The indicator function of an event E is denoted by y = I(E), where y = 1 if the

event E is true, otherwise y = 0.
• Throughout this book, f (n) = O(g(n)) or f (n) ! g(n) denotes that there exists

a constant c > 0 such that |f (n)| ≤ c|g(n)|, whereas f (n) = Ω(g(n)) or
f (n) " g(n)means that there exists a constant c > 0 such that |f (n)| ≥ c|g(n)|.
f (n) ≫ g(n) denotes that there exists some sufficiently large constant c > 0
such that |f (n)| ≥ c|g(n)|. In addition, the notation f (n) ≍ g(n) means that
there exist constants c1, c2 > 0 such that c1|g(n)| ≤ |f (n)| ≤ c2|g(n)|.

• For a general cone C ⊂ Rd , the polar cone C◦ is the set of outward normals
of C:

C◦ :=
{
u ∈ Rd : ⟨u, x⟩ ≤ 0 for all x ∈ C

}
.

The polar cone C◦ is always closed and convex.



Chapter 1
Introduction

Abstract This chapter presents a background on low-overhead communications in
IoT networks and structured signal processing. It starts with introducing three key
techniques for low-overhead communications: grant-free random access, pilot-free
communications, and identification-free communications. Then different models
for structured signal processing to support low-overhead communications are
presented, which form the main theme of this monograph. A classical exemplary
of structure signal processing, i.e., compressed sensing, is provided to illustrate the
main principles of algorithm design and theoretical analysis. Finally, the outline of
the monograph is presented.

1.1 Low-Overhead Communications in IoT Networks

The proliferation of low-cost and small-size computing devices endowed with
communication and sensing capabilities is paving the way for the era of IoT. These
devices can support various innovative applications, including smart city, health-
care [1], and autonomous driving [22] and drones [27]. The explosion of IoT devices
places a heavy burden on the wireless network, as they demand scalable wireless
access, which has been put forward as a key challenge of 5G and beyond networks
[23]. A key characteristic of IoT data traffic is the sporadic pattern where only a
small part of all devices are active at any time instant. In particular, in many IoT
applications, devices are designed to be inactive most of the time to save energy and
only be activated by external events [26]. Thus, with massive IoT devices, it is of
vital importance to manage their random access procedure, detect the active ones,
and decode their data at the access point.

Moreover, the emerging IoT applications have stringent demands on low-latency
communications, and typically transmit short packets containing both the metadata
and payload [16]. An exemplary packet structure is illustrated in Fig. 1.1 (please
refer to [29] for more details). The metadata may include packet initiation and
termination information, logical addresses, security and synchronization informa-
tion, etc. [16]. In the example showed in Fig. 1.1, we simply illustrate the metadata
that contains a preamble and a header coming from the media-access-control
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Fig. 1.1 An exemplary packet structure

(MAC) layer and physical (PHY) layer. Specifically, the preamble contains a short
training field (STF), which will be used for packet detection, indication of the
modulation type, frequency offset estimation, synchronization, etc. It also contains
a channel estimation sequence (CES) that facilitates channel estimation at the
access point. Additionally, the header includes various information about the packet
structure, e.g., the pilot sequences used for random access and device identification
information. The header also includes the modulation and coding scheme adopted
for transmitting the data payload. Furthermore, it may include the length of the
payload and a header checksum field [16].

From the packet structure in Fig. 1.1, we see that the efficiency of short-packet
transmissions, in terms of energy, latency, and bandwidth cost, critically depends on
the size of the metadata, which is comparable to the payload size in many cases. To
improve the communication efficiency, plenty of efforts have been made to reduce
the size of the metadata, which result in low-overhead communications. Reducing
overheads will not only improve spectral efficiency, reduce latency, but also achieve
significant energy saving, which is especially important for resource-constrained
IoT devices. In the sequel, we shall introduce three representative methods for
reducing overheads.

1.1.1 Grant-Free Random Access

Conventionally, the grant-based random access scheme (illustrated in Fig. 1.2a) is
applied to allow multiple users to access the network, e.g., in 4G LTE networks
[3, 19, 26]. Under this scheme, each active device randomly chooses a pilot sequence
from a predefined set of orthogonal preamble sequences to inform the base station
(BS) of the device’s active state. A connection between the BS and the active device
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Fig. 1.2 Random access schemes. Note that for the grant-based scheme, steps 1–3 may need to
repeat multiple times to establish a connection due to contention. (a) Grant-based. (b) Grant-free

will be established if the pilot sequence of this active device is not occupied by
others. In this case, the BS will send a contention-resolution message to inform
the device of the radio resources reserved for its data transmission. If two or more
devices have selected the same pilot sequence, their connection requests collide.
Once the BS detects this collision, it will not reply with a contention-resolution
message. Instead, the affected devices have to restart the random access procedure
again, which leads to high latency. Note that the messages sent by the active devices
in the first and third phases correspond to metadata, as they are control information
for establishing the connection without carrying any payload. Besides the overhead,
a major drawback of the grant-based random access scheme is the limited number
of active devices that can receive the grant to access the network. For example, as
shown in [26], for a network with one BS and 2000 devices, a minimum length of
the pilot sequence of 470, out of the total 1000 symbols, is needed to guarantee
a 90% success rate. Even equipped with advanced contention-resolution strategies
[6], 930 out of 1000 symbols are still required for transmitting the pilot sequence.

To address the collision issue of the random access scheme caused by a massive
number of devices, the grant-free random access scheme illustrated in Fig. 1.2b has
been proposed. With this new scheme, the devices do not need to wait for any
grant to access the network and can directly transmit the coupled metadata and
data to the BS. In this way, the BS can perform user activity detection, channel
estimation, and/or data decoding simultaneously [33, 36–39]. The essential idea
underlying this line of studies is to connect with sparse signal processing and
leverage the compressed sensing technique. In particular, a compressed sensing
problem is established by exploiting the sparsity in the user activity pattern. The
received signal at the BS equipped with a single antenna is given by a sparse linear
model:

y = Ax, (1.1)
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where x, denoting the activity of devices, is a sparse vector due to the sporadic
traffic pattern. Then compressed sensing techniques can be applied to recover the
sparse vector. Such grant-free random access has received lots of attention recently.
To be specific, when the channel state sequences (recall CES in Fig. 1.1) are
contained in the metadata, a joint device activity and data detection problem was
studied in [39]. Regarding the sparse linear model proposed in [39], the matrix
A in (1.1) captures the channel estimation sequences and pilot sequences, and
the vector x in (1.1) represents the information symbols of all devices, where the
value is 0 for each inactive device. To improve the efficiency, the overhead caused
by metadata has been further reduced. When the CES in Fig. 1.1 is eliminated
from the metadata during the packet transmission [33, 36, 37], performed joint
channel and data estimation based on various compressed sensing techniques withA
in (1.1) capturing the data for all (active and inactive) devices and pilot sequences.
Moreover, device activity detection and channel estimation were jointly achieved
in the work [38]. In this scenario, the matrix A in (1.1) characterizes the pilot
sequences, and the vector x in (1.1) contains the device activity and channel
information.

1.1.2 Pilot-Free Communications

In the grant-free random access scheme, the pilot sequence is needed for activity
detection, which requires extra bandwidth and induces additional overhead. A more
aggressive approach is the pilot-free communication scheme that removes both the
fields H1 and CES in Fig. 1.1 from the metadata. To elude the pilot sequences, more
powerful signal processing techniques are needed for data detection. Specifically, a
blind demixing based approach has been developed in [11, 14, 24, 25]. Consider an
IoT network with one BS and s devices. Each device transmits an encoded signal
f = Ax to the BS through the channel g, where x is the message and A is the
encoding matrix, and the received signal at the BS is represented by the cyclic
convolution operator #,

y =
s∑

i=1

f i # gi , (1.2)

which is a blind demixing model that facilitates to demix the original signals {f i}
from the observation y without the knowledge of the channel states {gi}. The
blind demixing based approach can achieve joint data decoding (i.e., recover data x
for each device) and channel estimation. With pilot-free communication supported
by blind demixing, the overhead during the transmission is effectively reduced
via waiving both the pilot sequences and channel estimation sequences from the
metadata.
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Considering the sporadic traffic pattern in the IoT network where only part
(denoted as S ) of the devices are active, a sparse blind demixing model is further
developed in [12, 18], given by a sparse blind demixing model:

y =
∑

i∈S
f i # gi . (1.3)

The estimation for the sparse blind demixing model aims to achieve joint device
activity detection and data decoding without the channel state information. Similar
to the blind demixing model, it can facilitate to reduce the overhead caused by
the channel state information and pilot sequence in the metadata, using more
sophisticated detection algorithms.

1.1.3 Identification-Free Communications

Besides the above methods of reducing overhead, excluding the identification
information is an important consideration in some IoT applications. Specifically,
the identification-free communication scheme eliminates the field H2 in Fig. 1.1
from the metadata. As an example, suppose that multiple sensors are deployed to
take measurements of an unknown parameter vector x. In this case, the overhead
is mainly dominated by the identity information contained in the metadata [21]. To
reduce the overhead, a shuffled linear regression model has been developed. It is
established by introducing an unknown permutation matrix Π of which the i-th row
is the canonical vector e⊤π(i) of all zeros except a 1 at position π(i):

y = ΠAx. (1.4)

The goal of the data fusion is to recover x from the permuted data y based on the
known sensing matrix A. That is, the identities of the signals sent by the sensors are
not accessible to the fusion. To address this challenging problem, a line of literatures
have developed advanced algorithms from theoretical and practical points of view
[30, 31, 34, 35].

1.2 Structured Signal Processing

The techniques mentioned above to achieve low-overhead communications rely on
structured signal processing, which exploits underlying structures of the signals or
systems, e.g., sparsity, low-rankness, group sparsity or permutation, for effective
signal estimation and detection. In this section, we first take a basic structured
signal processing problem, i.e., compressed sensing, as an example, to illustrate
the main design principles. Then general structured signal processing techniques
are introduced.
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1.2.1 Example: Compressed Sensing

The key point of compressed sensing is to recover a sparse signal from very few
linear measurements. Mathematically, given a sensing matrix, i.e., A ∈ Rm×n, the
compressed sensing problem can be formulated as recovering x ∈ Rn from the
observation of

y = Ax ∈ Rm, (1.5)

based on the assumption that x has very few nonzero elements, i.e., the ℓ0-norm
∥x∥0 is small. In the sequel, we introduce three key ingredients of a compressed
sensing problem: recovery algorithms, measurement mechanisms, and theoretical
guarantees.

It is intuitive to recover x from the observation y via solving

minimize
x∈Cn

∥x∥0 subject to y = Ax. (1.6)

The paper [5] showed that problem (1.6) enables to recover a k-sparse signal exactly
with a high probability with only m = k + 1 random measurements from a
Gaussian distributed sensing matrix. Unfortunately, problem (1.6) is a combinatorial
optimization problem with an excessive complexity if solved by enumeration [28].
Thus, the tightest convex norm of ℓ0-norm, i.e., the ℓ1-norm, is proposed to relax
ℓ0-norm [8], which leads to

minimize
x∈Cn

∥x∥1 subject to y = Ax. (1.7)

Intuitively, this ℓ1 minimization formulation facilitates to induce sparsity due to the
shape of the ℓ1 ball.

There have been various types of algorithms developed for different formulations
of sparse recovery. The most commonly used formulation is the convex relaxation
based on (1.7). Given a certain parameter λ > 0, problem (1.7) can also be
represented as an unconstrained optimization problem,

minimize
x∈Cn

1
2
∥Ax − y∥22 + λ∥x∥1. (1.8)

Various algorithms have been developed to solve problem (1.8), including interior-
point methods [7], projected gradient methods [17], iterative thresholding [10], and
the approximate message passing algorithm [15].

Besides effective recovery algorithms, there exist rigorous theoretical guarantees
on the recovery of sparse signals, based on specific conditions of the measurements
matrix. In particular, the restricted isometry property (RIP) of a sensing matrix A ∈
Rm×n was introduced in [7] that measures the degree to which each subset of k
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column vectors of A ∈ Rm×n is close to being an isometry. A typical theoretical
result based on RIP analysis is stated as follows:

Example 1.1 If there exists a δk ∈ (0, 1) such that the sensing matrix A satisfies

(1− δk) ∥x∥22 ≤ ∥Ax∥22 ≤ (1+ δk) ∥x∥22 (1.9)

for any x that belongs to the set of k-sparse vectors, then problem (1.7) can facilitate
to exactly recover the sparse vector x with high probability, provided the number of
measurements m " δ−2k k log(n/k).

In addition, the exact location of the phase transition for problem (1.7) can be
obtained based on conic geometry theory, where a parameter, called the statistical
dimension, is introduced to capture the dimension of a linear subspace to the set
of convex cones [2]. It demonstrates that under the assumption of i.i.d. standard
normal measurements, the transition occurs where the number of measurements,
i.e.,m, equals the statistical dimension of the descent cone. The shift from failure to
success occurs over a range of about O(

√
n) measurements.

1.2.2 General Structured Signal Processing

Compressive sensing techniques have been successfully applied in many application
domains, which have inspired lots of interest in exploiting structures other than
sparsity [4, 9, 13, 14, 20, 26, 32, 36]. In the following, we give a brief introduction
of the structured signal processing approaches that will be applied for low-overhead
communications in this monograph. A general structured signal processing problem
with a vector variable is given by

minimize
x∈Dv

f (A x), (1.10)

where A is a linear operator representing the measurement mechanism, f is a
loss function, and Dv is a space of structured vectors (e.g., sparse vectors). For
example, in the sparse linear model in (1.1), the operatorA captures the set of pilot
matrices and x is a sparse vector. In the shuffled linear regression problem (1.4), the
operator A indicates the permuted sensing matrix. Likewise, a general structured
signal processing problem with a matrix variable is given by

minimize
X∈Dm

f (AX), (1.11)

whereDm is a space of structured matrices (e.g., low-rank matrices, sparse matrices,
low-rank and sparse matrices, etc.). Specifically, in the blind demixing model (1.2),
X is a collection of rank-1 matrices, while X in the sparse blind demixing (1.3) is a
collection of low-rank matrices endowed with group sparsity.
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The convex program based on the norm operator is typically an effective way to
solve problems (1.10) and (1.11) with x and X enjoying certain structures such as
sparsity, low-rankness, and group sparsity. Specifically, the convex program with a
vector variable can be represented as

minimize
x

f (A x), subject to ∥x∥1 ≤ α. (1.12)

Here, the ℓ1-norm can be used for inducing sparsity of a vector. Moreover, the
convex program with a matrix variable is given by

minimize
X

f (AX), subject to M (X) ≤ α, (1.13)

where the operator M (·) indicates a norm operator to induce low-rankness,
group sparsity, or simultaneous low-rankness and group sparsity. The convex
programs (1.12) and (1.13) can be solved via semidefinite programs. Considering
the computational complexity and the scalability of the convex program, it motivates
to develop nonconvex algorithms that enjoy lower computational complexity. This
monograph provides a comprehensive discussion on various algorithms for solving
structured signal estimation problems for low-overhead communications from both
computational and theoretical points of view.

1.3 Outline

This monograph aims at providing an introduction to key models, algorithms,
and theoretical results of structured signal processing in achieving low-overhead
communications in IoT networks. Specifically, the content is organized according to
four clearly defined categories, i.e., the sparse linear model, blind demixing, sparse
blind demixing, and shuffled linear regression, which are summarized in Fig. 1.3.
Key problems of low-overhead communications to be considered are also shown
in Fig. 1.3. Detailed discussions are provided on methods for solving the above
mentioned structured signal processing problems, including convex relaxation
approaches, nonconvex approaches, and other optimization algorithms. Moreover,
a significant part in each chapter is devoted to statistical theory, demonstrating how
to set the corresponding algorithms on solid theoretical foundations, which includes
conic integral geometry, algebraic geometric, and Riemannian optimization theory.
The proofs of some key results are also included in order to illustrate the theoretical
building blocks. For the ease of reference, a brief summary of different models
introduced in this monograph and corresponding theory and algorithms is provided
in Table 1.1. Moreover, Chap. 6 will introduce the latest developments in learning
augmented methods for structured signal processing.
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P1: Device Activity Detection

Problems

P2: Channel Estimation

P3: User IdentificationP3: User Identification

P4: Data Decoding

Sparse Linear Model
P1, P2

Mathematical models

Shuffled Linear Regression   
P3, P4

Blind Demixing
P2, P4

Sparse Blind Demixing
P1, P2, P4

Fig. 1.3 A schematic plot showing the mathematical models and corresponding problems

Table 1.1 Summary of different models, applications, and corresponding theory and algorithms

Model Application Formulation Method (M), theory (T), and algorithm (A)

Sparse
linear model

Device activity detection
and channel estimation

Model: (2.3)
Problem: (2.9)

M: convex relaxation (2.10)
T: conic integral geometry

M: iterative thresholding
A: approximate message passing

Blind
demixing

Data decoding and
channel estimation

Model: (3.13)
Problem:
(3.20)

M: convex relaxation: (3.20)
T: restricted isometry property

M: nonconvex
A: Riemannian trust-region (3.41)

Wirtinger flow (regularized (3.22),
regularization-free (3.28))

Sparse
blind
demixing

Device activity detection
and data decoding and
channel estimation

Model: (4.2)
Problem: (4.6)

M: convex relaxation (4.8)

M: difference-of-convex-functions
approach (4.18)
A: majorization minimization

M: smoothed Riemannian
optimization (4.30)

Shuffled
linear
regression

Device activity detection
and data decoding

Model: (5.8)
Problem: (5.9)

M: maximum likelihood estimation (5.9)
A: algorithm based on sorting,

approximation algorithm

M: algebraic–geometric approach (5.31)
T: algebraic geometry



10 1 Introduction

References

1. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.: Internet of things: a
survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutorials
17(4), 2347–2376 (2015)

2. Amelunxen, D., Lotz, M., McCoy, M.B., Tropp, J.A.: Living on the edge: phase transitions in
convex programs with random data. Inf. Inference 3(3), 224–294 (2014)

3. Arunabha, G., Zhang, J., Andrews, J.G., Muhamed, R.: Fundamentals of LTE. Prentice-Hall,
Englewood Cliffs (2010)

4. Bajwa, W.U., Haupt, J., Sayeed, A.M., Nowak, R.: Compressed channel sensing: a new
approach to estimating sparse multipath channels. Proc. IEEE 98(6), 1058–1076 (2010)

5. Baraniuk, R.G.: Compressive sensing. IEEE Signal Process. Mag. 24(4), 118–121 (2007)
6. Björnson, E., De Carvalho, E., Sørensen, J.H., Larsson, E.G., Popovski, P.: A random access

protocol for pilot allocation in crowded massive MIMO systems. IEEE Trans. Wirel. Commun.
16(4), 2220–2234 (2017)

7. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction
from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

8. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM
Rev. 43(1), 129–159 (2001)

9. Choi, J.W., Shim, B., Ding, Y., Rao, B., Kim, D.I.: Compressed sensing for wireless
communications: useful tips and tricks. IEEE Commun. Surv. Tutorials 19(3), 1527–1550
(2017)

10. Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse
problems with a sparsity constraint. Commun. Pure Appl. Math. 57(11), 1413–1457 (2004)

11. Dong, J., Shi, Y.: Nonconvex demixing from bilinear measurements. IEEE Trans. Signal
Process. 66(19), 5152–5166 (2018)

12. Dong, J., Shi, Y., Ding, Z.: Sparse blind demixing for low-latency signal recovery in massive
IoT connectivity. In: Proceedings of the IEEE International Conference on Acoustics Speech
Signal Process (ICASSP), pp. 4764–4768. IEEE, Piscataway (2019)

13. Dong, J., Shi, Y., Ding, Z.: Sparse blind demixing for low-latency signal recovery in massive
IoT connectivity. In: Proceedings of the IEEE International Conference on Acoustics Speech
Signal Process (ICASSP), pp. 4764–4768 (2019)

14. Dong, J., Yang, K., Shi, Y.: Blind demixing for low-latency communication. IEEE Trans. Wirel.
Commun. 18(2), 897–911 (2019)

15. Donoho, D.L., Maleki, A., Montanari, A.: Message-passing algorithms for compressed
sensing. Proc. Natl. Acad. Sci. 106(45), 18914–18919 (2009)

16. Durisi, G., Koch, T., Popovski, P.: Toward massive, ultrareliable, and low-latency wireless
communication with short packets. Proc. IEEE 104(9), 1711–1726 (2016)

17. Figueiredo, M.A., Nowak, R.D., Wright, S.J.: Gradient projection for sparse reconstruction:
application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Sign. Proces.
1(4), 586–597 (2007)

18. Fu, M., Dong, J., Shi, Y.: Sparse blind demixing for low-latency wireless random access with
massive connectivity. In: Proceedings of the IEEE Vehicular Technology Conference (VTC),
pp. 4764–4768. IEEE, Piscataway (2019)

19. Hasan, M., Hossain, E., Niyato, D.: Random access for machine-to-machine communication
in LTE-advanced networks: issues and approaches. IEEE Commun. Mag. 51(6), 86–93 (2013)

20. Jiang, T., Shi, Y., Zhang, J., Letaief, K.B.: Joint activity detection and channel estimation for
IoT networks: phase transition and computation-estimation tradeoff. IEEE Internet Things J.
6(4), 6212–6225 (2018)

21. Keller, L., Siavoshani, M.J., Fragouli, C., Argyraki, K., Diggavi, S.: Identity aware sensor
networks. In: IEEE INFOCOM, pp. 2177–2185. IEEE, Piscataway (2009)



References 11

22. Kong, L., Khan, M.K., Wu, F., Chen, G., Zeng, P.: Millimeter-wave wireless communications
for IoT-cloud supported autonomous vehicles: overview, design, and challenges. IEEE Com-
mun. Mag. 55(1), 62–68 (2017)

23. Letaief, K.B., Chen, W., Shi, Y., Zhang, J., Zhang, Y.A.: The roadmap to 6G: AI empowered
wireless networks. IEEE Commun. Mag. 57(8), 84–90 (2019)

24. Ling, S., Strohmer, T.: Blind deconvolution meets blind demixing: algorithms and performance
bounds. IEEE Trans. Inf. Theory 63(7), 4497–4520 (2017)

25. Ling, S., Strohmer, T.: Regularized gradient descent: a nonconvex recipe for fast joint blind
deconvolution and demixing. Inf. Inference J. IMA 8(1), 1–49 (2019)

26. Liu, L., Larsson, E.G., Yu, W., Popovski, P., Stefanovic, C., De Carvalho, E.: Sparse signal
processing for grant-free massive connectivity: a future paradigm for random access protocols
in the Internet of Things. IEEE Signal Process. Mag. 35(5), 88–99 (2018)

27. Motlagh, N.H., Bagaa, M., Taleb, T.: UAV-based IoT platform: a crowd surveillance use case.
IEEE Commun. Mag. 55(2), 128–134 (2017)

28. Muthukrishnan, S., et al.: Data streams: algorithms and applications. Found. Trends Theor.
Comput. Sci. 1(2), 117–236 (2005)

29. Nitsche, T., Cordeiro, C., Flores, A.B., Knightly, E.W., Perahia, E., Widmer, J.: IEEE 802.11
ad: directional 60GHz communication for multi-Gigabit-per-second Wi-Fi. IEEE Commun.
Mag. 52(12), 132–141 (2014)

30. Pananjady, A., Wainwright, M.J., Courtade, T.A.: Linear regression with shuffled data:
statistical and computational limits of permutation recovery. IEEE Trans. Inf. Theory 64(5),
3286–3300 (2018)

31. Peng, L., Song, X., Tsakiris, M.C., Choi, H., Kneip, L., Shi, Y.: Algebraically-initialized expec-
tation maximization for header-free communication. In: Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5182–5186. IEEE,
Piscataway (2019)

32. Qin, Z., Fan, J., Liu, Y., Gao, Y., Li, G.Y.: Sparse representation for wireless communications:
a compressive sensing approach. IEEE Signal Process. Mag. 35(3), 40–58 (2018)

33. Schepker, H.F., Bockelmann, C., Dekorsy, A.: Exploiting sparsity in channel and data estima-
tion for sporadic multi-user communication. In: Proceedings of the International Symposium
on Wireless Communication Systems, pp. 1–5. VDE, Frankfurt (2013)

34. Tsakiris, M.C., Peng, L.: Homomorphic sensing. In: Proceedings of the International Confer-
ence on Machine Learning (ICML), pp. 6335–6344 (2019)

35. Tsakiris, M.C., Peng, L., Conca, A., Kneip, L., Shi, Y., Choi, H.: An algebraic-geometric
approach to shuffled linear regression (2018). arXiv:1810.05440

36. Wunder, G., Boche, H., Strohmer, T., Jung, P.: Sparse signal processing concepts for efficient
5G system design. IEEE Access 3, 195–208 (2015)

37. Wunder, G., Jung, P., Wang, C.: Compressive random access for post-LTE systems. In:
Proceedings of the IEEE International Conference on Communications Workshops (ICC), pp.
539–544. IEEE, Piscataway (2014)

38. Xu, X., Rao, X., Lau, V.K.: Active user detection and channel estimation in uplink CRAN
systems. In: Proceedings of the IEEE International Conference on Communications (ICC), pp.
2727–2732. IEEE, Piscataway (2015)

39. Zhu, H., Giannakis, G.B.: Exploiting sparse user activity in multiuser detection. IEEE Trans.
Commun. 59(2), 454–465 (2010)



Chapter 2
Sparse Linear Model

Abstract In this chapter, a sparse linear model for joint activity detection and
channel estimation in IoT networks is introduced. We present the problem for-
mulation for both the cases of single-antenna and multiple-antenna BSs. A convex
relaxation approach based on ℓp-norm minimization is firstly introduced, followed
by a smoothed primal-dual first-order algorithm to solve it. The theoretical analysis
of the convex relaxation approach based on the conic integral geometry theory is
further presented. Furthermore, an iterative threshold algorithm, namely approxi-
mate message passing (AMP), is introduced, followed by the performance analysis
based on the state evolution technique. Simulation results are also presented to
demonstrate the performance of different algorithms.

2.1 Joint Activity Detection and Channel Estimation

Under the grant-free random access scheme, the metadata contains control infor-
mation, e.g., the user identifier and pilot for channel estimation, and payload data
that are transmitted together to the BS [24, 25]. Due to the finite channel coherence
time and the massive number of devices in the IoT network, it is impossible to
assign orthogonal pilot sequences to different devices [26]. Moreover, incorporating
a separate pilot sequence for channel estimation in the metadata would bring
redundant overheads. Considering the typical small payload size of IoT applications,
it is of vital importance to reduce the overheads.

One unique characteristic of massive IoT connectivity is the sporadic data traffic,
i.e., only a part of devices in the network are active at each time slot. This is
because IoT devices are often designed to be in the sleep mode most of the time
to conserve energy and are only triggered by external events to transmit data [26].
Exploiting this fact, a sparse linear model can well capture the problem of massive
connectivity, which enables joint device activity detection and channel estimation
[26]. This structured model describes an underdetermined linear system with more
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unknown variables than equations. Considering an IoT network consisting of one
BS and N devices, a sparse linear model can be established as

y = Ax, (2.1)

where y ∈ RL is the received signal at the BS, A ∈ RL×N is the set of pilot
sequences, and x ∈ RN is a sparse vector containing the information of the activity
states of devices and the channel states. Particularly, A is chosen from a set of non-
orthogonal preamble sequences. The corresponding element of x is 0 for an inactive
device; otherwise, it denotes the channel coefficient for an active device. Therefore,
by recovering the sparse vector x from the observation y, device activity detection
and channel estimation can be simultaneously achieved.

To solve the estimation problem (2.1), the work [36] proposed a modified
Bayesian compressed sensing algorithm. To further improve the performance of the
algorithm, the works [31, 34, 35] developed the AMP algorithm with the perfor-
mance analysis based on the fading coefficients and statistical channel information.
The rigorous analysis has been recently investigated in a line of literatures. It
shows that a state evolution analysis [3, 24, 25] of the AMP algorithm enables to
characterize the false alarm and miss detection probabilities for activity detection.
Recently, the paper [21] has developed a structured group sparsity estimation
approach to achieve joint device activity detection and channel estimation. To
increase the convergence rate and guarantee the accuracy, a smoothing method has
been proposed in [21] to solve the group sparsity estimation problem, and sharp
computation and estimation trade-offs of this method were further provided [21].

In the following, we first illustrate how the sparse linear model helps to for-
mulate the joint activity detection and channel estimation problem. Then, effective
algorithms and rigorous analysis are provided, and both convex and nonconvex
approaches are considered.

2.2 Problem Formulation

This section presents the problem formulation for joint activity detection and
channel estimation, for both single-antenna and multi-antenna BSs. Assume there is
one BS along with N devices in an IoT network. Due to sporadic traffic, only a part
of the devices are active in each time slot. For each coherent block in a synchronized
wireless system with block fading, the indicator function that implies the device
activity is defined as:

αi =
{
1, if device i is active,
0, otherwise,

∀i ∈ {1, . . . , N}. (2.2)

Hence, S = {i | αi = 1, i = 1, . . . , N} denotes the set of active devices within a
coherence block, with the number of active devices being |S |.
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2.2.1 Single-Antenna Scenario

Assume that the BS is equipped with a single antenna, and denote the channel
coefficient from device i to the BS as hi for i = 1, . . . , N . Define qi ∈ CL as the
pilot sequence transmitted from device i, where L is the length of the pilot sequence
which is much smaller than the number of devices, i.e., L ≪ N , due to the finite
coherence time. The received signal over L symbols at the BS is given by

y =
N∑

i=1

αihiqi + n =
∑

i∈S
hiqi + n = Ax + n, (2.3)

where y = [y1, . . . , yL]⊤ ∈ CL is the received signal, qi,ℓ ∼ CN (0, 1) ∈ C for
i = 1, . . . , N , ℓ = 1, . . . , L are pilot symbols, and n ∈ CL ∼ CN (0, σ 2I ) is the
additive white Gaussian noise. Moreover,

A = [q1, . . . , qN ] ∈ CL×N

is the collection of pilot sequences of all the devices, and

x = [x1, . . . , xN ]⊤ ∈ CN

with xi = αihi for i = 1, . . . , N contain device activity indicators and channel
states. Here, Eq. (2.3) gives a sparse linear model. The task for the BS is to jointly
detect the active devices and estimate the channel coefficients by recovering x from
the observation y, which can then be used for data detection. An example of the
sparse linear model is illustrated in Example 2.1.

Example 2.1 Consider a network with two devices and one BS equipped with a
single antenna. Assume that the pilot sequences A are predefined as:

A =

⎡

⎣
1 −
√
3

1
√
3

2 0

⎤

⎦ . (2.4)

Assuming that the second device is inactive and the channel state of the active device
(i.e., device 1) is h1 = 1, we have

x =
[
1 · h1
0 · h2

]
=

[
1
0

]
. (2.5)

It yields a sparse linear model:

y = Ax =

⎡

⎣
1 −
√
3

1
√
3

2 0

⎤

⎦
[
1
0

]
=

⎡

⎣
1
1
2

⎤

⎦ . (2.6)
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2.2.2 Multiple-Antenna Scenario

Inspired by the successful application of the sparse linear model for device activity
detection, multi-antenna technologies have been applied to enhance the detection
performance. It generalizes the sparse signal-recovery problem to the case with
a group of measurement vectors. These signal vectors are assumed to be sparse
and share a common support, corresponding to the active devices. This induces a
group sparsity structure, which helps to improve the performance of device activity
detection and channel estimation.

Assume the BS is equipped with M antennas. The ℓ-th received signal at the BS
is denoted as y(ℓ) ∈ CM for all ℓ = 1, . . . , L, which is given by

y(ℓ) =
N∑

i=1

hiαiqi(ℓ)+ n(ℓ) =
∑

i∈S
hiqi(ℓ)+ n(ℓ), (2.7)

for all ℓ = 1, . . . , L. Here, qi(ℓ) ∼ CN (0, 1) ∈ C is the pilot symbol transmitted
from device i at time slot ℓ, hi ∈ CM denotes the channel vector from device i to
the BS antennas, and n(ℓ) ∈ CM ∼ CN (0, σ 2I ) is the independent additive white
Gaussian noise.

By accumulating the signal vectors over L time slots, we get the aggregated
received signal matrix

Y = [y(1), . . . , y(L)]⊤ ∈ CL×M,

the channel matrix

H = [h1, . . . ,hN ]⊤ ∈ CN×M,

the additive noise matrix

N = [n(1), . . . ,n(L)] ∈ CL×M,

and pilot matrix

Q = [q(1), . . . , q(L)]⊤ ∈ CL×N,

where q(ℓ) = [q1(ℓ), . . . , qN(ℓ)]⊤ ∈ CN . Thus, (2.7) can be rewritten as

Y = QΘ +N , (2.8)

where the matrix Θ is given by Θ = DH ∈ CN×M with D = diag(α1, . . . ,αn) ∈
RN×N being the diagonal activity matrix. Hence, the matrix Θ endows with a group
sparse structure. The task for the multi-antenna BS is to detect the active devices and
estimate the channel matrix by recovering Θ from the observation Y .
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2.3 Convex Relaxation Approach

2.3.1 Method: ℓp-Norm Minimization

In this section, we present a convex relaxation approach for joint device activity
detection and channel estimation. For the noiseless case, the straightforward idea
of recovering a sparse signal x of which most elements are zeros is to find the
sparsest signal among all those that generate the observation y = Ax. It results in
the following problem:

minimize
x∈CN

∥x∥0

subject to y = Ax, (2.9)

where the ℓ0-norm describes the number of nonzeros in x. However, the problem
is NP-hard due to the inevitable combinatorial search [27]. A convex relaxation
approach can be applied by replacing the ℓ0-norm by the ℓ1-norm. The method of
ℓ1-norm minimization [8, 10, 14], which exploits ℓ1-norm to induce the sparsity of
the signal x, is a well-established approach to solve compressed sensing problems.

The optimization problem that recovers x from the noisy observation y in (2.3)
is formulated as

minimize
x∈CN

∥x∥1

subject to ∥Ax − y∥2 ≤ ϵ, (2.10)

where the parameter ϵ > 0 is a prior threshold such that n in (2.3) obeys ∥n∥2 ≤ ϵ.
Given the estimate vector x̂, the activity matrix can be recovered as

Ĉ = diag(â1, . . . , ân),

where âi = 1 if |x̂i | ≥ γ0 for a small enough threshold γ0 (γ0 ≥ 0); otherwise,
âi = 0. The estimated channel vector for the active devices is thus given by ĥ with
its i-th element as ĥi = x̂i , where i ∈ {j |âj = 1}.

Likewise, the optimization problem in the multiple-antenna scenario can be
presented as

minimize
Θ∈CN×M

R(Θ) :=
N∑

i=1

∥θ i∥2

subject to ∥QΘ − Y∥F ≤ ϵ,

(2.11)

where ϵ > 0 is a priori such that N in (2.8) obeys ∥N∥F ≤ ϵ, and θ i is the i-th row
of matrix Θ . Here the function R(Θ) induces the group sparsity via mixed ℓ1/ℓ2-
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norm, where ℓ2-norm ∥θ i∥2 bounds the magnitude of the elements of θ i , while
ℓ1-norm induces the sparsity of [∥θ1∥2, . . . , ∥θN∥2]. Given the estimated matrix
Θ̂ , the activity matrix can be recovered as Ĉ = diag(â1, . . . , ân), where âi = 1

if ∥θ̂ i∥2 ≥ γ0 for a small enough threshold γ0(γ0 ≥ 0); otherwise, âi = 0. The
estimated channel matrix for the active devices is thus given by Ĥ with its i-th row

as ĥ
i = θ̂

i
, where i ∈ {j |âj = 1}.

The convex relaxation approaches can be applied to solve problems (2.10)
and (2.11) in polynomial time. However, the general interior point solvers that
are typically used to deal with SDP are impractical to be applied in large-scale
problems, due to the high computational complexity. It motivates to develop fast,
first-order algorithms with reduced computational complexity.

2.3.2 Algorithm: Smoothed Primal-Dual First-Order Methods

The first-order methods, e.g., gradient methods, proximal methods [30], alternating
direction method of multipliers (ADMM) algorithm [6, 33], fast ADMM algorithm
[19], and Nesterov-type algorithms [4], can efficiently solve large-scale problems.
Furthermore, one way to lower the computational complexity is to accelerate the
convergence rate without increasing the computational cost of each iteration. It was
shown in [29] that with a large data size it is possible to increase the step size
in the projected gradient method, thereby achieving a faster convergence rate. The
paper [18] showed that via adjusting the original iterations, it is possible to achieve
faster convergence rates and maintain the estimation accuracy without greatly
increasing the computational cost of each iteration. Furthermore, the acceleration
of convergence rates can be achieved via smoothing techniques such as convex
relaxation [9], or simply adding a smooth function to smooth the non-differentiable
objective function [4, 7, 22]. However, the quantity of smoothing should be chosen
thoughtfully to guarantee the performance of sporadic device activity detection
in IoT networks. To address the limitations above, the paper [21] proposed a
smoothed primal-dual first-order method to solve the high-dimensional group spar-
sity estimation problem. The sharp trade-offs between the computational cost and
estimation accuracy are rigorously characterized in [21], which is further discussed
in Sect. 2.3.3.2. The smoothing algorithm is first presented in the following.

By adding a smoothing function µ
2 ∥Θ∥2F , where µ is a positive scalar and called

as the smoothing parameter, problem (2.11) is reformulated as

minimize
Θ∈CN×M

R̃(Θ) := R(Θ)+ µ

2
∥Θ∥2F

subject to ∥QΘ − Y∥F ≤ ϵ.

(2.12)



2.3 Convex Relaxation Approach 19

To facilitate algorithm design, the sparse linear observation is represented in the real
domain as follows:

Ỹ = Q̃Θ̃0 + Ñ

=
[ℜ {Q} −ℑ {Q}
ℑ {Q} ℜ {Q}

] [ℜ {Θ0}
ℑ {Θ0}

]
+

[ℜ {N}
ℑ {N}

]
. (2.13)

The function R̃(Θ) with respect to the complex matrix Θ ∈ CN×M can be further
converted to the function R̃G(Θ̃) with respect to the real matrix Θ̃ ∈ R2N×M as

R̃G(Θ̃) =
N∑

i=1

∥Θ̃Vi∥F + µ

2
∥Θ̃Vi∥2F . (2.14)

Here

Θ̃Vi = [(θ̃ i )⊤, (θ̃ i+N
)⊤]⊤

is the row submatrix of Θ̃ consisting of the rows indexed by Vi = {i, i + N}.
Hence, problem (2.12) can be approximated as the following structured group sparse
estimation problem

minimize
Θ̃∈R2N×M

R̃G(Θ̃)

subject to ∥Q̄Θ̃ − Ỹ∥F ≤ ϵ,

(2.15)

where Q̄ ∈ R2L×2N ∼ N (0, 0.5I ) is designed as a Gaussian random matrix.
Due to the indifferentiability of problem (2.15), it yields a slow coverage rate
when solved by the subgradient method. Fortunately, the dual formulation of
problem (2.15) leverages the benefits from smoothing techniques. In particular,
the smoothed dual problem can be transferred to an unconstrained problem with
the composite objective function consisting of a convex, nonsmooth function and a
convex, smooth function. The dual problem of (2.15) is represented as

maximize
Z,t

D(Z, t) := inf
Θ̃

{
R̃(Θ̃)− ⟨Z, Q̃Θ̃ − Ỹ ⟩ − tϵ

}

subject to ∥Z∥F ≤ t,

where Z ∈ R2N×M and t > 0. Since the parameter ϵ ≥ 0 eludes the dual variable t ,
it yields the unconstrained problem:

minimize
Z∈R2N×M

D(Z) := −inf
Θ̃

{
R̃(Θ̃)− ⟨Z, Q̃Θ̃ − Ỹ ⟩ − ϵ∥Z∥F

}
. (2.16)
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The dual objective function D̃(Z) can be further represented as a composite function

D(Z) = D̃(Z)+H (Z), (2.17)

where

D̃(Z) = −inf
Θ̃

{
R̃(Θ̃)− ⟨Z, Q̃Θ̃⟩

}
− ⟨Z, Ỹ ⟩

and H (Z) = ϵ∥Z∥F . The gradient of the function D̃(Z) is

∇D̃(Z) = −Ỹ + Q̃Θ̃Z,

where

Θ̃Z := argmin
Θ̃

{
R̃(Θ̃)− ⟨Z, Q̃Θ̃⟩

}
. (2.18)

In addition, ∇D̃(Z) is Lipschitz continuous with the Lipschitz constant being
bounded by Ls := µ−1∥Q̃∥22. The composite form in (2.17) can be solved by a
set of first-order approaches [4]. These methods are exceptionally sensitive to the
smoothing parameter µ, which means that a larger value of the smoothing parameter
µ induces a faster convergence rate. For instance, the Lan, Lu, and Monteiro’s
algorithm [23] is illustrated in Algorithm 2.1 as a typical example to show the
benefits of smoothing.

Algorithm 2.1: Lan, Lu, and Monteiro’s algorithm

Input : Pilot matrix Q̃ ∈ R2L×2N , Lipschitz constant Ls := µ−1∥Q̃∥22, observation matrix
Ỹ ∈ R2L×M , and parameter ϵ.

1 Z0 ← 0, Z̄0 ← Z0, t0 ← 1
2 for k = 0, 1, 2, . . . do
3 Bk ← (1− tk)Zk + tkZ̄k

4 Θ̃k ← µ−1SoftThreshold(Q̃
T
Bk, 1)

5 Z̄k+1 ← Shrink(Z̄k − (Q̃Θ̃k − Ỹ )/Ls/tk, ϵ/Ls/tk)

6 Zk+1 ← Shrink(Bk − (Q̃Θ̃k − Ỹ )/Ls, ϵ/tk)

7 tk+1 ← 2/(1+ (1+ 4/t2k )
1/2)

8 end
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In Algorithm 2.1, Line 4 is the solution to (2.18), Lines 5 and 6 are the solutions
to the following gradient mapping, respectively,

Z̄k+1 ← argmin
Z∈R2N×M

{
⟨∇D̃(Z),Z⟩+ 1

2
tkLs∥Z − Z̄k∥F +H (Z)

}
,

Zk+1 ← argmin
Z∈R2N×M

{
⟨∇D̃(Z),Z⟩+ 1

2
Ls∥Z − Bk∥F +H (Z)

}
.

Denote Z∗ as an optimal solution for (2.16), then the convergence behavior of
Algorithm 2.1 is demonstrated as [4]

D(Zk+1)−D(Z∗) ≤ 2∥Q̃∥22∥Z0 − Z∗∥2F
µk2

. (2.19)

Based on (2.19), the number of iterations

⌈√
2∥Q̃∥22/(µϵ0)∥Z0 − Z∗∥F

⌉

is required to reach the accuracy of ϵ0. That is, a larger µ would lead to a faster
convergence rate.

2.3.3 Analysis: Conic Integral Geometry

The paper [21] discussed the trade-off between the estimation accuracy and
computational cost in terms of the smoothing method described in Sect. 2.3.2,
which is achieved by characterizing the convergence rate in terms of the smoothing
parameter, pilot sequence length, and estimation accuracy. The analysis is based on
the theory of conic integral geometry [1, 28, 32]. Prior to focusing on conic integral
geometry for the sparse linear model, you may refer to Sect. 8.1 to have a basic
overview of conic integral geometry.

2.3.3.1 Conic Integral Geometry for the Sparse Linear Model

Considering the smoothing method illustrated in Sect. 2.3.2, it is critical to find a
proper smoothing parameter µ, which can be achieved by analyzing the trade-off
between the estimation accuracy and computational cost of the convex optimization
problem (2.11). Conic integral geometry theory turns out to be a promising and
powerful tool to predict phase transitions (including the location and width of
the transition region) for random cone programs in the real field case [1, 28, 32].
Based on the conic integral geometry, the paper [21] proposed to approximate the
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original complex estimation problem (2.11) by a real estimation problem, followed
by analyzing on the performance of the proposed smoothing method concerning the
smoothing parameter µ.

In the noiseless scenario, we consider the following approximated problem:

minimize
Θ̃∈R2N×M

RG(Θ̃)

subject to Ỹ = Q̄Θ̃,

(2.20)

where

RG(Θ̃) =
N∑

i=1

∥Θ̃Vi∥F

and Θ̃, Q̄, and Ỹ are defined in (2.15). To deal with problem (2.20), several
definitions and facts in convex analysis [1] are introduced first.

Definition 2.1 (Descent Cone) The descent cone D(R, x) of a proper convex
functionR : Rd → R∪ {±∞} at point x ∈ Rd is the conic hull of the perturbations
that do not increaseR near x, i.e.,

D(R, x) =
⋃

τ>0

{
y ∈ Rd : R(x + τy) ≤ R(x)

}
.

Fact 2.1 (Optimality Condition) Let R be a proper convex function. Matrix Θ̃0
is the unique optimal solution to problem (2.20) if and only if

D(RG, Θ̃0)
⋂

null(Q̄,M) = {0},

where

null(Q̄,M) = {Z ∈ R2N×M : Q̄Z = 02L×M}

denotes the null space of the operator Q̄ ∈ R2L×2N .

Figure 2.1 illustrates the geometry of the optimality condition described in
Fact 2.1. Specifically, problem (2.20) succeeds to yield optimal solution if and only
if the null space of Q̄ misses the cone of descent directions of RG at the ground
truth Θ̃0, which is illustrated in Fig. 2.1a; otherwise, it fails to obtain the optimal
solution follows Θ̃

∗ ̸= Θ̃0, which is illustrated in Fig. 2.1b.
To characterize the phase transition in two intersection cones, the concept of

statistical dimension is proposed in [1] that is the generalization of the dimension of
linear subspaces.
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Fig. 2.1 Optimality
condition for problem (2.20).
(a) Problem succeeds. (b)
Problem fails

Θ̃0

Θ̃0 +D(RG, Θ̃0)

Θ̃0 + null(Q̄,M)

{Θ̃ : RG(Θ̃) ≤ RG(Θ̃0)}

(a)

Θ̃0

Θ̃0 +D(RG, Θ̃0)

Θ̃0 + null(Q̄,M)

{Θ̃:RG(Θ̃) ≤ RG(Θ̃0)}

Θ̃
∗

(b)

Definition 2.2 (Statistical Dimension) The statistical dimension δ(C) of a closed
convex cone C in Rd is defined as:

δ(C) = E[∥ΠC(g)∥22], (2.21)

where g ∈ Rd is a standard normal vector, and

ΠC(x) = argmin{∥x − y∥2 : y ∈ C}

denotes the Euclidean projection onto C.

The statistical dimension enables to measure the size of convex cones. Based on the
statistical dimensions of general convex cones, the approximated conic kinematic
formula can be presented as follows [2].

Theorem 2.1 (Approximate Kinematic Formula) Fix a tolerance η ∈ (0, 1). Let
C and K be convex cones in Rd , but one of them is not a subspace. Draw a random
orthogonal basis U . Then

δ(C)+ δ(K) ≤ d − aη
√
d ;⇒ P{C ∩ UK ̸= {0}} ≤ η

δ(C)+ δ(K) ≥ d + aη
√
d ;⇒ P{C ∩ UK ̸= {0}} ≥ 1− η,
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where aη :=
√
8 log(4/η).

Theorem 2.1 captures a phase transition on whether the two randomly rotated cones
share a ray. In particular, the two randomly rotated cones share a ray with high
probability, if the total statistical dimension of the two cones exceeds the ambient
dimension d; otherwise, they fail to share a ray.

2.3.3.2 Computation and Estimation Trade-Offs

For the smoothing method introduced in Sect. 2.3.2, a trade-off between the
computational cost and estimation accuracy is characterized based on the general
results in Theorem 2.1. This trade-off plays a vital role in massive connectivity with
a finite time budget and a modest requirement on estimation accuracy.

The basis of the trade-off is introduced in the sequel. From the geometric point of
view, the smoothing term in R̃(Θ) (withµ > 0) increases the sublevel set ofR(Θ),
which derives a problem that can be solved via computationally efficient algorithms
with an accelerated convergence rate. However, this geometric modification leads
to a loss of the estimation accuracy. Thus, it leads to a trade-off between the
computational time and estimation accuracy. The trade-off can be identified by
Theorem 2.1 based on the statistical dimension of the decent cone of the smoothed
regularizer in (2.20), i.e.,

R̃G(Θ̃) = RG(Θ̃)+ µ

2
∥Θ̃∥2F . (2.22)

We begin with the basic notation used in Proposition 2.1, for some Θ̃ ∈ R2N×M

satisfying Θ̃Vj = 0 for j ̸= i, we have

∀Θ̃Vi ∈ R2×M : ∥Θ̃Vi∥F ≥ ∥(Θ̃0)Vi∥F + ⟨ZVi , Θ̃Vi − (Θ̃0)Vi ⟩, (2.23)

which implies ZVi ∈ ∂∥(Θ̃0)Vj ∥F . In particular, the statistical dimension
δ(D(R̃G, Θ̃0)) can be exactly computed by the following result.

Proposition 2.1 (Statistical Dimension Bound for R̃G) Let Θ0 ∈ CN×M be with
K nonzero rows, and define the normalized sparsity as ρ := K/N . An upper bound
of the statistical dimension of the descent cone of R̃G at

Θ̃0 = [(ℜ{Θ0})T , (ℑ{Θ0})T }]T ∈ R2N×M
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is given by

δ(D(R̃G; Θ̃0))

N
≤ inf

τ≥0

{
ρ(2M + τ 2(1+ 2µā + µ2b̄))

+ (1− ρ)
21−M

Γ (M)

∫ ∞

τ
(u− τ )2u2M−1e−

u2
2 du

}
, (2.24)

where Γ (·) denotes the Gamma function. The unique optimum τ ⋆ which minimizes
the right-hand side of (2.24) is the solution of

21−M

Γ (M)

∫ ∞

τ

(u
τ
− 1

)
u2M−1e−

u2
2 du = ρ(1+ 2µā + µ2b̄)

1− ρ
, (2.25)

where ā = 1
S

∑S
i=1 ∥(Θ̃0)Vi∥F , b̄ = 1

S

∑S
i=1 ∥(Θ̃0)Vi∥2F .

Proof Please refer to Sect. 8.2 for details.

Although the convergence rate of proposed smoothing algorithm, i.e., Algo-
rithm 2.1, can be accelerated by increasing the smoothing parameter, Proposition 2.1
shows that a larger smoothing parameter leads to a larger statistical dimension
δ(D(R̃G, Θ̃0)) since the bound in (2.24) increases with µ.

2.3.3.3 Simulation Results

Proposition 2.1 is verified in Fig. 2.2 with the BS equipped with 2 antennas, the total
number of devices being 100, and the channel matrix and pilot matrix generated as

H ∼ CN (0, I ) and Q ∼ CN (0, I ),

respectively. The recovery is considered to be successful if ∥Θ̂ − Θ0∥F ≤ 10−5.
The number of active devices is fixed as |S | = 10. Figure 2.2 shows the impact
on the exact recovery when changing the smoothing parameter µ. It shows that a
larger smoothing parameter will induce a larger statistical dimension of the descent
cone of R̃(Θ). In other words, longer pilot sequences are required for exact signal
recovery.

The effectiveness of the smoothing method illustrated in Algorithm 2.1 is
evaluated under the scenario where the base station is equipped with 10 antennas,
and the total number of devices is set to be 2000. The number of active devices
is fixed as |S | = 100. Considering problem (2.15), the channel matrix follows
H ∼ CN (0, I ), the pilot matrix follows Q ∼ CN (0, I ) and the additive noise
matrix follows N ∼ CN (0, 0.01I ). Figure 2.3 demonstrates the convergence rate
of Algorithm 2.1 under different smoothing parameters with a fixed pilot sequence
length L = 500. It shows that increasing the smooth parameter enables to accelerate
the convergence rate significantly.
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Furthermore, with a fixed pilot sequence length L = 500, problem (2.15) is
solved by Algorithm 2.1 under different smoothing parameters µ. Algorithm 2.1
stops when

∣∣∣∥Q̃Θ̃ − Ỹ∥F − ϵ
∣∣∣ /ϵ ≤ 10−3,
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Fig. 2.4 Estimation error versus smoothing parameter µ

where the parameter ϵ is given by

ϵ = σ

√
2LM − δ(D(R̃G, Θ̃0)).

The simulation result illustrated in Fig. 2.4 is obtained by averaging over 300 chan-
nel realizations. It shows that the average squared estimation error becomes large as
the smoothing parameter µ increases. This can be justified by Proposition 2.1 that
the increase of smoothing parameter results in the increase of statistical dimension
δ(D(R̃G, Θ̃0)).

2.4 Iterative Thresholding Algorithm

Despite attractive theoretical guarantees for the sparse linear model, convex relax-
ation methods that are solved via a second-order cone program (SOCP) fail in
the high-dimensional data setting due to the high computational cost. One way
to improve the computational efficiency is the smoothed primal-dual first-order
method introduced in the previous section. Another line of literatures that aim to
reduce the computational complexity for solving the sparse linear model estimation
problem focus on iterative thresholding algorithms [13]. Unfortunately, such fast
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iterative thresholding algorithms suffer from worse sparsity-undersampling trade-
offs than convex optimization [15], and the sparsity-undersampling trade-off is
precisely controlled by the sampling ratio δ = L/N and sparsity ratio ρ = |S |/N
withL,N,S defined in the model (2.3). To resolve this issue, approximate message
passing [12, 15, 24] has been proposed for sparse recovery.

2.4.1 Algorithm: Approximate Message Passing

The approximate message passing (AMP) algorithm was proposed and developed in
a line of literatures [12, 15, 24], which is an efficient iterative thresholding method
for solving the linear model estimation problem (2.3). For simplicity, we take the
single-antenna scenario for example.

The goal of the AMP algorithm is to evaluate an estimator x̂(y) from the
observation y (2.3) that minimizes the mean-squared error (MSE)

MSE = Exy ||x̂(y)− x||22, (2.26)

where the signals xi = αihi for i = 1, . . . , n are assumed to follow a Bernoulli–
Gaussian distribution. Starting from x0 = 0 and r0 = y, the iterative update of the
AMP algorithm at the t-th iteration is given by Donoho et al. [15]

xt+1
i = ηt,i ((r

t )Hai + xti ), (2.27a)

r t+1 = y −Axt+1 + N

L
r t

N∑

n=1

η′t,i ((r
t )Hai + xti )

N
, (2.27b)

where xt = [xt1, . . . , xtN ]⊤ ∈ CN is the estimate of x at the t-th iteration, r t =
[rt1, . . . , rtL]⊤ ∈ CL denotes the residual,

ηt,i (·) : C→ C

is the denoiser which facilitates to induce the sparsity, and η′t,i (·) is the first-order
derivative of ηt,i (·). The performance of the AMP algorithm highly depends on the
design of the denoiser ηt,i (·), which will be discussed in the sequel.
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2.4.2 Analysis: State Evolution

2.4.2.1 State Evolution

In order to precisely capture the dynamic property of the AMP algorithm, thereby
facilitating the design of the denoiser ηt,i (·), a state evolution formalism was first
proposed in the paper [15]. In this formalism, the MSE (2.26) is a state variable
and its variation from iteration to iteration can be represented by a plain iterative
function, i.e., τt .

Define a set of random variables X̂t
i at the t-th iteration of the AMP algorithm as

X̂t
i = Xi + τtVi, i = 1, . . . , n, (2.28)

where the distributions of Xi’s are characterized by the random variables Xi’s, and
Vi obeys the normal distribution, i.e., Vi ∈ CN (0, 1). In addition, Vi is independent
of Xi and Vj for ∀j ̸= i, and τi is the state variable represented as

τ 2t+1 =
σ 2

ξ
+ N

L
E

[
|ηt,i (Xi + τtVi)−Xi |2

]
, (2.29)

where the expectation is over the random variables Vi’s and Xi’s for i = 1, . . . , N .
The theoretical analysis of AMP is based on the state evolution in the asymptotic

regime, when L (i.e., the length of pilot sequences), K (i.e., the average number of
active devices in each time slot), N (i.e., the total number of devices)→∞, while
their ratios converge to some positive values N/L→ ω and

K/N → ϵ = lim
N→∞

∑

i

ϵi/N

with ω, ϵ ∈ (0,∞). In massive IoT connectivity, these assumptions imply that the
length of the pilot sequence, i.e., L, is in the same order of the number of active
users, i.e., K , or total users, i.e., N .

2.4.2.2 Denoiser Designs

In general, the prior distribution of x is assumed to be unknown. In this case, a
soft-thresholding denoiser is designed to induce sparsity for x, which is given by
Donoho et al. [16]:

ηt,i (x̂
t
i ) =

(
x̂ti −

θ ti x̂
t
i

|x̂ti |

)
I(|x̂ti | > θ ti ), (2.30)
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where the parameter θ ti is the threshold for the i-th device activity detection at the t-
th iteration of the AMP algorithm. Based on the state evolution (2.29), the parameter
θ ti can be optimized to minimize the MSE (2.26). After the t-th iteration proceeded
by the AMP algorithm with the denoiser (2.30), device i is evaluated to be active if

|(r t )Hai + xti | > θ ti ,

otherwise it is evaluated to be inactive.
If the prior distribution of x in (2.3) is known, the minimum mean-squared

error (MMSE) denoiser via the Bayesian approach can be developed for the AMP
algorithm [16]. Based on the random variables defined in (2.28) and assuming the
channel signal hi ∼ CN (0, 1) for i = 1, . . . , N , the MMSE denoiser is given in
the form of a conditional expectation [16],

ηt,i (x̂
t
i ) = E[Xi |X̂t

i = x̂ti ]
= φt,i (1+ τt )

−1x̂ti , ∀t, i, (2.31)

where

φt,i =
1

1+ 1−ϵ
ϵ exp

(
−

(
πt,i − ψt,i

)) , (2.32)

πt,i = (τ−2t − (τ 2t + 1)−1)|x̂ti |2, (2.33)

ψt,i = log det(1+ τ−2t ). (2.34)

Note that the above MMSE denoiser is a nonlinear function of x̂ti due to the
functional form of φt,i .

2.4.2.3 Asymptotic Performance of Device Activity Detection

Based on the soft thresholding (2.30) and MMSE denoisers (2.31), a miss detection
occurs when

|(r t )Hai + xti | < θ ti

with device i actually being active, while a false alarm occurs when

|(r t )Hai + xti | > θ ti

with device i actually being inactive. Since the statistical distribution of the
thresholding term, i.e., (r t )Hai + xti , can be identified by x̂ti defined in (2.28), the
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probabilities of miss detection and false alarm for device i at the t-th iteration of the
AMP algorithm can be given by Donoho et al. [15]

PMD
t,i = Pr(x̂ti < θ ti |αi = 1), (2.35)

P FA
t,i = Pr(x̂ti > θ ti |αi = 0), (2.36)

respectively. The probabilities of missed detection (2.35) and false alarm (2.36)
depend on the values of τt ’s (2.29) which can be tracked over iterations based on
the state evolution (2.29).

Considering a general multiple-antenna scenario, the theorem in [24] character-
izes PMD

t,i (M) and P FA
t,i analytically in terms of τ 2t and the number of antennasM . In

particular, the miss detection and false alarm probabilities of AMP algorithm with
M antennas are denoted by PMD

t,i (M) and P FA
t,i (M). The paper [24] demonstrates

that with proper thresholds for device detection, i.e., θ ti ’s, highly accurate device
activity detection can be achieved in the asymptotic regime ofM →∞:

lim
M→∞

PMD
t,i (M) = lim

M→∞
P FA
t,i (M) = 0, ∀t, i. (2.37)

It thus indicates that the AMP-based algorithm can accomplish perfect device
activity detection in the massive MIMO connectivity systems.

2.4.2.4 Simulation Results

To further illustrate the performance of AMP algorithm for solving the sparse linear
model estimation problem, the probabilities of missed detection and false alarm
versus the length of the pilot sequences, L, with different numbers of antennas at
the BS, i.e., M = 4, 8, or 16, are illustrated in Fig. 2.5. In particular, with a given
value of M , the average probabilities of missed detection and false alarm over all
devices are denoted as

PMD(M) =
N∑

n=1

PMD
∞,n(M)/N

and

P FA(M) =
N∑

n=1

P FA
∞,n(M)/N,

respectively, where PMD
∞,n(M) and P FA

∞,n(M) are defined in (2.35) and (2.36).
Figure 2.5 demonstrates that both PMD and P FA decrease as the pilot sequence
length L increases and when M increases.
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Fig. 2.5 Probabilities of missed detection and false alarm versus pilot sequence lengths

2.5 Summary

This chapter introduced a sparse linear model for joint device activity detection and
channel estimation in grant-free random access. Such an access scheme reduces
the overhead by removing dedicated channel estimation sequences in IoT networks.
To solve the estimation problem, both convex relaxation approach and nonconvex
approach have been investigated from the practical and theoretical points of view.
Recently, there is a line of studies focusing on solving the sparse linear model via
deep-learning-based methods from both empirical and theoretical points of view
[5, 11, 17, 20, 37], which provide an also interesting direction for future study.
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Chapter 3
Blind Demixing

Abstract This chapter presents a blind demixing model for joint data decoding
and channel estimation in IoT networks, without transmitting pilot sequences.
The problem formulation based on the cyclic convolution in the time domain is
first introduced, which is then reformulated in the Fourier domain for the ease
of algorithm design. A convex relaxation approach based on nuclear norm mini-
mization is first presented as a basic solution. Next, several nonconvex approaches
are introduced, including both regularized and regularization-free Wirtinger flow
and the Riemannian optimization algorithm. The mathematical tools for analyzing
nonconvex approaches are also provided.

3.1 Joint Data Decoding and Channel Estimation

For data transmission in IoT networks, as the blocklength of packets is typically
very short, the channel estimation sequences (CES) (illustrated in Fig. 1.1) occupy
the primary part of the packet [11]. Thus, CES overhead reduction becomes critical
to achieve low-overhead communications. To exclude the CES overhead, the BS
may jointly decode data and estimate channel states, which can be established as a
blind demixing model (3.1) [8].

For an IoT network containing one BS and s devices, as shown in Fig. 3.1, the
observation signal vector is the mixture of the encoding signals generated from
s devices and passed through the corresponding channels. The goal of the BS is
to jointly decode data and estimate the channel states, which can be captured via
a blind demixing model consisting of both summation operation and convolution
operation. For ease of algorithm design, the measurements in the blind demixing
are represented in the Fourier domain, which are given by

yj =
s∑

i=1

bHj hix
H
i aij , 1 ≤ j ≤ L. (3.1)
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Fig. 3.1 The blind demixing
model in an IoT network

Denote

y = [y1, . . . , yL]⊤ ∈ CL

as the received signal at the BS represented in the Fourier domain, {bj }, {aij }
are design vectors, and {hi}, {xi} are channel states and data signals, respectively.
Particularly, the design vectors {bj } indicate the Fourier transform operation and
the design vectors {aij } indicate the encoding procedure. By evaluating the vectors
{hi}, {xi} from the observation y, data decoding and channel estimation can be
simultaneously accomplished.

There is a growing body of recent works paying attention on the blind demixing
model (3.1). In particular, semidefinite programming has been developed in [9]
to solve the blind demixing problems by lifting the bilinear model into the
rank-one matrix model. However, it is computationally expensive to deal with
large-scale problems. To address this issue, nonconvex algorithms, e.g., regularized
Wirtinger flow with spectral initialization [10], have been developed to optimize the
variables in the vector space. The Riemannian trust-region optimization algorithm
without regularization was further developed in [8] to improve the convergence rate
compared to the regularized Wirtinger flow algorithm [10]. Recently, concerning
the blind demixing problem, theoretical guarantees for regularization-free Wirtinger
flow with spectral initialization were established in [6]. To further find a natural
initialization for the practitioners that works equally well as spectral initialization,
the paper [7] established the global convergence guarantee of Wirtinger flow with
random initialization for blind demixing.

In the sequel, the procedure of establishing the blind demixing model based on
the convolution operations in IoT networks will be first illustrated. We further clarify
the vital role that the blind demixing model plays in joint data decoding and channel
estimation. Then, effective algorithms and rigorous analysis are provided for both
convex and nonconvex approaches.
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3.2 Problem Formulation

In this section, the basic concept of the cyclic convolution is first introduced,
followed by a detailed description of the blind demixing model based on the cyclic
convolution.

3.2.1 Cyclic Convolution

The elementary concept of the cyclic convolution is first introduced to characterize
the connection among the channel state, received signal, and transmitted signal,
thereby assisting the presentation of the blind demixing model.

Denote p[n] and θ [n] as the transmitted signal and received signal in the n-th
time slot, respectively. Define qℓ as the ℓ-th tap channel impulse response which is
constant with n. Hence, the channel is assumed to be linear time-invariant. Thus, the
discrete-time model is represented as

θ [n] =
Lt−1∑

ℓ=0

qℓp[n− ℓ], (3.2)

where Lt is the number of nonzero taps. A cyclic prefix is added to p, which yields
the symbol vector, i.e., d ∈ CNp+Lt−1:

d = [p[Np − Lt + 1], . . . , p[Np − 1], p[0], p[1], . . . , p[Np − 1]]⊤. (3.3)

The output over the time interval n ∈ [Lt ,Np + Lt − 1] is represented as

θ [n] =
Lt−1∑

ℓ=0

qℓd[(n− Lt − ℓ) modulo Np]. (3.4)

Denote the output of length Np as

θ = [θ [Lt ], . . . , θ [Np + Lt − 1]]⊤, (3.5)

and the channel impulse as

q = [q0, q1, . . . , qLt−1, 0, . . . , 0]⊤ ∈ CNp,

and then (3.4) can be reformulated as

θ = q # p,

where the notion # denotes the cyclic convolution.
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3.2.2 System Model

Consider a network with one BS and s devices. Denote the original signals of length
N from the i-th user as xi ∈ CN . The transmitted signals over L time slots from the
i-th user are represented as

f i = Cixi , (3.6)

where Ci ∈ CL×N with L > N as the encoding matrix and known to the BS. The
signals f i’s are transmitted through individual time-invariant channels endowed
with impulse responses hi’s where a maximum delay of at most K samples is
contained in hi ∈ CK . The zero-padded channel vector gi ∈ CL is given as

gi = [h⊤i , 0, . . . , 0]⊤. (3.7)

Hence, based on the cyclic convolution operation, the received signal is given as

z =
∑s

i=1
f i # gi + n, (3.8)

where n is the additive white complex Gaussian noise. The BS needs to recover the
data signals {xi}si=1 from the observation z without knowing channel states {gi}si=1.
This model is called a blind demixing model.

3.2.3 Representation in the Fourier Domain

For the ease of algorithm design and theoretical analysis, the blind demixing
model based on cyclic convolution is represented in the Fourier domain. This is
achieved by left multiplying the signals in the time domain with the unitary discrete
Fourier transform (DFT) matrix and converting the convolution operation in the time
domain to the componentwise production operation in the Fourier domain [8, 9]:

y = Fz =
∑

i

(FCixi )⊙ Bhi + Fn, (3.9)

where the operation ⊙ is the componentwise product. Here, the first K columns of
the unitary discrete Fourier transform (DFT) matrix F ∈ CL×L with FFH = IL
form the known matrix

B := [b1, . . . , bL]H ∈ CL×K

with bj ∈ CK for 1 ≤ j ≤ L. An example of the sparse linear model is illustrated
in Example 3.1.
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Example 3.1 Consider a network with two devices and one single-antenna BS. We
assume that K = N = 1 and the data signals {xi}2i=1 as x1 = 1, x2 = 2,
and channel signals {hi}2i=1 as h1 = 3,h2 = 4. In addition, three time slots are
considered in this example such that the encoding matrices are given by

C1 =

⎡

⎣
1
1
2

⎤

⎦ and C2 =

⎡

⎣
4
2
1

⎤

⎦ . (3.10)

Based on the unitary discrete Fourier transform (DFT) matrix F ∈ C3×3:

F =

⎡

⎣
0.5774 0.5774 0.5774
0.5774 − 0.2887− 0.5i − 0.2887+ 0.5i
0.5774 − 0.2887+ 0.5i − 0.2887− 0.5i

⎤

⎦ , (3.11)

it yields the blind demixing model:

y =
∑

i

(FCixi )⊙ Bhi

=

⎡

⎣
2.3096

−0.2887+ 0.5i
−0.2887− 0.5i

⎤

⎦⊙

⎡

⎣
1.7322
1.7322
1.7322

⎤

⎦+

⎡

⎣
8.8036

2.8870− 0.5i
2.8870+ 0.5i

⎤

⎦⊙

⎡

⎣
2.3096
2.3096
2.3096

⎤

⎦

=

⎡

⎣
22.6706

6.1677− 1.4435i
6.1677+ 1.4435i

⎤

⎦ . (3.12)

Generally, the blind demixing model can be formulated as the sum of bilinear
measurements of vectors x♮i ∈ CN , h♮i ∈ CK , i = 1, . . . , s, i.e.,

yj =
s∑

i=1

bHj h
♮
ix

♮H
i aij + ej , 1 ≤ j ≤ L, (3.13)

where yj is the j -th entry of y in (3.9), bj ∈ CK denotes the j -th column of BH,
and aij ∈ CN denotes the j -th column of (FCi )

H. Furthermore, the noise ej obeys

ej ∼ CN

(

0,
σ 2d20
2L

)

(3.14)
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with

d0 =

√√√√
s∑

i=1

∥h♮i∥22∥x
♮
i∥22 (3.15)

and σ 2 as the measurement of noise variance.

3.3 Convex Relaxation Approach

In this section, a convex relaxation approach for estimating the blind demixing
model is introduced, followed by theoretical analysis.

3.3.1 Method: Nuclear Norm Minimization

To begin with, a low-rank matrix optimization problem is established via lifting the
bilinear model in (3.13) to the rank-one matrices space. Based on (3.9), the j -th
entry of the first term in (3.9) can be formulated as

[(FCixi )⊙ Bhi]j =
(
cHijxi

)(
bHj hi

)
=

〈
cij b̄

H
j ,Xi

〉
,

where cHij is the j -th row of FCi , bHj is the j -th row of B, andXi = xi h̄
H
i ∈ CN×K

is a rank-one matrix. We have

yj =
〈
⎡

⎢⎢⎢⎢⎣

x1h̄
H
1 0 · · · 0

0 x2h̄
H
2 · · · 0

...
...

. . .
...

0 0 · · · xs h̄
H
s

⎤

⎥⎥⎥⎥⎦
,

⎡

⎢⎢⎢⎢⎢⎣

c1j b̄
H
j 0 · · · 0

0 c2j b̄
H
j · · · 0

...
...

. . .
...

0 0 · · · csj b̄Hj

⎤

⎥⎥⎥⎥⎥⎦

〉

+ el. (3.16)

Thus, the received signal at the BS in the Fourier domain is given by

y =
∑s

k=1
Ai (Xi )+ e, (3.17)

where the vector e denotes the additive Gaussian noise and the linear operator Ai :
CN×K → CL is represented as

Ai (Xi ) :=
{〈
cij b̄

H
j ,Xi

〉}L
i=1

= {⟨Aij ,Xi⟩}Li=1, (3.18)
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with

Aij = cij b̄
H
j .

In addition, the operation A ∗
i : CL → CN×K can be represented as

A ∗
i (y) =

∑L

j=1
yjbjc

H
ij . (3.19)

The goal of blind demixing problem is to find the rank-one matrices that match the
observation, formulated as

find rank(W i ) = 1, i = 1, . . . , s

subject to
∥∥∥
∑s

i=1
Ai (W i )− y

∥∥∥
2
≤ ε, (3.20)

where the parameter ε is a bound for ∥e∥2 (recall that e appeared in (3.17)).
Nevertheless, due to the nonconvexity of the rank function, problem (3.20) is
NP-hard and thus intractable. The nuclear norm minimization approach has been
proposed to relax the rank function [9], which gives the following formulation:

minimize
W i ,i=1,...,s

∑s

i=1
∥W i∥∗

subject to
∥∥∥
∑s

i=1
Ai (W i )− y

∥∥∥
2
≤ ε. (3.21)

The problem (3.21) can be solved via semidefinite program. Based on the estimated
X̂i , the corresponding ĥi and x̂i can be set as the right and left singular values of
X̂i , respectively.

3.3.2 Theoretical Analysis

To present theoretical analysis for methods that solve the blind demixing problem,
several notions are first introduced. For simplicity, we summarize the parameters
involved in the analysis of solving the blind demixing problem (3.21) via semidefi-
nite program in Table 3.1, and the detailed formulations of these parameters can be
found in [9].

The paper [9] demonstrates that the method (3.21) provides an effective way
to solve the blind demixing problem and is also robust to noise, as illustrated in
Theorem 3.1.
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Table 3.1 Conditions involved in Theorem 3.1 and corresponding section mentioned in [9]

Condition Parameter Reference

Joint incoherent pattern on the matrices B µmax, µmin Sect. II-C

Incoherence between bj and hi µ Sect. II-D

Upper bound on ∥Ai∥ := supX ̸=0 ∥Ai (X)∥F / ∥X∥F γ Sect. II-E

Theorem 3.1 Considering the blind demixing model (3.17) in the noiseless sce-
nario, if

L ≥ Cs2 max{µ2
maxK,µ2

hN} log2 L log γ ,

where C > 0 is sufficiently large, and µmax, µ, γ are summarized in Table 3.1, then
the convex relaxation approach (3.21) recovers the ground truth rank-one matrices
exactly with high probability.

Proof The proof details of Theorem 3.1 can be referred to the paper [9] and the
proof architecture of Theorem 3.1 is briefly summarized. We further present a
sufficient condition and an approximate dual certificate condition for the minimizer
of (3.21) to be the unique solution to (3.20). These conditions stipulate that
matrices Ai need to satisfy two key properties. The first property can be regarded
as a modification of the celebrated Restricted Isometry Property (RIP) [3], as it
requires Ai to act in a certain sense as “local” approximate isometries [4]. The
second property requires the two operators Ai and Aj to satisfy a “local” mutual
incoherence property. With these two key properties in place, an approximate dual
certificate can be established that fulfills the sufficient condition. With all these tools
in place, the proof of Theorem 3.1 can be completed.

Remark 3.1 Theorem 3.1 demonstrates that the successful recovery of {W i}si=1
in problem (3.21) in the noiseless scenario via semidefinite programming can be
achieved with high probability as long as the number of measurements satisfies

L $ s2 max{µ2
maxK,µ2

hN} log2 L.

The paper [9] further considers problem (3.21) in the noisy scenario and provides
the performance guarantee of recovering {W i}si=1 in problem (3.21) under the same
conditions as in Theorem 3.1.

3.4 Nonconvex Approaches

While convex techniques can be exploited to solve the blind demixing problem
provably and robustly under certain assumptions, the resulting algorithms are
computationally expensive for large-scale problems. This motivates the develop-
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ment of efficient nonconvex approaches, which are introduced in this section. The
nonconvex approaches introduced in this section can be separated into two types:
the Wirtinger flow based approach, which is an iterative algorithm based on the
gradients derived in the complex space, and the Riemannian optimization based
approach, which is developed on the Riemannian manifold search space.

3.4.1 Regularized Wirtinger Flow

Considering the rank-one structure of the blind demixing model, matrix factoriza-
tion provides an efficient method to address the low-rank optimization problem.
Specifically, Ling and Strohmer [10] developed an algorithm to solve the blind
demixing problem based on matrix factorization and the regularized Wirtinger flow.
The regularized optimization problem is established as

minimize
uk,vk,k=1,...,s

F (u, v) := g(u, v)+ λR(u, v), (3.22)

where

g(u, v) :=
∥∥∥
∑s

k=1
Ak

(
ukv

H
k

)
− y

∥∥∥
2

with uk ∈ CN, vk ∈ CK and the aim of the regularizer R(u, v) is to enable the
iterates to lie in the basin of attraction [10]. The algorithm begins with a spectral
initialization point and updates the iterates as:

u[t+1]
k = u[t]k − η∇Fuk

(
u[t]k , v[t]k

)
, (3.23)

v[t+1]
k = v[t]k − η∇Fvk

(
u[t]k , v[t]k

)
, (3.24)

where ∇Fuk is the derivative of the objective function (3.22) with respect to uk .
The following theorem provided in [10] demonstrates that the regularized Wirtinger
gradient descent will guarantee the linear convergence of the iterates, and the
recovery is exact in the noiseless scenario and stable in the presence of noise.

Denote the condition number as

κ := maxi ∥x♮i∥2
mini ∥x♮i∥2

, (3.25)

and recall that d0 in (3.15). Furthermore, for simplicity, we summarize the param-
eters involved in the analysis of solving the blind demixing problem (3.22) via
regularized Wirtinger flow in Table 3.2, and the detailed formulations of these
parameters can be referred to the references presented in the table.
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Table 3.2 Conditions
involved in Theorem 3.2 and
corresponding section
mentioned in [10]

Condition Parameter Reference

Local regularity condition ω Sect. 5.1
Robustness condition on ∥A ∗(e)∥ γe Sect. 6.5

Algorithm 3.1: Initialization via spectral method and projection
1: for i = 1, 2, . . . , s do
2: Compute A ∗

i (y).
3: Find the leading singular value, left and right singular vectors of A ∗

i (y), denoted by
(di , ĥi0, x̂i0).

4: Solve the following optimization problem for 1 ≤ i ≤ s:

µ
(0)
i := argminz∈CK ∥z−

√
di ĥi0∥2 s.t.

√
L∥Bz∥∞ ≤ 2

√
diµ.

5: Set v(0)i = √di x̂i0.
6: end for
7: Output: {(u(0)i , v

(0)
i , di )}si=1 or (u

(0), v(0), {di}si=1).

Theorem 3.2 Starting from the initial point generated via Algorithm 3.1, the
regularized Wirtinger flow algorithm derives a sequence of iterates (u[t], v[t]) which
converges to the global minimum linearly,

∑s

k=1

∥∥∥u[t]k
(
v[t]k

)H − h
♮
kx

♮H
k

∥∥∥
F
≤ d0√

2sκ2
(1− ηω)t/2 + 60

√
sγe (3.26)

with high probability if the number of measurements L satisfies

L ≥ C(µ2 + σ 2)s2κ4 max{K,N} log2 L, (3.27)

whereC > 0 is sufficiently large. Here, the parameter σ and d0 are defined in (3.14),
and ω, γe are summarized in Table 3.2.

Proof The convergence analysis provided in Theorem 3.2 relies on four conditions:
local regularity condition of the objective function F(u, v) (3.22), local smoothness
condition of the objective function F(u, v) (3.22), local restricted isometry property,
and robustness condition. Under the assumptions mentioned in Theorem 3.2, with
the spectral initialization being in the basin of attraction, the four conditions can be
guaranteed, which yield the results of Theorem 3.2.

The performance of regularized Wirtinger flow is further illustrated in Sect. 3.4.4.

Remark 3.2 Even though Theorem 3.2 demonstrates that the regularized Wirtinger
flow endows with a linear convergence rate, it requires extra regularization added on
the objective function, and the step size, i.e., η ! 1

sκm [10], lacks of aggressiveness.
To exclude the regularization and achieve more aggressive step size, the papers [6, 7]
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have recently investigated regularization-free Wirtinger flow which yields a more
aggressive step size, i.e., η ! s−1.

3.4.2 Regularization-Free Wirtinger Flow

Another line of studies has focused on the blind demixing model that is in the form
of the bilinear model (3.13). In this section, we would formulate an optimization
problem concerning the bilinear formulation of blind demixing and introduce
efficient regularizer-free algorithms. The theoretical analysis on these algorithms
will also be discussed.

A least-squares optimization problem under the scheme of the bilinear formula-
tion of blind demixing is given by

minimize
{hi },{xi }

f (h, x) :=
m∑

j=1

∣∣∣
s∑

i=1

bHj hix
H
i aij − yj

∣∣∣
2
. (3.28)

For simplification, the objective function in (3.28) is denoted as

f (z) := f (h, x),

where

z =
[
zH1 · · · zHs

]H
∈ C2sK with zi =

[
hH
i xH

i

]H
∈ C2K.

A line of literatures, e.g., [5–7, 10], have developed effective algorithms to
solve problem (3.28). The blind demixing problem can be generally solved via two
procedures [6, 10], i.e., Stage I: find an initial point that is in the neighborhood of
the ground truth, which can be accomplished via spectral initialization; Stage II:
optimize the initial estimate via an iterative algorithm, e.g., Wirtinger flow:

[
ht+1
i

xt+1
i

]

=
[
ht
i

xt
i

]
− η

⎡

⎢⎣
1

∥xti∥22
∇hi f (z

t )

1
∥hti∥22

∇xi f (z
t )

⎤

⎥⎦ , i = 1, . . . , s, (3.29)

where η > 0 is the step size, ∇hi f (z) and ∇xi f (z) represent the Wirtinger gradient
of f (z) with respect to hi and xi , respectively.

The discrepancy between the estimate z and the ground truth z♮ is defined as the
distance function:

dist(z, z♮) =
(

s∑

i=1

dist2(zi , z
♮
i )

)1/2

, (3.30)
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Table 3.3 Conditions
involved in Theorem 3.3 and
corresponding references

Conditions Reference

Incoherence between aj and xi (6b) in [6]
Incoherence between bj and hi (6c) in [6]
Robustness condition: ∥A ∗(e)∥ ≤ γe Sect. 6.5 in [10]

where

dist2(zi , z
♮
i ) = min

αi∈C

(
∥ 1
αi

hi − h
♮
i∥22 + ∥αixi − x

♮
i∥22

)
/di

for i = 1, . . . , s. Here, di = ∥h♮i∥22 + ∥x
♮
i∥22 and each αi is an alignment parameter.

Without loss of generality, the ground-truth vectors are assumed to obey ∥h♮i∥2 =
∥x♮i∥2 for i = 1, . . . , s. Recall the operator in (3.19) such that

A ∗
i (e) =

m∑

j=1

ejbja
H
ij , i = 1, . . . , s,

and the condition number κ in (3.25), then the theorem of Wirtinger flow with
the spectral initialization for solving the blind demixing problem is presented in
Theorem 3.3.

For simplicity, we summarize the conditions involved in the analysis of solving
the blind demixing problem (3.28) via Wirtinger flow with spectral initialization in
Table 3.3, and the detailed formulations of these parameters can be referred to the
references presented in the table.

Theorem 3.3 Assuming that the step size obeys η > 0, η ≍ s−1, and the conditions
in Table 3.3 are satisfied, the iterates (including the spectral initialization point) in
Wirtinger flow satisfy

dist(zt , z♮) ≤ C1

(
1− η

16κ

)t ( 1

log2m
− 48

√
sκ2

η
· γe

)
+ 48C1

√
sκ2

η
γe,

for all t ≥ 0, with high probability if the number of measurements satisfies

m ≥ C(µ2 + σ 2)s2κ4K log8m

for some constants C1 > 0 and adequately large constant C > 0.

Proof Please refer to Sect. 8.3 for details.

Theorem 3.3 provides the justification for a more aggressive step size (i.e., η ≍ s−1)
even without regularization, compared to the step size (i.e., η ! 1

sκm ) given in [10]
for regularized Wirtinger flow. In addition, the performance of the Wirtinger flow
algorithm with spectral initialization is illustrated in Fig. 3.2a, b, which is endorsed
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Fig. 3.2 Numerical results of Wirtinger flow with spectral initialization

by Theorem 3.3. To be specific, for each K ∈ {50, 100, 200, 400, 800}, s = 10, and
m = 50K , the design vectors aij ’s and bj ’s for each 1 ≤ i ≤ s, 1 ≤ j ≤ m are
generated based on the instructions in Sect. 3.2.3. The underlying signals h♮i , x

♮
i ∈

CK , 1 ≤ i ≤ s, are generated as random vectors with unit norm. With the chosen
step size η = 0.1 in all settings, Fig. 3.2a shows the relative error, i.e.,

∑s
i=1 ∥ht

ix
tH
i − h

♮
ix

♮H
i ∥F∑s

i=1 ∥h♮ix
♮H
i ∥F

, (3.31)
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Fig. 3.3 Numerical result of Wirtinger flow with random initialization

versus the iteration count. Figure 3.2a shows that in the noiseless case, Wirtinger
flow with a constant step size enjoys a linear convergence rate, which barely
changes as the problem scale changes. Additionally, Fig. 3.2b shows the relative
error (3.31) versus the signal-to-noise ratio (SNR), where the SNR is defined as
SNR := ∥y∥2/∥e∥2. Both the relative error and the SNR are represented in the dB
scale.

The random initialization strategy has recently been proven in [7] to be good
enough for Wirtinger flow to guarantee linear converge rate when solving blind
demixing problems. Specifically, in Stage I, it takes O(s log(max {K,N})) itera-
tions for randomly initialized Wirtinger flow to reach a local region near the ground
truth. Furthermore, in Stage II, it takes O(s log(1/ε)) iterations to attain an ε-
accurate estimator, i.e., dist(z, z♮) ≤ ϵ, at a linear convergence rate. Please refer
to Sect. 8.4 for details on theoretical guarantees for this case. Figure 3.3 shows the
performance of the Wirtinger flow algorithm with random initialization, showing
the relative error (3.31) versus the iteration count. In the simulation, the ground
truth signals and initial points are randomly generated as

h
♮
i ∼ CN (0,K−1IK), x

♮
i ∼ CN (0, N−1IN), (3.32)

h0
i ∼ CN (0,K−1IK), x0

i ∼ CN (0, N−1IN), (3.33)

for i = 1, . . . , s. In all simulations, we set K = N for each K ∈
{10, 20, 40, 80, 100}, s = 10, and m = 50K , and with the chosen step size
η = 0.1.

The above nonconvex algorithm has a low iteration cost, and the overall compu-
tational complexity can be further decreased via reducing the iteration complexity,
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i.e., accelerating the convergence rate. This motivates to develop the Riemannian
optimization algorithm which will be introduced in the next section.

3.4.3 Riemannian Optimization Algorithm

The paper [8] developed a Riemannian trust-region algorithm on the complex
product manifolds to solve the blind demixing problem, which enjoys a fast
convergence rate. Prior to introducing this algorithm for solving the blind demixing
problem, we start with some basic concepts of Riemannian manifold optimization,
and readers can refer to Sect. 8.5 in the book [1] for more details.

3.4.3.1 An Example on Riemannian Optimization

In order to optimize a smooth function on a manifold, several geometric concepts
in terms of manifolds are required. To be specific, tangent vectors on manifolds
generalize the notion of a direction, and an inner product of tangent vectors
generalizes a notion of length that applies to these tangent vectors. A Riemannian
manifold, generally denoted as M , is the manifold of which tangent spaces TxM
are endowed with a smoothly varying inner product. The smoothly varying inner
product is called the Riemannian metric, generally denoted as

gx(ηx, ζ x),

where x ∈M and ηx, ζ x ∈ TxM . Some examples of Riemannian manifold can be
enumerated as: sphere, orthogonal Stiefel manifold, Grassmann manifold, rotation
group, positive definite matrices, fixed-rank matrices, etc.

Consider minimizing a smooth function on the sphere Sn−1 = {x ∈ Rn : x⊤x
= 1}:

minimize
x∈Rn

f (x) = −x⊤Ax subject to x⊤x = 1, (3.34)

where A is a symmetric matrix. As illustrated in Fig. 3.4, the Riemannian optimiza-
tion procedure on the sphere can be separated into three steps:

1. Compute the Euclidean gradient in Rn:

∇f (x) = −2Ax. (3.35)

2. Compute the Riemannian gradient on the sphere Sn−1 via projecting ∇f (x) to
the tangent space TxM :

gradf (x) = Projx∇f (x) = (I − xx⊤)∇f (x). (3.36)
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Fig. 3.4 Schematic
viewpoint of Riemannian
optimization on the
Riemannian manifold

xt
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3. Move along the descent direction η = gradf (x) and retract the directional vector
αη to the sphere, where α > 0 is the step size. The retraction operator on Sn−1 is
given by

Rx(αη) = qf(x + αη), (3.37)

where qf(·) denotes the mapping that maps a matrix to the Q factor of its QR
decomposition.

Furthermore, for the ease of implementing the optimization scheme on manifolds, a
powerful Matlab toolbox, namely Manopt [2], has been developed, which contains
a larger library of manifolds (e.g., sphere, orthogonal Stiefel manifold, Grassmann
manifold, rotation group, positive definite matrices, fixed-rank matrices, etc.) and
various Riemannian optimization algorithms (e.g., steepest descent, conjugate
gradient, stochastic gradient descent, trust-regions algorithm, etc.).

3.4.3.2 Riemannian Optimization on Product Manifolds for Blind
Demixing

Due to the multiple rank-one matrices in the blind demixing problem (3.20),
problem (3.20) can be reformulated as minimizing a smooth function on the product
of multiple fixed-rank matrices. The product of multiple fixed-rank matrices is a
product manifold and is also a Riemannian manifold [1]. The example mentioned
above paves the way for dealing with more complicated Riemannian optimization
algorithms on product manifolds for solving the blind demixing problem.

Firstly, a linear map is developed to handle complex asymmetric matrices. The
linear map facilitates to convert the optimization variables to a Hermitian positive
semidefinite matrix. Define a linear map

Ji : S(N+K)
+ → Cm
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with respect to a Hermitian positive semidefinite (PSD) matrix Y i that obeys

[Ji (Y i )]i = ⟨J ij ,Y i⟩ (3.38)

with Y i ∈ S(N+K)
+ and J ij as

J ij =
[
0N×N
0K×N

Aij

0K×K

]
∈ C(N+K)×(N+K), (3.39)

where Aij = aij b̄
H
j . Note that based on (3.38), we have

[Ji (M i )]i = ⟨J ij ,M i⟩ = ⟨Aij , xih
H
i ⟩, (3.40)

where M i = wiw
H
i with wi = [xH

i h
H
i
]H ∈ CN+K . Based on the matrix

factorization, a manifold optimization problem with respect to Hermitian positive
semidefinite (PSD) matrices can be established as:

minimize
v={wk}sk=1

f (v) :=
∥∥∥
∑s

k=1
Jk

(
wkw

H
k

)
− y

∥∥∥
2
, (3.41)

where v ∈ M s with wk ∈ M := CN+K
∗ for k = 1, . . . , s, where the space Cn

∗ is
the complex Euclidean space Cn without the origin. According to (3.40), the data
signal estimation x̂k can be represented by the first N rows of the estimation ŵk .

Since the quotient manifold is abstract, the matrix representations in the com-
putational space M s of the geometric concepts in the quotient space are required.
In particular, to develop the Riemannian optimization algorithm over the product
manifolds, various geometric concepts need to be derived, such as the notion of
length (i.e., Riemannian metric gwk ), set of directional derivatives (i.e., horizontal
space Hwk ), and motion along geodesics (i.e., retraction Rwk ) [1]. The concrete
optimization-related ingredients are shown in Table 3.4. Based on these ingredients,
we develop a Riemannian algorithm to solve the blind demixing problem (3.41).

Based on the geometry of the product manifolds, the Riemannian optimization
algorithm operated on the product manifolds M s can be elementwisely developed
on the individual manifold M . To be specific, for each k = 1, 2, . . . , s, the descent
direction η is detected on the horizontal spaceHwkM parallelly, and η is parallelly
retracted on the individual manifoldM via the retraction mappingRwk . In addition,
Fig. 3.5 shows the schematic viewpoint of Algorithm 3.2.

Riemannian Gradient Descent with Spectral Initialization In the Riemannian
gradient descent algorithm, i.e., Algorithm 3.3, the search direction is given by

η = −grad
w
[t]
k
f/g

w
[t]
k

(
w[t]
k ,w[t]

k

)
,
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Table 3.4 Elementwise optimization-related ingredients for Problem (3.41)

Minimizewk∈M
∥∥∑s

k=1 Jk

(
wkw

H
k

)
− y

∥∥2

Computational space:

M CN+K
∗

Quotient space:

M / ∼ CN+K
∗ /SU(1)

Riemannian metric:

gwk gwk

(
ζwk, ηwk

)
= Tr

(
ζw

H
kηwk + ηw

H
kζwk

)

Horizontal space:

HwkM ηwk
∈ CN+K : ηHwk

wk = wH
k ηwk

Horizontal space projection ΠHwk
M (ηwk

) = ηwk
− awk ,

a =
(
wH
k ηwk

− ηHwk
wk

)
/2wHw

Riemannian gradient:

gradwk
f gradwf = ΠHwk

M
( 1
2∇wk f (v)

)

Riemannian Hessian:

Hesswk f [ηwk
] Hesswk f [ηwk ] = ΠHwk

M
( 1
2∇2

wk
f (v)[ηwk

]
)

Retraction:
Rwk : TwkM →M Rwk (ηwk

) = wk + ηwk

Fig. 3.5 Schematic viewpoint of Riemannian optimization on the product manifolds

where g
w
[t]
k
is the Riemannian metric and

grad
w
[t]
k
f ∈HwkM

is the Riemannian gradient. Therefore, the sequence of the iterates is given by

w[t+1]
k = R

w
[t]
k
(αtη),
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Algorithm 3.2: Riemannian optimization on product manifolds
Given: Riemannian manifold M s with Riemannian metric gv , retraction mapping

Rv = {Rwk }sk=1, objective function f and the step size α.
Output: v = {wk}sk=1

1: Initialize: initial point v[0] = {w[0]
k }sk=1, t = 0

2: while not converged do
3: for all k = 1, · · · , s do in parallel
4: Compute a descent direction η. (e.g., via implementing trust-region method)
5: Update w[t+1]

k = R
w
[t]
k
(αη)

6: t = t + 1.
7: end for
8: end while

where the step size αt > 0 and

Rwk (ξ) = wk + ξ , (3.42)

with ξ ∈HwkM . Here, the retraction map

Rwk : HwkM →M

is an approximation of the exponential map that characterizes the motion of
“moving along geodesics on the Riemannian manifold.” More details on computing
the retraction are available in [1, Section 4.1.2]. The statistical analysis of the
Riemannian gradient descent algorithm will be provided in the sequel, which
demonstrates the linear rate of the proposed algorithm for converging to the ground
truth signals.

Theorem 3.4 Suppose the rows of the encoding matrices, i.e., cij ’s, follow the i.i.d.
complex Gaussian distribution, i.e.,

cij ∼ N

(
0,

1
2
IN

)
+ iN

(
0,

1
2
IN

)

and the step size obeys αt > 0 and αt ≡ α ≍ s−1, then the iterates (including the
spectral initialization point) in Algorithm 3.3 satisfy

dist(vt , v♮) ≤ C1

(
1− α

16κ

)t 1

log2 L
(3.43)

for all t ≥ 0 and some constant C1 > 0, with probability at least 1 − c1L
−γ −

c1Le
−c2K if the number of measurements

L ≥ Cµ2s2κ4 max {K,N} log8 L

for some constants γ , c1, c2 > 0 and sufficiently large constant C > 0.
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Algorithm 3.3: Riemannian gradient descent with spectral initialization
Given: Riemannian manifold M s with optimization-related ingredients, objective function

f , {cij }, {bj }, {yj } and the stepsize α.
Output: v = {wk}sk=1
1: Spectral Initialization:
2: for all i = 1, · · · , s do in parallel

3: Let σ1(N i ), ȟ
0
i and x̌0

i be the leading singular value, left singular vector and right
singular vector of matrix N i :=

∑m
j=1 yjbj c

H
ij , respectively.

4: Set w[0]
i =

[
x0
i

h0
i

]
where x0

i =
√
σ1(N i )x̌

0
i and h

0
i =

√
σ1(N i )ȟ

0
i .

5: end for
6: for all t = 1, · · · , T
7: for all i = 1, · · · , s do in parallel
8: η = − 1

g
w
[t]
k

(w
[t]
k ,w

[t]
k )

grad
w
[t]
k
f

9: Update w[t+1]
k = R

w
[t]
k
(αtη)

10: end for
11: end for

Proof Please refer to Sect. 8.6 for details.

Theorem 3.4 demonstrates that the number of measurements O(s2κ4 max {K,N}
log8 L) are sufficient for the Riemannian gradient descent algorithm (with spectral
initialization), i.e., Algorithm 3.3, to linearly converge to the ground truth signals.

Riemannian Trust-Region Algorithm A scalable algorithm that enjoys superlin-
ear convergence rate, i.e., the Riemannian trust-region algorithm, can be developed
on the product manifolds to detect the descent direction η [1, Section 7]. In order to
parallelly search the descent direction on the horizontal space HvM s , the method
of searching the direction ηwk

on the horizontal spaceHwkM is developed. At each
iteration, define the point on the manifold as wk ∈M , a trust-region subproblem is
described as follows [1]:

minimize
ηwk

m(ηwk
)

subject to gwk (ηwk
, ηwk

) ≤ δ2, (3.44)

where ηwk
∈ HwkM , δ is the trust-region radius, and the objective function is

represented as

m(ηwk
) = gwk (ηwk

, gradwk
f )+ 1

2
gwk

(
ηwk

,Hesswk f
[
ηwk

])
, (3.45)

and Hesswk f
[
ηwk

]
and gradwk

f are the matrix representations of Riemannian
Hessian and Riemannian gradient in the quotient space, respectively. In addition,
the iterate being updated or maintained depends on whether the decrease of the
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function m(ηwk
) is satisfied or not [1, Section 7]. If the decrease is sufficient, the

iterate is updated as

Rwk (ηwk
) = wk + ηwk

. (3.46)

Under the above framework, the Riemannian trust-region algorithm is parallelly
developed on individual manifolds to solve problem (3.41).

3.4.4 Simulation Results

In this section, we compare three algorithms for estimating the blind demixing
model: nuclear norm minimization (NNM) in Sect. 3.3.1, regularizedWirtinger flow
(RGD) in Sect. 3.4.1, and Riemannian trust-region algorithm (RTR) in Sect. 3.4.3.

The ground-truth vectors, i.e., xk ∈ CN and hk ∈ CK for k = 1, . . . , s, are
generated as standard complex Gaussian vectors whose entries are drawn i.i.d.
from the standard normal distribution. In addition, the relative construction error
with respect to the rank-one matrices, i.e., Xi = hix

H
i , is adopted to evaluate the

performance of the algorithms, given as

err(X) =

√∑s
k=1 ∥Xk − X̂k∥2F√∑s

k=1 ∥X̂k∥2F
, (3.47)

where {Xk} are estimated matrices and {X̂k} are ground truth matrices. The initial-
ization strategy, i.e., Algorithm 3.1, is adopted for all the nonconvex optimization
algorithms, i.e., RGD and RTR. The RTR algorithm stops when the norm of
Riemannian gradient is less than 10−8 or the number of iterations exceeds 500.
The stopping criteria of RGD is adopted from the paper [10].

In the noiseless scenario, two nonconvex algorithms are compared under the
setting of N = K = 50, L = 1250, and s = 5. The convergence rates of nonconvex
algorithms are illustrated in Fig. 3.6. In the noisy scenario, assume the additive noise
term in (3.17) obeys

e = σ · ∥y∥ · ω

∥ω∥ , (3.48)

where ω ∈ CL denotes a standard complex Gaussian vector. Three algorithms with
respect to different signal-to-noise ratios (SNR) σ are compared under the setting of
L = 1500, N = K = 50, and s = 2. In each circumstance, ten independent trails
are simulated. Figure 3.7 shows the average relative construction error in dB against
the signal-to-noise ratio (SNR). It concludes that the average relative construction
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error decreases as SNR increases, which demonstrates that RTR is robust to the
noise.
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3.5 Summary

This chapter introduced a blind demixing model that facilitates to jointly decode
data and estimate the channel state in IoT networks. The low-overhead communi-
cations can be achieved via the blind demixing model since it excludes the channel
estimation sequence in the metadata. The convex relaxation method is introduced
to solve the blind demixing problem based on its low-rank property. To further
reduce the computational complexity, first-order algorithms, e.g., Wirtinger flow
and regularized Wirtinger flow, have been developed. In addition, a Riemannian
trust-region algorithm that enjoys faster convergence than the first-order algorithm
has also been presented. The summary of both convex and nonconvex approaches
for solving the blind demixing problem in the noiseless scenario is provided in
Table 3.5.1 State-of-the-art theoretical analysis is developed under the assumption
of the Gaussian encoding matrices. It is intriguing to explore more general types of
encoding matrices, e.g., sub-Gaussian matrices, in future works.
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Chapter 4
Sparse Blind Demixing

Abstract This chapter extends the models presented in Chaps. 2 and 3 to the
scenario involving device activity detection. The new setting induces a sparse
blind demixing model for developing methods for joint device activity detection,
data decoding, and channel estimation in IoT networks. The signal model is first
presented, in the scenario with either a single-antenna or multi-antenna BS. A
convex relaxation approach is first introduced as a basic method to solve the
nonconvex estimation problem. We further present a difference-of-convex-functions
(DC) approach which turns out to be a powerful tool to solve the resulting sparse
and low-rank optimization problem with matrix lifting. Furthermore, a smooth
Riemannian optimization algorithm operating on the product manifold is introduced
for solving the sparse blind demixing problem directly.

4.1 Joint Device Activity Detection, Data Decoding,
and Channel Estimation

In Chap. 2, a sparse linear model has been developed for grant-free random access
to jointly detect device activity and estimate channel state information. Under
this scheme, pilot sequences are needed for activity detection, which lead to
excess overhead for short packet communications. To avoid the transmission of
pilot sequences, more powerful signal processing techniques are needed for data
detection. Assuming the active device set is known, the blind demixing model has
been introduced in Chap. 3 to achieve pilot-free communications in the massive IoT
network via joint data decoding and channel estimation. To further account for the
sporadic activity pattern in massive IoT networks, a sparse blind demixing model
was proposed in [4, 6] to reduce the overhead during the transmission via joint
device activity detection, data decoding, and channel estimation in a unified way.
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Considering an IoT network containing one BS equipped with a single antenna,
where only part (denoted as the set S ) of the devices are active, the sparse blind
demixing model represented in the Fourier domain is given as

yj =
∑

k∈S bHj hkx
H
k akj , 1 ≤ j ≤ m, (4.1)

where

y = [y1, . . . , ym]⊤ ∈ Cm

is the received signal at the BS represented in the Fourier domain, {bj } are design
vectors that indicate the Fourier transform operation, {akj } are design vectors
that indicate the encoding procedure, and {hk}, {xk} are channel signals and data
signals, respectively. By detecting the active set S and the vectors {hk}, {xk} for
k ∈ S from the observation y, device activity detection, data decoding, and channel
estimation can be simultaneously achieved. This is a highly challenging problem.

In the sequel, we first introduce the problem formulation of the sparse blind
demixing model. Various approaches for solving the corresponding nonconvex
estimation problem are then introduced: (1) a convex relaxation approach based
on the minimization of nuclear norms and ℓ1/ℓ2-norms, (2) a difference-of-convex
(DC) function approach based on the minimization of DC objective functions.
Along the discussion, we also identify theoretical analysis for the sparse blind
demixing model as future research directions.

4.2 Problem Formulation

In this section, we present problem formulation for joint activity detection, data
decoding, and channel estimation for both scenarios of single-antenna and multi-
antenna BSs. Considering an IoT network consisting of one BS and s single-antenna
devices with sporadic traffic, in each coherence block, only an unknown subset of
devices are active, defined asS ⊆ {1, 2, . . . , s}.

4.2.1 Single-Antenna Scenario

In the single-antenna BS scenario, the problem formulation of the sparse blind
demixing model can be derived from the blind demixing model mentioned in
Sect. 3.2 with an additional consideration of the sparse activity pattern. The data
signal transmitted by the k-th user is denoted as x♮k ∈ CN . Assume that an encoding
matrix over the m time slots is assigned to each device k. Over m time slots, the
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received signals at the BS in the frequency domain are presented as [3, 9]

yj =
∑

k∈S bHj h
♮
kx

♮∗
k akj + ej , 1 ≤ j ≤ m, (4.2)

which resembles the blind demixing model defined in (3.13) as presented in
Sect. 3.2.3. From the observation yj for 1 ≤ j ≤ m, the active set S , data
information {xk}, and the channel state information {h} can be recovered. Hence,
joint device activity detection, data decoding, and channel estimation can be
achieved.

4.2.2 Multiple-Antenna Scenario

Considering an IoT network consisting of a BS equipped with r antennas and
s single-antenna devices with sporadic traffic. Denote g

♮
ij ∈ Cm as the channel

impulse response from the j -th device to the i-th antenna of the BS and recall the
transmitted signal at the j -th device defined in (3.6). Thus, the observations zi ∈ Cm

at the i-th antenna of the BS are represented as

zi =
∑

j∈S
f
♮
j ∗ g

♮
ij + ni , ∀i = 1 . . . r, (4.3)

where ni ∈ Cm is additive white complex Gaussian noise. The sparse blind
demixing model in the single-antenna scenario is the specific case of (4.3) when
r = 1. Given the observations {zi}, our goal is to detect the active device setS and
recover the associated {f ♮

j } and {g♮ij } simultaneously.
Similar to the model in the single-antenna scenario, i.e., (4.2), the l-th entry of

yi is given by

yi[l] =
∑

j∈S
bHl h

♮
ijx

♮H
j cj l + ξ i[l], l = 1, . . . , m, i = 1, . . . , r. (4.4)

The goal is to simultaneously detect active device set S and recover both {x♮j } and
{h♮ij } from the observations {zi}.

4.3 Convex Relaxation Approach

In this section, we present a convex relaxation approach to solve the sparse blind
demixing problem. Taking the single-antenna scenario as an example, the optimiza-
tion problem is firstly established for the sparse blind demixing model (4.2). Then
a convex relaxation approach is further presented to solve this resulting nonconvex
optimization problem.
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Define a collection of groups as

G = {G1,G2, . . . ,Gs} (4.5)

with

Gk = {N(k − 1)+ 1, . . . , Nk}

and

Gi ∩ Gj = ∅

for i ̸= j , and denote an aggregative vector as

x = [x⊤1 , . . . , x⊤s ]⊤ ∈ CNs,

where the index set is

V = {1, 2, . . . , Ns}.

With the support of the data vector defined as

Supp(x) = {i|xi ̸= 0,∀i ∈ V },

the sparse blind demixing problem can be formulated as

minimize
{xk},{hk}

s∑

k=1

I(Supp(x) ∩ Gk ̸= ∅)

subject to
m∑

j=1

∣∣∣
s∑

k=1

bHj hkx
H
k akj − yj

∣∣∣
2
≤ ϵ, (4.6)

where parameter ϵ > 0 is known a priori. Denoting x⋆ as a solution of problem (4.6),
the set of active devices is given as

S ⋆ = {k : Supp(x) ∩ Gk ̸= ∅}.

Due to the nonconvex bilinear constraint and the combinatorial objective function,
problem (4.6) is highly intractable, which motivates to develop efficient algorithms
with good performance.
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A natural way is to lift the bilinear model into the linear model with a low-rank
matrix [9], i.e.,

bHj hkx
H
k akj = bHj W kakj (4.7)

withW k ∈ CK×N and

rank(W k) = 1,∀k = 1, . . . , s.

The natural idea is to exploit a convex relaxation method to deal with the sparsity
and low-rankness in matricesW k’s of problem (4.6):

minimize
{W k}

λ1
∑s

k=1
∥W k∥∗ + λ2

∑s

k=1
∥W k∥F

subject to
∑m

j=1

∣∣∣
∑s

k=1
bHj W kakj − yj

∣∣∣
2
≤ ϵ, (4.8)

where λ1 ≥ 0 and λ2 ≥ 0 are the regularization parameters. The group sparsity
structure in the aggregated data signals x induces a group sparsity structure in the
lifting vector

vec(W ) = [vec(W 1)
H, . . . , vec(W s)

H]H ∈ CKNs,

where vec(M) is the vectorization of matrix M . Furthermore, the ℓ1/ℓ2-norm is
adopted to induce the group sparsity in the vector vec(W ), i.e.,

∥vec(W )∥1,2 =
s∑

k=1

∥vec(W k)∥2 =
∑s

k=1
∥W k∥F .

4.4 Difference-of-Convex-Functions (DC) Programming
Approach

Although the convex relaxation approach (4.8) provides a natural way to solve
problem (4.6), the results obtained from norm relaxation are usually suboptimal
to the original nonconvex optimization problem [10]. Moreover, two regularization
parameters are introduced by the combination of norms, which are difficult to tune.
Additionally, there is no efficient convex relaxation approach to simultaneously
induce low-rankness and sparsity [2]. To address these issues, the paper [6] devel-
oped a difference-of-convex-functions (DC) representation for the rank function in
order to satisfy the fixed-rank constraint.
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In the sequel, we consider the sparse blind demixing model under the multiple-
antenna BS scenario. Specifically, the sparse blind demixing problem is reformu-
lated as a sparse and low-rank matrix recovery problem via lifting the bilinear
model into the linear model. Based on the linear model, an exact DC formulation
for the rank constraint is further established, followed by developing an efficient DC
algorithm (DCA) for minimizing the DC objective.

4.4.1 Sparse and Low-Rank Optimization

The estimation problem for sparse blind demixing with a multiple-antenna BS can
be established in the similar form of the optimization problem (4.6). To facilitate
the design of the DC algorithm, a sparse and low-rank optimization problem is first
established. Denote

h
♮
j =

[
h
♮H
1j , . . . ,h

♮H
rj

]H
,∀j = 1, . . . , s, (4.9)

where h♮j ∈ Crk . Define a set of matrices

X
♮
ij = h

♮
ijx

♮H
j , (4.10)

where X♮
ij ∈ Ck×d . Here, X♮

ij is a rank-one matrix when j ∈ S , otherwise a zero
matrix. Define

X
♮
j =

[
X
♮H
1j ,X

♮H
2j , . . . ,X

♮H
rj

]H
= h

♮
jx

♮H
j , (4.11)

where X
♮
j ∈ Crk×d . X♮

j is a rank-one matrix when j ∈ S ; otherwise it is a zero
matrix. With a matrix defined as Ei ∈ Rk×rk

Ei =
[
ek(i−1)+1, ek(i−1)+2, . . . , eki

]H
,∀i = 1, . . . , r, (4.12)

where el denotes the rk-dimensional standard basis vector, a linear map Aij :
Crk×d → Cm for 1 ≤ i ≤ r , 1 ≤ j ≤ s is given by

Aij (Z) := {⟨blcHj l,EiZ⟩}ml=1, (4.13)

where Z ∈ Crk×d and EiX
♮
j = X

♮
ij . Thus, the model (4.4) can be transformed into

yi =
s∑

j=1

Aij (X
♮
j )+ ξ i ,∀i = 1, . . . , r. (4.14)
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The measurements {yi} are the linear combinations of the corresponding entries
of every column block in the lifted matrix X♮ ∈ Crk×ds , which is given by

X♮ =

⎡

⎢⎢⎢⎢⎣

h
♮
11x

♮H
1 h

♮
12x

♮H
2 . . . h

♮
1sx

♮H
s

h
♮
21x

♮H
1 h

♮
22x

♮H
2 . . . h

♮
2sx

♮H
s

...
...

. . .
...

h
♮
r1x

♮H
1 h

♮
r2x

♮H
2 . . . h♮rsx

♮H
s

⎤

⎥⎥⎥⎥⎦
=

[
X
♮
1, . . . ,X

♮
s

]
.

Instead of recovering both {h♮ij } and {x♮j }, problem P is solved with the recovery
of the matrix X♮. Notice that X♮ has block-low-rank and column sparse structures.
The goal is to recover X♮ from the observation yi for i = 1, . . . , r . Since X♮ has
block-low-rank and column sparse structures, we can establish a sparse and low-
rank optimization problem as follows:

minimize
{Xj }

∥∥∥[∥vec(X1)∥2, . . . , ∥vec(Xj )∥2]
∥∥∥
0

subject to
r∑

i=1

∥∥∥yi −
s∑

j=1

Aij (Xj )
∥∥∥
2

2
≤ ϵ

rank(Xj ) ≤ 1, ∀j = 1, . . . , s, (4.15)

where {Xj } ∈ Crk×d .

4.4.2 A DC Formulation for Rank Constraint

Before giving an exact DC formulation for the rank constraint, we introduce the
definition of Ky Fan k-norm.

Definition 4.1 Ky Fan k-norm [7]: the Ky Fan k-norm of a matrix X ∈ Cm×n is
defined as the sum of its largest-k singular values, i.e.,

|||X|||k =
k∑

i=1

σi (X), (4.16)

where k ≤ min{m, n}.
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Since the rank of a matrix is equal to the number of its nonzero singular values, for
any matrix X ∈ Cm×n whose rank is less than k, it can yield from Definition 4.1
that [7]:

rank(X) ≤ k ⇔ ∥X∥∗ − |||X|||k = 0. (4.17)

Instead of using the discontinuous rank function, a continuous DC function ∥X∥∗ −
|||X|||k can be adopted for inducing low-rankness property of a matrix.

4.4.3 DC Algorithm for Minimizing a DC Objective

Based on (4.17), problem (4.15) can be further formulated as the minimization
problem with a DC objective function:

minimize
{Xj }

s∑

j=1

(
∥Xj∥∗ −

∣∣∣∣∣∣Xj

∣∣∣∣∣∣
1

)

subject to
r∑

i=1

∥∥∥yi −
s∑

j=1

Aij (Xj )
∥∥∥
2

2
≤ ϵ. (4.18)

To address the nonconvexity of the DC objective function, a DC algorithm based
on majorization-minimization (MM) has been proposed in [12]. At each iteration,
the DC algorithm solves a convex subproblem, given by

minimize
{Xj }

s∑

j=1

(
∥Xj∥∗ − ⟨Xj ,Y

t−1
j ⟩

)

subject to
r∑

i=1

∥∥∥yi −
s∑

j=1

Aij (Xj )
∥∥∥
2

2
≤ ϵ, (4.19)

where Y t−1
j ∈ Crk×d is a subgradient of

∣∣∣∣∣∣Xj

∣∣∣∣∣∣
1 at Xt−1

j and can be efficiently
derived from the singular value decomposition, given by

∂
∣∣∣
∣∣∣
∣∣∣Xt

j

∣∣∣
∣∣∣
∣∣∣
1
=

{
Udiag(q)V H : q = [1, 0, . . . , 0]

}
. (4.20)

The DC algorithm is illustrated in Algorithm 4.1.
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Algorithm 4.1: DC algorithm for problem (4.18)
Input: {Aij }, {yi}, upper bound ϵ, a small value η
Output: {Xt

j }
Initialisation : {X0

j }
1: k = 1

LOOP Process
2: for t = 1, 2, . . . do
3: Select {Y t−1

j ∈ ∂∥Xt−1
j ∥k}

4: Solve the convex problem (4.19), and obtain the
optimal solution {Xt

j }
5: if

∑s
j=1(∥Xt

j∥∗ −
∣∣∣
∣∣∣
∣∣∣Xt

j

∣∣∣
∣∣∣
∣∣∣
1
) < η then

6: break
7: end if
8: end for
9: return {Xt

j }

4.4.4 Simulations

In this section, we conduct numerical experiments to compare the proposed DC
approach with the convex relaxation methods for empirical recovery performance
and test the robustness against noise.

For j /∈ S , set the ground truth data signal as x♮j = 0d , and for j ∈ S , x♮j
is drawn i.i.d. from the standard complex Gaussian distribution. Both the channel
states {h♮ij } and matrices {Cj } are drawn i.i.d. from the standard complex Gaussian
distribution. To measure the accuracy of estimation, the relative construction error
is defined as

error(X) =

√∑s
j=1∥X

♮
j −Xj∥2F√∑s

j=1∥X♮
j∥2F

, (4.21)

where the ground truth matrices are denoted as {X♮
j }, and {Xj } are the estimated

matrices.
We compare the empirical recovery and robustness performance of the following

four algorithms:

• DC algorithm (DCA): The termination criterion is either the iteration number
exceeding 200 or

∑s
j=1(∥Xt

j∥∗ −
∣∣∣
∣∣∣
∣∣∣Xt

j

∣∣∣
∣∣∣
∣∣∣
1
) < 10−6.

• mixed norm minimization(MNM): The regularization terms λ1 and λ1 are
chosen via cross validation.
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Fig. 4.1 Probability of successful recovery with different sample sizes m

• nuclear norm minimization (NNM): The algorithm is similar to MNM except
for λ1 = 1, λ2 = 0.

• ℓ1/ℓ2-norm minimization(LNM): The algorithm is similar toMNM except for
λ1 = 0, λ2 = 1.

The empirical recovery performance of the above four algorithms is investigated
in the noiseless scenario under the setting of k = 5, d = 20, s = 10, |S | = 4,
and r = 3. For each setting, 20 independent trails are performed and the recovery is
regarded as a success if the error(X) < 10−2. Figure 4.1 shows the performance of
recovery with varying the number of measurements.

The robustness of the four algorithms with respect to noise is further investigated.
The noise ξ i is generated as

ξ i = σ · ∥yi∥·
zi

∥zi∥
, ∀i = 1 . . . r, (4.22)

where zi ∈ Cm is the normalized standard Gaussian vector. Under the setting of
k = 5, d = 20, s = 10, |S | = 4, r = 3, and m = 670, 20 independent trails
are performed with respect to different σ . Figure 4.2 illustrates the average relative
error in dB against the signal-to-noise-ratio (SNR). It shows that DCA enjoys a
higher accuracy of reconstruction than other algorithms.



4.5 Smoothed Riemannian Optimization on Product Manifolds 69

0 
100 200 300 400 500 600

0.2

0.4

0.6

0.8

1

m

Pr
ob

ab
ili

ty
 o

f s
uc

ce
ss

fu
l r

ec
ov

er
y DCA

NNM
LNM
MNM
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4.5 Smoothed Riemannian Optimization on Product
Manifolds

Another line of literatures have developed efficient nonconvex algorithms to solve
the sparse and low-rank optimization problem [8, 13] in the natural vector space
via matrix factorization. For instance, an alternating minimization approach was
developed in [8] for solving the sparse blind deconvolution problem. However, the
additional group sparsity structure of the sparse blind demixing problem (4.6) brings
unique challenges to develop the nonconvex optimization paradigm. To address this
challenge, a smoothed Riemannian optimization approach is introduced to solve
sparse blind demixing problem [4], thereby achieving better performance with
low computational complexity. More details on the manifold optimization can be
referred to Sect. 3.4.3.

4.5.1 Optimization on Product Manifolds

To begin with, problem (4.6) is formulated as a regularized optimization problem
under fixed-rank constraints. For k = 1, . . . , s, j = 1, . . . , m, define

cj = [bHj , 0HN ]H ∈ CN+K, dkj = [0HK, aHkj ]H ∈ CN+K,
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it yields

cHj Mkdkj = bHj hkx
H
k akj , (4.23)

where

Mk = wkw
H
k ∈ SN+K

+ (4.24)

is a Hermitian positive semidefinite matrix with

wk = [hH
k , x

H
k
]H ∈ CN+K. (4.25)

Hence, problem (4.6) can be represented as the optimization problem on the product
of Hermitian positive semidefinite matrices:

minimize
M

m∑

j=1

∣∣∣
s∑

k=1

cHj Mkdkj − yj

∣∣∣
2
+ λf (M)

subject to rank(Mk) = 1, k = 1, . . . , s, (4.26)

whereM = {Mk}sk=1 withMk ∈ SN+K
+ , λ > 0 is the regularization parameter, and

f (M) is the function to induce the sparsity structure. Here, Mk is in the space of
the manifold encoded by complex symmetric rank-one matrices, i.e.,Mk ∈Mk [5].
It yields thatM ∈M s , where

M s := M1 ×M2 × · · ·×Ms (4.27)

represents the product of manifolds Mk . By exploiting the quotient manifold
geometry of the product of complex symmetric rank-one matrices, computationally
efficient Riemannian optimization algorithms can be developed on product mani-
folds.

4.5.2 Smoothed Riemannian Optimization

The smooth objective function is normally required [1, 11] in order to develop
Riemannian optimization algorithm for solving problem (4.26). To achieve this goal,
the smoothed ℓ1/ℓ2-norm is introduced, represented as

fϵ(M) =
∑s

k=1

(
∥Mk∥2F + ϵ2

)1/2
(4.28)
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with ϵ > 0 as the smoothing parameter with a small value. This can be used for
inducing the group sparsity structure in vector

vec(M) = [vec(M1)
H, . . . , vec(Ms)

H]H. (4.29)

Therefore, the proposed smoothed Riemannian optimization approach over the
product manifold M s for sparse blind demixing problem (4.6) is given by

minimize
M∈M s

m∑

j=1

∣∣∣
s∑

k=1

cHj Mkdkj − yj

∣∣∣
2
+ λfϵ(M), (4.30)

where the objective function is smooth and the constraint is a manifold.
Due to the geometry of the product manifolds, the Riemannian optimization

algorithms developed on the product manifold M s can be elementwisely operated
over the individual manifolds Mk [5]. For individual manifold Mk , the descent
direction is detected on the horizontal space of the manifold and then retract it on
the manifold via retraction operation. Therein, the detection of the descent direction
can be achieved by the Riemannian optimization algorithms, e.g., conjugate gradient
descent algorithm [1].

4.5.3 Simulation Results

In this section, to illustrate the advantages of the smoothed Riemannian optimization
for solving the sparse blind demixing problem (4.30), the Riemannian conjugate-
gradient descent algorithm (RCGD) is compared with the other three algorithms
mentioned in Sect. 4.4.4, i.e., nuclear norm minimization (NNM), ℓ1/ℓ2-norm
minimization (LNM), and mixed norm minimization (MNM). Here, the RCGD
algorithm adopts the initialization strategy in [5] and stops when the norm of
Riemannian gradient falls below 10−8 or the number of iterations exceeds 500.

The empirical recovery performance of the above four algorithms, i.e., RCGD,
NNM, LMN, and MNM, are investigated under the setting ofN = K = 10, s = 10,
|A | = 3. For each setting, 30 independent trails are performed and the recovery
is considered as a success if err(x) ≤ 10−2. Figure 4.3 illustrates the probability
of successful recovery with respect to different sample sizes m. It shows that the
smoothed Riemannian optimization algorithm achieves much better performance
than other algorithms. That is, it exactly recovers the ground truth signals with less
samples.
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Fig. 4.4 Average relative construction error vs. SNR (dB)

The average relative construction error of the four algorithms is further investi-
gated to explore the robustness of the proposed smoothed Riemannian optimization
algorithm against additive noise. The four algorithms for each level of signal-to-
noise ratio (SNR) 1/σ are compared in the setting of m = 550, N = K = 10,
s = 10, |A | = 3. For each setting, 20 independent trails are performed. The average
relative construction error in dB against the SNR is showed in Fig. 4.4, which
demonstrates that RCGD is robust to the noise and can achieve better performance
than other algorithms.
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4.6 Summary

This chapter introduced a sparse blind demixing model with both single-antenna and
multi-antenna BSs for joint device activity detection, data decoding, and channel
estimation in IoT networks with the grant-free random access scheme. It enjoys
attractive advantages by removing the overhead caused by channel estimation
sequence and device activity information. According to the simultaneous group
sparse and low-rank variables in the sparse blind demixing model, the convex
relaxation approach based on the norm minimization was first introduced. To
further pursue higher accuracy of signal reconstruction compared to the convex
relaxation approach, the approach that minimizes the difference-of-convex (DC)
objective functions was developed. Another line of works has been focused on
establishing Riemannian manifold to characterize the structured variables in the
sparse blind demixing model. It is also interesting to further investigate the geometry
property, i.e., group sparsity and low-rankness, of the sparse blind demixing model,
thereby facilitating to design efficient algorithms with satisfactory performance,
i.e., low sample complexity or high accuracy of estimation. A rigorous theoretical
analysis on the sparse blind demixing problem is also of interest for future study, to
characterize the number of measurements required for exact recovery.
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Chapter 5
Shuffled Linear Regression

Abstract In this chapter, we shall introduce a shuffled linear regression model for
joint data decoding and device identification in IoT networks. It is first formulated as
a maximum likelihood estimation (MLE) problem. To solve this MLE problem, two
algorithms are presented: one is based on sorting, and the other algorithm returns an
approximate solution to the MLE problem. Next, theoretical analysis on the shuffled
linear regression based on the algebraic-geometric theory is presented. Based on
the analysis, an algebraically initialized expectation-maximization algorithm is
introduced to solve the problem.

5.1 Joint Data Decoding and Device Identification

In the massive IoT scenario, the device identity information plays a vital role in
differential updates, spatial correlation [12], and multi-stage collection [11], for
which sensors are used to reconstruct the spatial field. It would take excess time
if the identity information has to be collected regularly. Hence, a significant gain
in the efficiency of communication procedure can be obtained by excluding the
identification information in the header of the packet structure. This yields a joint
data decoding and device identification problem at the BS, which may also act as a
data fusion center. To achieve this goal, a shuffled linear regression has been recently
investigated in a line of literature [9, 10, 14, 15] that can be exploited to remove
the metadata used for device identification. The shuffled linear regression for
identification-free communication is illustrated in Fig. 5.1. Considering a massive
sensor network that contains m sensor nodes to capture the parameter data x ∈ Rn

generated from n devices, a shuffled linear regression can be represented as

y = ΠAx, (5.1)

where y ∈ Rm is the permuted signal received at the BS, A ∈ Rm×n is an
encoding matrix, and Π is an unknown m × m permutation matrix whose i-th
row is the canonical vector e⊤π(i) of all zeros except a 1 at position π(i). The
recovery of the shuffled linear regression (5.1) enables the BS to decode the signal
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x* 

 P *

y1 = a1 x* + w1

yp* (1) yp* (2) . . .

. . .

yp*(m)

⊥

ym = amx* + wm

⊥

y*  = a2 x* + w2

⊥

2

Fig. 5.1 An example to illustrate the shuffled linear regression for identification-free
communication

x = [x1, . . . , xn]⊤ corresponding to each device from subsampled and permuted
measurements y. A simple linear shuffled model is illustrated in Example 5.1.

Example 5.1 Consider a senor network with three sensor nodes and two devices.
Assume that the parameter data x and the encoding matrix are given by

A =

⎡

⎣
1 2
−2 4
0 −5

⎤

⎦ and x =
[
3
4

]
. (5.2)

Based on a permutation matrix Π, i.e.,

Π =

⎡

⎣
0 0 1
1 0 0
0 1 0

⎤

⎦ (5.3)

it yields a shuffled linear model:

y = Π ·Ax =

⎡

⎣
0 0 1
1 0 0
0 1 0

⎤

⎦

⎡

⎣
11
10
−20

⎤

⎦ =

⎡

⎣
−20
11
10

⎤

⎦ . (5.4)

Recently, important theoretical advances have been made to understand this
problem, which can be mainly separated into three types: statistical approaches,
algebraic geometry approaches, and alternating minimization approaches. For
statistical approaches, the works [2, 4, 13] have developed algorithms based on
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the maximum likelihood estimator xML given by

(ΠML, xML) = argmin
Π∗,x∗

∥∥y −Π∗Ax∗
∥∥
2 .

In addition, the conditions when the estimator recovers the ground truth in (5.1),
i.e., ΠML = Π, have been established in the works [9, 13].

When the ratio of shuffled entries to all of the data entries is small, one may apply
alternating minimization or multi-start gradient descent to solve (5.9) [2], which is
an NP-hard problem for n > 1 [15]. Due to high nonconvexity, such methods are
very sensitive to initialization. This issue is addressed by the algebraically initialized
expectation-maximization method proposed in [15], which uses the solution to
the polynomial system of equations mentioned above to obtain a high-quality
initialization. This approach is robust to small levels of noise, efficient for n ≤ 5,
and is able to handle fully shuffled data.

In the following, we will first demonstrate that the shuffled linear regression
provides a way to achieve joint data decoding and device identification. Further-
more, two types of methods for solving the estimation problem in the shuffled
linear regression will be introduced along with theoretical analysis, which include
a maximum likelihood estimation based approach and an algebraic-geometric
approach.

5.2 Problem Formulation

Consider a massive sensor network that contains m sensor nodes. Based on the
correspondence pairs {uj , yj }mj=1, the aim is to find the parameter vector

x = [x1, . . . , xn]⊤ ∈ Rn

that characterizes the environment information, e.g., temperature, humidity, and
pressure. The measurements are given by

yj = a⊤j x, ∀j = 1, . . . , m, (5.5)

aj := [a1(uj ), . . . , an(uj )]⊤, (5.6)

where ai : Rs → R are known functions. The shuffled linear regression (5.5) can
be considered as a special type of data corruption where the correspondences are
missing. It can support identification-free communications, where the identification
information, i.e., correspondences in the model (5.5), is excluded from the packet
structure.
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Given functions of the input samples represented in (5.6), i.e.,

A = [a1, . . . , am]⊤ ∈ Rm×n, (5.7)

and a shuffled signal y = [yj1 , . . . , yjm ]⊤ ∈ Rm with the unknown shuffling indices
j1, . . . , jm, we have

y = (Π)⊤Ax + w ∈ Rm, (5.8)

where x ∈ Rn, Π is an m×m permutation matrix, and the vector

w ∼ N (0, σ 2Im)

represents the additive Gaussian noise. The goal of the shuffled linear regression is
to efficiently estimate both the signal x and the permutation matrix Π from y. Thus,
joint data decoding and device identification in the IoT network is achieved.

5.3 Maximum Likelihood Estimation Based Approaches

Several methods have recently been developed to solve the shuffled linear regression
problem. Specifically, the estimation of shuffled linear regression can be achieved
via the maximum likelihood estimator (MLE) [2, 9, 13]:

(Π̂ML, x̂ML) = argmin
Π∗,x∗

∥∥Π∗y −Ax∗
∥∥
2 . (5.9)

Based on this estimator, several algorithms have been developed and the theoretical
analyses have been established, e.g., [2, 4, 16]. It shows that Π̂ML is divergent from
Π in (5.8) with high probability if the SNR is not large enough [4]. The detailed
guarantees will be discussed in Theorems 5.1 and 5.2. Furthermore, [16] shows that
if the SNR approaches infinity, x̂ML approaches x in (5.8). Moreover, advanced
algorithms based on algebraic-geometric approaches proposed recently to address
the computational issue will also be introduced.

5.3.1 Sorting Based Algorithms

The paper [9] analyzed the shuffled linear regression problem under the assumption
that the entries of the matrixA are drawn i.i.d. from a standard Gaussian distribution.
The paper [9] established sharp conditions on the sample size m, dimension n, and
SNR, under which Π is exactly recoverable. From the computational point of view,
the paper [9] demonstrated that the maximum likelihood estimate of Π is NP-hard
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to compute, and it proposed a polynomial-time algorithm based on sorting, which is
introduced in the sequel.

Theorems 5.1 and 5.2 in the following provide the statistical properties of the
MLE (5.9). Based on the maximum likelihood estimator (5.9), an upper bound on
the probability of error of Π̂ML is provided in the following theorem given by [9]
with c1, c2 > 0.

Theorem 5.1 For any n < m and ϵ <
√
m, if

log

(
∥x∥22
σ 2

)

≥
(
c1

m

m− n
+ ϵ

)
logm, (5.10)

then P{Π̂ML ̸= Π} ≤ c2m
−2ϵ .

Furthermore, the lower bound on the probability of error of Π̂ML is provided as
follows.

Theorem 5.2 For any δ ∈ (0, 2), if

2+ log

(

1+ ∥x∥
2
2

σ 2

)

≤ (2− δ) logm, (5.11)

then P{Π̂ ̸= Π} ≥ 1− c3e
−c4mδ for any estimator Π̂.

We can conclude from Theorem 5.2 that if condition (5.11) is satisfied, the
recovery probability approaches 1 when m tends to infinity.

Since Eq. (5.9) requires a combinatorial minimization over n! permutations,
advanced algorithms are needed to compute Π̂ML efficiently. To begin with, the
maximum likelihood estimate of the permutation is represented as [9]

Π̂ML = argmin
Π
∥P⊥Π y∥22, (5.12)

where

P⊥Π = I −ΠA(A⊤A)−1(ΠA)⊤.

When n = 1 and representing the design vector as a, Eq. (5.12) can be represented
as

Π̂ML = argmax
Π
∥a⊤Πy∥2

= argmax
Π

max
{
a⊤Πy,−a⊤Πy

}

= argmin
Π

max
{
∥aΠ − y∥22, ∥aΠ + y∥22

}
. (5.13)
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The polynomial-time algorithm illustrated in Algorithm 5.1 is developed based
on (5.13). This is achieved based on the fact that for fixed vectors x and y,

∥xΠ − y∥

can be minimized for Π by sorting x according to the order of y. The theoretical
analysis of Algorithm 5.1 from the computational points of view is illustrated in
Theorem 5.3.

Algorithm 5.1: Exact algorithm for implementing Eq. (5.12)
Input: design vector a, observation vector y

1 Π1 ← permutation that sorts a according to y
2 Π2 ← permutation that sorts −a according to y
3 Π̂ML ← argmax{|a⊤Π1

y|, |a⊤Π2
y|}

Output: Π̂ML

Theorem 5.3 For n = 1, the MLE estimator Π̂ML can be computed via Algo-
rithm 5.1 in time O(m logm) for any choice of the measurement matrix A. In
contrast, if n > 1, then Π̂ML is NP-hard to compute.

Theorem 5.3 shows that the algorithmic advantages enjoyed in the case of n = 1
cannot extend to general cases of n > 1. For n > 1 a natural method is brute force
search: for each permutation Π of the m! permutations, check whether the linear
system

Πy = Ax

is consistent, followed by solving it if it is consistent. This algorithm endows with
the complexity of O(n2(m + 1)!). An approximate algorithm that is more efficient
than the brute force has been proposed in [4], which makes progress on both
computational and statistical aspects. It is introduced in the next section.

5.3.2 Approximation Algorithm

Considering the least squares problem (5.9), an approximation approach [4] is
proposed that for any ϵ ∈ (0, 1), it returns an (1 + ϵ)-approximation in time
O((m/ϵ)n).

The approximation algorithm, shown as Algorithm 5.3, uses a careful enumer-
ation to beat the naive brute force running time of Ω(n!). The “Row Sampling”
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algorithm [3] is exploited in the beginning of Algorithm 5.3 in order to narrow the
search space. The details of the “Row Sampling” algorithm [3] is presented in the
following. The “Row Sampling” is illustrated in Algorithm 5.2 with the following
notations:

• For each i ∈ [n], ei is the i-th coordinate basis vector in Rn.

• L(x, δL,A, ℓ) := x⊤(A− (ℓ+ δL)I k)
−2x

φ(ℓ+ δL,A)−Φ(ℓ,A)
− (ℓ + δL)I k)

−1x, where

φ(ℓ,A) := ∑k
i=1

1
λi (A)−ℓ and (λi (A))ki=1 are the eigenvalues of A.

• Û (x, δ,B, u) := x⊤(B − u′I r )−2x
φ′(u,B)− φ′(u′,B)

− x⊤(B − u′I r )−1x,

where u′ = u+δ, φ′(u,B) := ∑r
i=1

1
u−λi (B) , and (λi (B))ki=1 are the eigenvalues

of B.

Algorithm 5.2: “Row Sampling” algorithm [3]
input Matrix A = [A1 · · · An]⊤ ∈ Rm×n such that A⊤A = In; integer r ≥ n.
output Matrix S = (Si,j )(i,j)∈×[m] ∈ Rr×m.
1: Set Q0 = 0n×n, B0 = 0m×m, S = 0r×m, δ = (1+m/r)(1−√n/r)−1 and δL=1.
2: for τ = 0 to r − 1 do
3: Let ℓτ = τ −

√
rk and uτ = δ(τ +√mr).

4: Select iτ ∈ [m] and number tτ > 0 such that
Û (eiτ , δ,Bτ , uτ ) ≤ 1

tτ
≤ L(Aiτ , δL,Qτ , ℓτ ).

5: Set Qτ+1 = Qτ + tτAiτA
⊤
iτ
, Bτ+1 = Bτ + tτ eiτ e

⊤
iτ
and

Sτ+1,iτ =
√
r−1(1−√n/r)/

√
tτ .

6: end for
7: return S.

The theoretical guarantee of Algorithm 5.3 is given in the following Theorem 5.4
[4].

Theorem 5.4 Algorithm 5.3 returns x̂ ∈ Rn and Π̂ satisfying

∥Π̂y −Ax̂∥22 ≤ (1+ ϵ)min
x,Π

∥Πy −Ax∥22.

It shows that Algorithm 5.3 enjoys recovery guarantees for x and Π when the data
come from the Gaussian measurement model (5.8). Moreover, the overall running
time isO((m/ϵ)(k))which is remarkably lower than that of naïve brute force search,
i.e., Ω(n!).
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Algorithm 5.3: Approximation algorithm for least squares problem (5.9)
Input Sample matrix A ∈ Rm×n; observation y ∈ Rm; approximation parameter ϵ ∈ (0, 1).
Assume A⊤A = In.
Output Parameter vector x̂ ∈ Rn and permutation matrix Π̂.
1: Run Algorithm 5.2 with input matrix A to obtain a matrix S ∈ Rr×m with r = 4n.
2: LetB be the set of vectors b = (b1, b2, . . . , bn)

⊤ ∈ Rn satisfying the following: for each
i ∈ [n],
• if the i-th column of S is all zeros, then bi = 0;
• otherwise, bi ∈ {y1, y2, . . . , yn}.

3: Let c := 1+ 4(1+√m/(4n))2.
4: for each b ∈ B do
5: Compute x̃b ∈ argminx∈Rn ∥S(b −Ax)∥22, and let rb := minΠ ∥Πy −Ax̃b∥22.
6: Construct a

√
ϵrb/c-netNb for the Euclidean ball of radius

√
crb around x̃b, so that

for each v ∈ Rk with ∥v − x̃b∥2 ≤
√
crb, there exists v′ ∈ Nb such that

∥v − v′∥2 ≤
√
ϵrb/c.

7: end for
8: return x̂ ∈ argmin

x∈⋃b∈B Nb

min
Π
∥Πy −Ax∥22 and Π̂ ∈ argmin

Π
∥Πy −Ax̂∥22.

However, the approximation guarantee is not robust to even mild levels of
noise. Thus, it motivates other advanced algorithms, e.g., alternative minimization
approaches [1] and algebraic geometric approaches [15].

5.4 Algebraic-Geometric Approach

Recently, the paper [1] proposed a practical algorithm for solving shuffled linear
regression (5.9) via alternating minimization: estimating Π∗ via sorting an estimate
ξ∗ and estimating ξ∗ via least-squares given an estimate Π∗. Nevertheless, this
approach is very sensitive to initialization and generally works only when the
observation data is partially shuffled. To address the limitations of alternating
minimization approach, the paper [15] proposed an algebraic geometric approach,
which uses symmetric polynomials and leads to a polynomial system of n equations
in n unknowns, containing x in its root locus.

Based on algebraic geometry theory, the paper [15] proved that this polynomial
system is consistent with at most n! complex roots as long as the independent
samples are generic. This fact implies that this polynomial system can always be
solved, and its most suitable root can be used as initialization to the expectation
maximization (EM) algorithm.
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5.4.1 Eliminating Π via Symmetric Polynomials

Prior to introducing the algebraically initialized expectation-maximization, we first
describe the main idea of the algebraic-geometric approach to solve the shuffled
linear regression estimation problem (5.8). Denote the ring of polynomials with real
coefficients over variables

z := [z1, . . . , zm]⊤

as

R[z] := R[z1, . . . , zm].

A symmetric polynomial1 p ∈ R[z] means that it is invariant to any permutation of
the variables z, given by

p(z) := p(z1, . . . , zm) = p(zπ(1), . . . , zπ(m)) =: p(Πz), (5.14)

where π is a permutation on {1, . . . , m} and Π is an m×m permutation matrix.
Recall the shuffled linear regression problem (5.8) in the noiseless scenario and

let (Π∗, x∗) with

x∗ = [x∗1 , . . . , x∗n]⊤

being a solution. Based on a symmetric polynomial p ∈ R[z], we get

Π∗y = Ax∗
p: symmetric;⇒ p(y) = p(Π∗y) = p(Ax∗). (5.15)

In (5.15), the symmetric polynomial p plays a vital role in eliminating the unknown
permutation Π∗ and providing a constraint that only be relative with the known
A, y,

p̂(x) := p(Ax)− p(y) = 0. (5.16)

We aim to find the solution x∗ that satisfies (5.16), thereby finding all solutions to
the estimation problem (5.8).

To achieve this goal, we first introduce the concept of algebraic variety which is
used to characterize the solutions of (5.16). Recall that the polynomial p̂ in (5.16) is
an element of the polynomial ring R[x] in n variables x := [x1, . . . , xn]⊤, and the
set of its roots, denoted as

V (p̂) := {x ∈ Rn : p̂(x) = 0},

1We do not distinguish between p and p(z).
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is called an algebraic variety. In particular, V (p̂) defines a hypersurface of Rn. Geo-
metrically, the solutions to (5.16) are the intersection points of the corresponding n

hypersurfaces

V (p̂1), . . . ,V (p̂n),

which include all solutions to problem (5.8), as well as potentially irrelevant points.
Theorems provided in Sect. 5.4.2 investigate a system of n equations in n unknowns
and the method of filtering its roots of interest is introduced in Sect. 5.4.3.

In addition, an example is provided in the following to illustrate the symmetric
polynomial.

Example 5.2 Consider the data

A =

⎡

⎣
1 2
−2 4
0 −5

⎤

⎦ , y =

⎡

⎣
−20
11
10

⎤

⎦ . (5.17)

It is simple to find that there is a unique permutation

Π∗ =

⎡

⎣
0 1 0
0 0 1
1 0 0

⎤

⎦ (5.18)

that results in a consistent linear system of equations

⎡

⎣
0 1 0
0 0 1
1 0 0

⎤

⎦

⎡

⎣
−20
11
10

⎤

⎦ =

⎡

⎣
1 2
−2 4
0 −5

⎤

⎦
[
x1
x2

]
(5.19)

with solution ξ∗1 = 3, ξ∗2 = 4. Now consider the symmetric polynomial

p1(z1, z2, z3) = z1 + z2 + z3, (5.20)

and based on (5.16) it yields the constraint

(x1 + 2x2)+ (4x2 − 2x1)− 5x2 = −20+ 11+ 10, (5.21)

⇔ x2 − x1 = 1, (5.22)

⇔ p̂1(x) := p1(Ax)− p1(y) = 0. (5.23)

Indeed, we see that the solution ξ∗ = [3, 4]⊤ satisfies (5.23).
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5.4.2 Theoretical Analysis

The theoretical analysis on symmetric polynomials for both exact and corrupted
data are provided in the following.

5.4.2.1 Exact Data

As Example 5.2 suggests, a natural choice for n symmetric polynomials are the first
n power sums

pk(z) ∈ R[z] := R[z1, . . . , zm], k ∈ [n] := {1, . . . , n},

denoted as

pk(z) := zk1 + · · · + zkm. (5.24)

Based on (5.16), we conclude that any solution ξ∗ of (5.8) in the noiseless scenario
must obey the polynomial constraints

p̂k(x) = 0, k ∈ [n], where (5.25)

p̂k(x) := pk(Ax)− pk(y) =
m∑

i=1

(a⊤i x)
k −

m∑

j=1

ykj , (5.26)

and a⊤i presents the ith row of A. The following theorem provides a theoretical
guarantee that the number of other irrelevant solutions must be finite.

Theorem 5.5 ([15]) Assuming A is generic and y is some permutation of a vector.
The algebraic variety

V (p̂1, . . . , p̂n)

consists of all

ξ∗1, . . . , ξ
∗
ℓ ∈ Rn

such that there exists permutations

Π∗
1, . . . ,Π

∗
ℓ

with

Π∗
i y = Aξ∗i , ∀i ∈ [ℓ],

while it may include at most n!− ℓ other points of Cn.
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Theorem 5.5 demonstrates that the system of polynomial equations

p̂1(x) = · · · = p̂n(x) = 0, (5.27)

always has a finite number of solutions inCn (at most n!), which contain all possible
solutions ξ∗1, . . . , ξ

∗
ℓ ∈ Rn of problem (5.8).

5.4.2.2 Corrupted Data

The following theorem addresses the issue of corrupted data which is common in
practical applications. Considering the corrupted data which is denoted as Ã, ỹ, the
linear system can be represented as

Πỹ = Ãx. (5.28)

There exists a permutation Π = Π̃
∗
such that (5.28) is approximately consistent, if

the degree of corruption is sufficiently small. In order to get an approximate solution
of (5.28), a corrupted power-sum polynomial is defined as

p̃k(x) := pk(Ãx)− pk(ỹ), k ∈ [n], (5.29)

and the polynomial system P̃ is considered, given by

p̃1 = · · · = p̃n = 0. (5.30)

These are n equations of degrees 1, 2, . . . , n with n unknowns. The system of
polynomial equations (5.30) with respect to corrupted data is investigated in the
following theorem.

Theorem 5.6 ([15]) If Ã is generic and ỹ ∈ Rm is any vector, then V (p̃1, . . . , p̃n)

is non-empty containing at most n! points of Cn.

Theorem 5.6 demonstrates that the system of polynomial equations (5.30) always
has at least one solution. We can conclude that an approximate solution to the
shuffled linear system (5.28) lies in a finite number of solutions of the system (5.30).
Theorems 5.5 and 5.6 provide theoretical guarantees for developing algebraical
method to solve the shuffled linear regression problem. The algorithm, called
algebraically initialized expectation-maximization, is introduced in the next section.

5.4.3 Algebraically Initialized Expectation-Maximization

If there is a unique solution ξ∗ to the shuffled linear regression problem (5.8),
Theorem 5.5 ensures that ξ∗ is one of the finitely many complex roots of the
polynomial system (5.25) of n equations in n unknowns. Moreover, in the case of
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corrupted data, Theorem 5.6 ensures that the system is consistent with L ≤ n!
complex roots, and if the corruption degree is modest, one of the roots can be a
good approximation to the maximum likelihood estimator (MLE) ξ̂ML (5.9). Thus,
the goal is to filter that root and refine it.

Particularly, several state-of-the-art polynomial system solvers [5] can be
exploited to solve the polynomial system of equations (5.25). With the computed
roots

ξ̂1, . . . , ξ̂L ∈ Cn, L ≤ n!,

of the polynomial system, only their real parts

(ξ̂1)R, . . . , (ξ̂L)R

are retained, which can be used for obtaining an approximation to the ML estimator
ξ̂ML. This is achieved by selecting the root that yields the smallest ℓ2 error among
all possible permutations Π:

ξ̂AI := argmin
i∈[L]

{
min
Π

∥∥∥Πy −A(ξ̂ i )R
∥∥∥
2

}
. (5.31)

Furthermore, the algebraic initialization ξ̂AI is utilized as an initialization to the
expectation maximization algorithm [1] which implements alternating minimiza-
tion to solve (5.9). This method is called Algebraically Initialized Expectation-
Maximization (AI-EM) [15] illustrated in Algorithm 5.4.

Algorithm 5.4: Algebraically initialized expectation-maximization
procedure AI-EM(y ∈ Rm, A ∈ Rm×n, T ∈ N, ϵ ∈ R+)
1: pk(z) :=

∑m
j=1 z

k
j , p̂k := pk(Ax)− pk(y), k ∈ [n];

2: Compute roots {ξ̂ i}Li=1 ⊂ Cn of {p̂k = 0, k ∈ [n]};
3: Extract the real parts {(ξ̂ i )R}Li=1 of {ξ̂ i}Li=1 ⊂ Cn;
4: {ξ0,Π0}← argmin

ξ∈{(ξ̂ i )R}Li=1,Π
∥Πy −Aξ∥2;

5: t ← 0, ∆J ←∞, J ← ∥Π0y −Aξ0∥2;
6: while t < T and ∆J > εJ do
7: t ← t + 1;
8: ξ t ← argminξ∈Rn ∥Πt−1y −Aξ∥2;
9: Πt ← argminΠ ∥Πy −Aξ t∥2;
10: ∆J ←J − ∥Πty −Aξ t∥2;
11: J ← ∥Πty −Aξ t∥2;
12: end while
13: Return ξ t , Πt .
end procedure
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5.4.4 Simulation Results

To further illustrate the advantage of Algorithm 5.4, we compare it with two
variations of EM algorithms that were proposed in [1]: (1) LS-EM that computes
the MLE via alternating minimization with the initialization satisfying

ξ0,LS := argmin
ξ∈ℜn

∥y −Aξ∥2; (5.32)

(2) Soft-EM that uses the same initialization as LS-EM, but exploits a dynamic
empirical average of permutation matrices drawn from a suitable Markov chain to
optimize the permutation operation.

All methods are evaluated by measuring the relative estimation error between the
estimator ξ̂ and the ground truth ξ∗, given by

100
∥ξ∗ − ξ̂∥2
∥ξ∗∥2

%. (5.33)

For AI-EM, the estimation error between the best root ξ∗AI of the polynomial system
is defined as

ξ∗AI := argmin
ξ̂ i , i∈[L]

∥ξ∗ − (ξ̂ i )ℜ∥2, (5.34)

and the estimator ξ̂AI is computed as in (5.31).
Figure 5.2 illustrates the estimation error of the three methods with fully shuffled

data under the setting of n = 3, σ = 0:0.01:0.1 and m = 500. The simulation
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results are averaged over 100 independent trials. It shows LS-EM and Soft-EM
fail. It can be explained that when the data are fully shuffled, the least-squares
initialization (5.32) exploited by both LS-EM and Soft-EM rather deviates from
the ground truth ξ∗.

5.5 Summary

This chapter summarized a shuffled linear regression model to support joint data
decoding and device identification, thereby reducing the overhead in massive con-
nectivity systems. The methods developed for solving the shuffled linear regression
estimation problem are presented in this chapter from the numerical and theoretical
points of view. The methods can be mainly categorized into two types: maximum
likelihood estimation based approach and algebraic geometric approach. Besides
the application introduced in this chapter, the shuffled linear regression method
and its variations arise in many applications, e.g., image processing [6], user de-
anonymization [8], and correspondence estimation [7]. Recently, an abstraction of
shuffled linear problems which is called homomorphic sensing has been studied
in [14], and an algebraic theory for homomorphic sensing has been developed. The
paper [14] provides the first working solutions for the unlabeled sensing problem for
small dimensions. It is still a principle direction of study to develop more efficient
algorithms and corresponding theoretical guarantees for homomorphic sensing.
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Chapter 6
Learning Augmented Methods

Abstract In this chapter, we introduce some cutting-edge learning augmented
techniques to enhance the performance of structured signal processing. We start
with compressed sensing under a generative prior, which can better capture the
underlying signal structure than the traditional sparse prior. We then present
learning augmented techniques for the joint design of measurement matrix and
sparse support recovery for the sparse linear model (e.g., compressed sensing).
Furthermore, several deep-learning-based AMPmethods for the sparse linear model
are introduced, including learned AMP, learned Vector-AMP, and learned ISTA for
group row sparsity.

6.1 Structured Signal Processing Under a Generative Prior

Recall the sparse linear model defined in (2.3). The sparse signal x can be recovered
via solving a convex optimization problem known as Lasso [21]:

x̂ = argmin
x

1
2
∥y −Ax∥22 + λ∥x∥1, (6.1)

where the parameter λ > 0 controls the sparsity level. Instead of focusing on
the sparsity of x in (2.3), the paper [3] has recently estimated x̂ based on the
structure derived from a generative model. It demonstrates that the data distribution
can be identified by neural network based generative models, e.g., variational auto-
encoders (VAEs) [12] and generative adversarial networks (GANs) [8]. The neural
network based generative model learns a generator G(z) : z ∈ Rk → G(z) ∈ Rn

that maps a low dimensional space z to the high-dimensional sample space. This
generator is trained to generate vectors that approximate the vectors in the training
dataset. Here, the generator characterizes a probability distribution over vectors
in the sample space, and based on the training dataset, the generator is trained to
allocate higher probabilities to more likely vectors. Thus, the notion of a vector in
certain space can be generally captured by a pre-trained generator. It was shown in
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Fig. 6.1 The performance of compressed sensing under generative models

[3] that a vector in the space of a given system setting is close to some point in the
range of G.

The paper [3] also proposed an algorithm that exploits generative models to solve
the compressed sensing problem. This algorithm optimizes the variable z ∈ Rk

via gradient descent such that the corresponding generator G(z) yields a small
measurement error, i.e.,

∥AG(z)− y∥22. (6.2)

Even though the objective function (6.2) is nonconvex, it was empirically demon-
strated in [3] that gradient descent works well, and can yield significantly better
performance than Lasso with relatively few measurements. Figure 6.1 illustrates
the comparison of signal reconstruction from compressed linear measurements with
the sparse linear model and a generative model, i.e., VAE. The experiment is run
on the MNIST dataset, a classic 10-class hand-written digit classification dataset.
Each pixel value of an image is either 0 (background) or 1 (foreground), so the
digit images are reasonably sparse in the pixel space. Three different algorithms
are considered: the classic Lasso algorithm for the sparse linear model in the pixel
space, and two algorithms, “VAE” and “VAE+Reg,” for the generative model with
loss functions

∥AG(z)− y∥22,
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and

∥AG(z)− y∥22 + λ ∥z∥2 ,

whereG(z) is the generative model trained on the MNIST dataset. This result shows
that signal reconstruction with generative models requires 10× fewer measurements
than a conventional sparse linear model to achieve 10% error.

The paper [3] provided the theoretical performance guarantee. Specifically, it
was demonstrated that, as long as a good approximate solution to the objective (6.2)
is found by gradient descent, the generator G(z), which yields the closest possible
point in the range of G, will be sufficiently close to the ground truth x∗. The proof
provided in [3] relies on the set-restricted eigenvalue condition which is a general-
ization of the restricted eigenvalue condition (REC). Moreover, [3] shows that for
some generators, e.g., VAEs and GANs, random Gaussian measurement matrices
can satisfy the set-restricted eigenvalue condition with high probability. That is, for
d-layer neural networks,O(kd log n)Gaussian measurements sufficiently guarantee
high-accuracy reconstruction with high probability. Specifically, the result states as
below.

Theorem 6.1 ([3]) Assuming that G : Rk → Rn is an L-Lipschitz function, and
A ∈ Rm×n is a random Gaussian matrix for m = O(k log Lr

δ ), obeying Aij ∼
N(0, 1/m). For any x∗ ∈ Rn and observation y = Ax∗ + η, let the estimator ẑ
minimize (6.2) to within additive ε of the optimum over vectors with ∥ẑ∥2 ≤ r . Then
with 1− e−Ω(m) probability, there is

∥G(ẑ)− x∗∥2 ≤ 6 min
z∗∈Rk

∥z∗∥2≤r

∥G(z∗)− x∗∥2 + 3∥η∥2 + 2ε + 2δ. (6.3)

The first two terms on the right-hand side of (6.3) identify the minimum error of
any vector in the range of the generator and the norm of the noise, respectively.
The third term ε comes from the distance between the global optimum and the
convergence result generated by gradient descent.

The results of [3] have inspired lots of follow-up studies. Recently, the paper [23]
proposed a novel framework that significantly improves both the performance and
speed of signal recovery by jointly training a generator and the optimization process
for reconstruction via meta-learning. The paper explored training the measurements
with different objectives, and derived a family of models based on minimizing
measurement errors. We will provide an overview of this work in Sect. 6.2.

Besides the compressed sensing problem, the generative prior has also been
applied to the blind image deconvolution problem [1]. It can also provide some
insights on applying the generative prior in the blind demixing problem introduced
in Chap. 3 and the sparse blind demixing problem introduced in Chap. 4.
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6.2 Joint Design of Measurement Matrix and Sparse Support
Recovery

The design of the measurement matrix in compressed sensing is of critical impor-
tance for both practical implementation and performance enhancement (e.g., achiev-
ing a better compression or allowing a higher signal reconstruction quality). Thus, it
has received intensive attentions, and good progresses have been made. Learning
augmented techniques have recently exploited in joint design of measurement
matrix and sparse support recovery. This section first introduces basic methods for
solving this problem, followed by the learning augmented methods.

Sample Scheduling The paper [10] proposed an adaptive CS based sample
scheduling mechanism (ACS) with respect to different per-sampling-window bases
for wireless sensor networks. For each basis, given a sensing quality, ACS estimates
the minimum required sample rate, thereby correspondingly adjusting sensors’
sample rates.

Sensing Matrix Optimization To optimize sensing matrices, some techniques
known as mutual coherence minimization [6, 7, 14, 24] are developed, without
additional assumption on the class of acquired signals. Another line of research
shows that better results can be achieved with some priors on the input signal. For
instance, when the energy of the signals to be acquired is not evenly distributed,
i.e., when they are both sparse and localized. Mathematically, for the sparse signal
x in compressed sensing (1.5), it holds that E(xx⊤) is not a multiplier of the
n × n identity matrix In. To characterize this property, the paper [14] introduced
a design criterion, which is called rakeness, to identify the amount of energy that
the measurements seize from the acquired signal. The proposed rakeness approach
[14] aligns statistical properties of the compressed sensing stage with that of the
input signal x, while simultaneously preserving conditions for a correct signal
reconstruction required by the standard compressed sensing theory.

Following the idea proposed in [14], the paper [15] proposed sensing matrix
optimization techniques that exploit statistical properties of the process generating
x in compressed sensing (1.5). One method is nearly orthogonal CS, which is based
on a geometric constraint enforcing diversity between different compressed mea-
surements. Another method, named, maximum-energy CS, is a heuristic screening
of candidate measurements that relies on a self-adapted optimization procedure.

Learning Augmented Methods Recent works [13, 17, 18, 22, 23] consider joint
design of signal compression and recovery methods using auto-encoder [13, 17,
18, 22] and generative adversarial networks (GAN) [23] in deep learning. In
particular, linear compression for real signals was considered in [18, 22]; nonlinear
compression for real signals was considered in [17, 23]. The paper [13] studied
linear compression for complex signals.
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The fundamental idea of joint design of signal compression and recovery
methods using auto-encoder [13, 17, 18] can be summarized as follows.

• Collect an input signal x(i) from a training set Dtrain = {x(i)}si=1.
• Reconstruct input’s components and reduce its dimensionality via d layer

operations such as convolutional layer [17], linear reduction mapping [18], etc.
Denote the set of parameters at d layers as Ω = {W j , bj }dj=1.

• Take undersampled measurements.
• Increase measurements dimensionality via operations such as convolutional

layers [17], nonlinear inverse mapping [18], etc.
• Convert the output to a reconstructed signal. Denote this mapping from original

signals to reconstructed signals as x̂ = F (x,Ω).

The mean-squared error (MSE) can be adopted as a loss function over the training
set Dtrain

L (Ω) = 1
s

s∑

i=1

∥∥∥F (x,Ω)− x(i)
∥∥∥
2

2
. (6.4)

The stochastic gradient descent (SGD) or ADMM optimizer [11] can be applied for
minimizingL (Ω) (6.4) and learning parameters. Recently, the work [13] extended
the methods in [17, 18] to joint linear compression and recovery methods for
complex signal estimation, which is more challenging. The proposed architecture
includes two components, an auto-encoder and a hard thresholding module. The
proposed auto-encoder successfully deals with complex signals via exploiting
standard auto-encoder for real numbers. The key technique is to establish the
encoder which mimics the noisy linear measurement process. The model for
complex numbers in compressed sensing, i.e.,

y = Ax + z,

can be equivalently expressed via the following two expressions of real numbers:

ℜ(y) = ℜ(A)ℜ(x)− ℑ(A)ℑ(x)+ ℜ(z), (6.5)

ℑ(y) = ℑ(A)ℜ(x)+ ℜ(A)ℑ(x)+ ℑ(z). (6.6)

Besides the decoders mentioned above, a recent paper [22] presented a ℓ1
decoder to learn linear encoders that adjust to data. The convex and non-smooth ℓ1
decoder cannot be trained via standard gradient-based, i.e., gradient propagation. To
address this issue, the paper [22] relies on the idea of unrolling the convex decoder
into T projected subgradient steps. Denote the ℓ1-minimization as:

L(A, y) := arg min
x∈Rd

∥x∥1 s.t. Ax = y. (6.7)



96 6 Learning Augmented Methods

Mathematically, given a training set Dtrain, the problem of finding the best A can be
formulated as

min
A∈Rm×d

f (A) :=
s∑

i=1

∥x(i) − L(A,Ax(i))∥22.

Here L(·, ·) is the ℓ1 decoder defined in (6.7). Unfortunately, it is difficult to com-
pute the gradient of f (A)with respect toA, due to the optimization problem defined
in (6.7). The paper [22] addressed this issue by replacing the ℓ1-minimization with
the iterations of T -step projected subgradient, which approximately computes the
gradients. Define an approximate function f̃ (A) : Rm×d E→ R, and this procedure
can be represented as

f̃ (A) :=
s∑

i=1

∥x(i) − x̂(i)∥22, where

x̂(i) = T -step projected subgradient of

L(A,Ax(i)), for i = 1, . . . , s,

(6.8)

which is called unrolling.
Another type of data-driven approaches is using learning augmented generative

adversarial networks (GAN) [23] for joint design of signal compression and recov-
ery methods. The paper [23] generalized the measurement matrix A in compressed
sensing under a generative prior Gφ(·), i.e., (6.2). To achieve this, the paper [23]
defines a measurement function y ← Fφ(x) where x = Gφ(z), thus both Fφ and
Gφ can be trained via deep neural networks. The key point of this generalized setting
is recovering the signal x from inverting the measurement function x ← F−1φ (y)
via minimizing the measurement error:

Eφ(y, z) = ∥y − Fφ
(
Gφ(z)

)
∥22. (6.9)

6.3 Deep-Learning-Based AMP

Deep learning recently has achieved great successes in many applications, which
has inspired recent developments of deep-learning-based methods for structured
signal processing. In this section, we introduce two neural network architectures
proposed in [4]. Similar to the approximate message passing (AMP) algorithms that
decouple prediction errors across iterations, the deep-learning-based AMP in [4]
decouples prediction errors across layers. In [4], the proposed methods were applied
to solve the compressive random access and massive-MIMO channel estimation in
5G networks. These methods also bring some insights on developing deep-learning-
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based AMP to solve the joint device activity detection and channel estimation
problem in massive IoT networks.

We first introduce the “learned AMP” network proposed in [4], followed by
the “learned VAMP” network [4] that offers increased robustness to deviations in
the i.i.d. Gaussian measurement matrix. In both cases, the linear transforms and
scalar nonlinearities of the network are simultaneously learned. An straightforward
interpretation of learned VAMP is demonstrated in [4] that with i.i.d. measurements,
the linear transforms and scalar nonlinearities established by the VAMP algorithm
follow the values learned through back-propagation. Furthermore, we introduce a
learned-based algorithm for group row sparsity (LISTA-GS) to estimate the sparse
linear model (2.8) in the multiple-antenna scenario in Sect. 6.3.3.

Y = QΘ +N . (6.10)

Besides the approaches introduced in this section, the authors in [9, 16, 20, 25]
exploited properties of sparsity patterns of real signals [9, 16, 25] and complex
signals [20] from training samples using data-driven approaches based on deep
learning, which also brings some insights for future study.

6.3.1 Learned AMP

For compressed sensing (2.3), i.e.,

y = Ax + n,

where y ∈ CL, x ∈ CN ,

n ∈ CL ∼ CN (0, σ 2I ) (6.11)

is the additive white Gaussian noise, the sparse signal x can be estimated by
Lasso (6.1) given by

x̂ = argmin
x

1
2
∥y −Ax∥22 + λ∥x∥1.

It can be solved by the approximate message passing algorithm (2.27) introduced in
Sect. 2.4.1:

r t = y −Ax̂t +
1
M
∥x̂t∥0r t−1 (6.12a)

x̂t+1 = ηst

(
x̂t +ATr t ;

α√
M
∥r t∥2

)
, (6.12b)
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where the initial points are set as x̂0 = 0, r−1 = 0, t ∈ {0, 1, 2, . . . }, and ηst (·; λ) :
RN → RN is the “soft thresholding” shrinkage function, component wisely defined
as

[ηst (r; λ)]i % sgn(ri)max{|ri |− λ, 0}. (6.13)

In (6.12b), α is a tuning parameter that correlates with λ in (6.1). The AMP-inspired
deep networks for solving sparse linear problems have been proposed in [4], which
are introduced in the sequel.

The paper [4] established a neural network via unfolding the iterations of AMP-
ℓ1 from (6.12), followed by learning the MSE-minimal values of the network
parameters, which is called “LAMP-ℓ1.” The t-th layer of the LAMP-ℓ1 network
is represented by

x̂t+1 = βtηst

(
x̂t + B tr t ; αt√

M
∥r t∥2

)
(6.14a)

r t+1 = y −Ax̂t+1 + βt
M ∥x̂t+1∥0r t , (6.14b)

where the first-layer inputs are set as x̂0 = 0 and r0 = y. The paper [4] refers to
networks that use fixed B over all layers t as “tied,” where the LAMP-ℓ1 parameters
are Ω =

{
B, {αt ,βt }T−1t=0

}
. Those that depend on t , i.e., B t , are named as “untied,”

where the LAMP-ℓ1 parameters are Ω = {B t ,αt ,βt }T−1t=0 . The parameters Ω of
“tied” case and “untied” case can be further learned by minimizing the MSE on the
training data, which are illustrated in Algorithms 6.1 and 6.2, respectively. In [4], it
was demonstrated that LAMP-ℓ1 yields a faster convergence rate than AMP from
both empirical and theoretical points of view.

Algorithm 6.1: Tied LAMP-ℓ1 parameter learning [4]
1: Input B = I ,α0 = 1,β0 = 1
2: Learn Ω tied

0 = {B,α0}
3: for t = 1 to T − 1 do
4: Initialize αt = αt−1,βt = βt−1
5: Learn {αt ,βt } with fixed Ω tied

t−1
6: Re-learn Ω tied

t =
{
B, {αi ,βi}ti=1,α0

}

7: end for
8: Return Ω tied

T−1
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Algorithm 6.2: Untied LAMP-ℓ1 parameter learning [4]

1: Learn {Ω tied
t }T−1t=1 via Algorithm 6.1

2: Initialize B0 = I ,α0 = 1,β0 = 1
3: Learn Ωuntied

0 = {B0,α0}
4: for t = 1 to T − 1 do
5: Initialize B t = B t−1,αt = αt−1,βt = βt−1
6: Learn {B t ,αt ,βt } with fixed Ωuntied

t−1
7: Set Ωuntied

t = {Bi ,αi ,βi}ti=0 \ β0 (“\” denotes the set difference operation)
8: if Ω tied

t enjoys better performance than Ωuntied
t then

9: Replace Ωuntied
t with Ω tied

t
10: end if
11: Re-learn Ωuntied

t

12: end for
13: Return Ωuntied

T−1

6.3.2 Learned Vector-AMP

The VAMP algorithm illustrated in Algorithm 6.3 has been recently proposed in [19]
to address AMP’s fragility concerning the matrixA. Compared to the original AMP,
the VAMP algorithm enjoys lower per-iteration complexity and fewer iterations
required to convergence. The procedure of the VAMP algorithm is elaborated in
the following.

We begin with the definition of the right-rotationally invariant matrices. For the
matrix A ∈ RL×N in compressed sensing (2.3), suppose that

A = UΛV T (6.15)

satisfies that s ∈ Rr
+ where r % rank(A) contains the positive singular values

of A, then Λ = diag(s) ∈ Rr×r , UTU = I r , and V TV = I r . The matrix
A is right-rotationally invariant if V consists of the first r columns of a random
matrix uniformly distributed on the group of n × n orthogonal matrices. With any
random orthogonal U and a particular distribution on s, i.i.d. Gaussian matrices
are right-rotationally invariant. The paper [19] demonstrates that with large enough
dimensions m, n, VAMP behaves well when the sensing matrix A in compressed
sensing is an i.i.d. Gaussian matrix.

The VAMP algorithm consists of two stages which endow with different
estimators: LMMSE stage with the estimator

η̃
(
r̃ t ; σ̃t , θ̂

)
:= V

(
diag(s)2 + σ 2

σ̃ 2
t

IR

)−1 (
diag(s)UTy + σ 2

σ̃ 2
t

V Tr̃ t

)
, (6.16)

where σ is the standard deviation, and the parameter θ̂ is given by

θ̂ := {U , s,V , σ }, (6.17)
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Algorithm 6.3: Vector-AMP [19]

Require: LMMSE estimator η̃(·; σ̃ , θ̂) (6.16), shrinkage η(·; σ,ω) (6.18), max iteration T ,
parameters {ωt }Tt=1 and θ̂ .

1: Set initial r̃1 and σ̃1 > 0.
2: for t = 1, 2, . . . , T do
3: // LMMSE stage:
4: x̃t = η̃

(
r̃ t ; σ̃t , θ̂

)
// estimation

5: ũt =
〈
η̃′

(
r̃ t ; σ̃t , θ̂

)〉
// divergence computation

6: r t = (x̃t − ũt r̃ t )/(1− ũt ) // Onsager correction
7: σ 2

t = σ̃ 2
t ũt /(1− ũt ) // variance computation

8: // Shrinkage stage:
9: x̂t = η(r t ; σt ,ωt ) // estimation
10: ut = ⟨η′(r t , σt ,ωt )⟩ // divergence computation
11: r̃ t+1 = (x̂t − utr t )/(1− ut ) // Onsager correction
12: σ̃ 2

t+1 = σ 2
t ut /(1− ut ) // variance computation

13: end for
14: Return x̂T .

and a shrinkage stage with the estimator

η(r t ; σt ,α) = ηst(r t ;ασt ), (6.18)

where ηst(·, ·) is given by (6.12b). Lines 5 and 10 in Algorithm 6.3 compute
the average of the diagonal entries of the Jacobian of η̃(·; σ̃t , θ̂) and η(·; σt ,ωt ),
respectively, which can be referred to [4] for detailed representation.

Based on VAMP illustrated in Algorithm 6.3, we move to the learned VAMP
(LVAMP) algorithm proposed in [4]. The t-th layer of the learned VAMP (LVAMP)
network consists of four stages: (1) LMMSE optimization, (2) decoupling, (3)
shrinkage, and (4) decoupling. The learnable parameters in the t-th layer are
the LMMSE stage parameters ω̂t = {U t , st ,V t , σ

2
t } (6.17) and the shrinkage

parameters ωt . Similar to VAMP, the network parameters of LVAMP are concerned
in two cases: “tied” and “untied.” In the tied case, the network parameters are{
θ̂ , {ωt }Tt=1

}
, while in the untied case, it is

{
θ̂t ,ωt

}T
t=1. Algorithms 6.1 and 6.2 can

be exploited to learn the LVAMP parameters for the tied case and the untied case,
respectively (with θ̂t replacing B t and with θ t replacing {αt ,βt }).

6.3.3 Learned ISTA for Group Row Sparsity

Recall the sparse linear model (2.8) in the multiple-antenna scenario discussed in
Sect. 2.2.2, represented by

Y = SX + Z, (6.19)

where Y ∈ CL×M , X ∈ CN×M endowed with group row sparsity.
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Algorithm 6.4: ISTA-GS

Require: S̃, Ỹ , λ, Iterations.
ISTA-GS(S̃, Ỹ , X̃, λ, Iterations):

1: Initialize: X̃← 0, C ← largest eigenvalue of S̃
T
S̃

2: for i = 1 to Iterations do
3: X̃ = ηλ/C(X̃ + 1

C S̃
T
(Ỹ − S̃X̃))

4: end for
5: return X̃.

Recall the real-valued counterpart (2.13), and the real-valued counterpart
of (6.19) can be represented as

Ỹ = S̃X̃ + Z̃

=
[ℜ{S̃} −ℑ{S̃}
ℑ{S̃} ℜ{S̃}

] [ℜ{X̃}
ℑ{X̃}

]
+

[ℜ{Z̃}
ℑ{Z̃}

]
.

(6.20)

The following problem can be established to estimate the group sparse X:

minimize
X̃∈R2N×M

∥Ỹ − S̃X̃∥2F + λR(X̃). (6.21)

To solve problem (6.21), we start with the ISTA for group row sparse (ISTA-GS)
illustrated in Algorithm 6.4. Specifically, in the k-th iteration, the update rule is
represented as

X̃
k+1 = ηλ/C

(
X̃

k + 1
C
S̃
T
(Ỹ − S̃X̃

k
)

)
, (6.22)

where C is the largest eigenvalue of matrix S̃
T
S̃, and ηθ (xn) denotes the group soft-

thresholding function for the n-th row in matrixX (i.e., xn) [2]. Specifically, ηθ (xn)

is defined as

ηθ (x
n) = max

{
0,
∥x∥2 − θ

∥x∥2

}
xn. (6.23)

Such an iterative algorithm takes a large number of iterations to converge. To address
this issue, we present the LISTA-GS method, which parameterizes the iterative
method.

Inspired by [5, 9] and by denotingW 1 = 1
C S̃,W 2 = I − 1

C S̃
T
S̃, and θ = λ

C , we
rewrite (6.22) as

X̃
k+1 = ηθk (W 1Ỹ +W 2X̃

k
). (6.24)



102 6 Learning Augmented Methods

The key idea of the proposed LISTA-GS method is to view matrix W1, matrix W2,
and scalar θk in (6.24) as trainable parameters. As a result, (6.24) can be modeled
as a one-layer RNN. Moreover, the unrolled RNN with K iterations for group row
sparse can be expressed as

X̃
k+1 = ηθk (W

k
1Ỹ +W k

2X̃
k
), k = 0, 1, . . . , K − 1, (6.25)

where all parametersΘ = {W k
1,W

k
2, θ

k}K−1k=0 are trainable. This is a main difference
from the problem formulation in (6.22).

6.3.3.1 Simulations Results

In this section, we present the simulation results of the LISTA-GS method for the
joint device activity detection and channel estimation, and compare the results with
that of the ISTA-GS method.

In simulations, we generate the signature matrix according to the complex
Gaussian distribution, i.e., S ∼ CN (0, I ). The channels are assumed to suffer from
independent Rayleigh fading, i.e., H ∼ CN (0, I ). In addition, we set the length
of the signature sequence (L), the total number of devices (N ), and the number of
antennas at the BS (M) as 100, 200, and 2, respectively. Each entry of the activity
sequence {a1, . . . , aN } follows the Bernoulli distribution with mean p = 0.1, i.e.,
P(an = 1) = 0.1 and P(an = 0) = 0.9, ∀ n ∈ N . After normalizing S,
we transform all these complex-valued matrices into real-value matrices according
to (6.20). Hence, we obtain the training data set {X̃∗i , Ỹ i}Ni=1. In the training stage,
the batch size is set to be 64 and the validation set contains 1000 samples. The
learning rate is set to be 10−3. In the testing stage, 1000 samples are generated
to test the trained LISTA-GS model. As for ISTA-GS, we set λ = 0.2, 0.1, and
0.05. We choose K = 16 layers for the LISTA-GS method in all the simulations.

Furthermore, we initialize the parameters as W 0
1 = 1

C S̃, W
0
2 = I − 1

C S̃
T
S̃, and

θ = 0.1
C .

We adopt the normalized mean square error (NMSE) to evaluate the performance
of LISTA-GS and ISTA-GS in recovering the real-valued X̃, defined as

NMSE(X̃, X̃
∗
) = 10 log10

(
E∥X̃ − X̃

∗∥2F
E∥X̃∗∥2F

)

, (6.26)

where X̃
∗
represents the ground truth and X̃ is the estimate obtained by the ISTA-

GS and LISTA-GS methods.
As suggested in [5], we train the LISTA-GS model by adopting the layer-

wise training strategy, which has been widely used in the previous ISTA models.
To stabilize the training process, we add two decayed learning rates, i.e., β1 =
0.2β0 and β2 = 0.02β0, where β0 is the initial learning rate. Note that Θ i =
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{Wk
1 ,W

k
2 , θ

k}ik=0 are all the weights from layer 0 to layer i and m(·) is the learning
multiplier. We train the RNN layer by layer and the training process of each layer is
described as follows:

• Suppose that Θ i−1 is pre-trained for layer i. Initialize the learning multipliers
m(Wi

1),m(Wi
2),m(θ i ) = 1.

• Train {Wi
1 ,W

i
2 , θ

i} with β0.
• Multiply the learning multiplier to their weights and train Θ i = Θ i−1 ∪

{Wi
1 ,W

i
2 , θ

i} with β1 and β2.
• Multiply a decay rate to each learning multiplier.
• Move to train the next layer.

Figure 6.2a shows the NMSE of the proposed LISTA-GS and the baseline ISTA-
GS methods over iterations in a noiseless scenario. For the baseline ISTA-GS
method, there exists an inherent tradeoff between the convergence rate and the
NMSE. In particular, a smaller value of λ results in a more accurate solution but
leads to a lower convergence rate, and vice versa. Besides, we observe that LISTA-
GS method achieves a much faster convergence rate as well as a much lower NMSE
than ISTA-GS for different values of λ. This is because LISTA-GS treats λ as a
weight in the training process, yielding a good solution that balances the tradeoff.

Figure 6.2b illustrates the NMSE of the proposed LISTA-GS method over
iterations in a noisy scenario with different values of signal-to-noise-ratio (SNR). It
can be observed that LISTA-GS can also reach convergence in a few iterations (e.g.,
less than 16) in the noisy case. As the value of SNR increases, the received power
of the pilot sequence increases, which in turn decreases the achievable NMSE.

Figure 6.2c plots the impact of SNR on the NMSE of LISTA-GS and ISTA-GS.
The proposed LISTA-GS method achieves a much lower NMSE than ISTA-GS for
different values of SNR. In addition, the NMSEs of both methods decrease as the
value of SNR increases.

6.4 Summary

In this chapter, we introduced some cutting-edge learning augmented techniques
for both structured signal modeling (e.g., structured signal processing under a
generative prior [1, 3]) and algorithm design (e.g., learning augmented algorithms
[4]). We also introduced Learned ISTA for group row sparsity to solve the sparse
linear model in the multiple-antenna scenario. These techniques are summarized
in Table 6.1. We hope that this basic idea on learning augmented techniques will
provide an intriguing direction for future investigations.
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Fig. 6.2 Performance
comparison between the
proposed LISTA-GS and
baseline ISTA-GS in terms of
NMSE

(a)

(b)

(c)
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Table 6.1 Summary of learning augmented techniques, methods, application, and corresponding
references

Techniques Methods Application/Reference

Structured signal processing
under a generative prior

Learning a generator
G(z) : z ∈ Rk → G(z) ∈ Rn

Compressed sensing [3],
sparse linear model (2.3),
Blind deconvolution [1]

Joint design of measurement
matrix and sparse support
recovery

Sample scheduling Compressed sensing [10]

Sensing matrix optimization Compressed sensing
[6, 7, 14, 15, 24]

Learning augmented
methods: learning an
auto-encoder or generative
adversarial networks

Linear compression for real
signals [18, 22], nonlinear
compression for real signals
was considered in [17, 23],
linear compression for
complex signals [13]

Deep-learning-based AMP Learned AMP Compressed sensing [4],
sparse linear
model (2.3), (2.8)

Learned Vector-AMP
Learned ISTA for group
sparsity
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Chapter 7
Conclusions and Discussions

Abstract This chapter concludes the monograph. A summary is first provided
for the main results of each chapter, and two reference tables are provided
that contain the main analytical results and algorithms. Furthermore, we provide
discussions on the future research directions of low-overhead communications and
the corresponding structured signal processing approaches.

7.1 Summary

This monograph investigated different structured signal processing approaches
to support low-overhead communications in IoT networks. Chapter 1 provided
some background for low-overhead communications in IoT networks, introducing
three main techniques that exclude particular parts of the metadata: grant-free
random access, pilot-free communications, and identification-free communications.
Furthermore, four general structured signal processing models, i.e., a sparse linear
model, blind demixing, and sparse blind demixing, a shuffled linear regression,
were introduced. Chapters 2–5 formed the core of this monograph, where four
general structured signal processing models with corresponding applications in
low-overhead communications were presented. For each chapter, the corresponding
analysis results and algorithms were provided, which are summarized in Tables 7.1
and 7.2. More details on the proof of analysis results can be referred to Chap. 8.
In Chap. 6, some cutting-edge learning augmented based techniques for structured
signal processing were introduced, which represent an interesting direction for
future research.
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Table 7.1 Analytical results in Chaps. 2–6

Result Description

Theorem 2.1 Approximate kinematic formula captures a phase transition on whether the
two randomly rotated cones share a ray

Proposition 2.1 Statistical dimension bound for the smoothed regularizer R̃G (2.22)
Theorem 3.1 The least value of sample size required for exact recovery of problem (3.21)
Theorem 3.2 The convergence analysis of the regularized Wirtinger flow algorithm with

spectral initialization for solving the blind demixing problem (3.22)
Theorem 3.3 The convergence analysis of the regularization-free Wirtinger flow algorithm

with spectral initialization for solving the blind demixing problem (3.28)
Theorem 3.4 The convergence analysis of the Riemannian gradient with spectral

initialization for solving the blind demixing problem (3.41)
Theorem 5.4 The recovery guarantees of Algorithm 5.3 when the shuffled data come from

the Gaussian measurement model (5.8)
Theorem 5.5 Demonstrate that the system of polynomial equation (5.27) for exact data has

a finite number of solutions, providing theoretical guarantees for developing
algebraical method to solving the shuffled linear regression problem

Theorem 5.6 Demonstrate that the system of polynomial equation (5.28) for corrupted data
has a finite number of solutions, providing theoretical guarantees for
developing algebraical method to solving the shuffled linear regression

Table 7.2 Algorithms in Chaps. 2–6

Algorithm Description

Algorithm 2.1 Lan, Lu, and Monteiro’s
Algorithm 3.1 Initialization via spectral method and projection
Algorithm 3.2 Riemannian optimization on product manifolds
Algorithm 3.3 Riemannian gradient descent with spectral initialization
Algorithm 4.1 DC algorithm for the sparse blind demixing problem (4.18)
Algorithm 5.1 Exact algorithm for calculating the maximum likelihood estimate of the

permutation, i.e., (5.12)
Algorithm 5.2 “Row Sampling” algorithm that is exploited as the initialization of

Algorithm 5.3
Algorithm 5.3 Approximation algorithm for computing the maximum likelihood

estimator (5.9) for shuffled linear regression
Algorithm 5.4 Algebraically-initialized expectation-maximization for shuffled linear

regression
Algorithm 6.1 Tied LAMP-ℓ1 parameter learning for solving lasso (6.1)
Algorithm 6.2 Untied LAMP-ℓ1 parameter learning for solving lasso (6.1)
Algorithm 6.3 Vector AMP for solving lasso (6.1)
Algorithm 6.4 Learned ISTA for the sparse linear model endowed with group row sparsity,

i.e., (6.19)
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7.2 Discussions

From Fig. 1.1 which illustrates an exemplary packet structure, we observe other
opportunities to further reduce the overhead of the packet. For instance, for device
activity detection or blind demixing, a smaller pilot length is preferred. According to
recent studies [2, 3], generative models can yield a much more precise representation
of the sparse signals. That is, much fewer measurements are required for the
recovery of structural signal processing under a generative prior, compared with
traditional analytical models. These methods are known as learning augmented
methods, some of which were introduced in Chap. 6. They provide a promising
direction for future study. Moreover, from the structured signal processing point
of view, more sophisticated models are expected to be proposed via exploiting the
sporadic activity pattern in massive connectivity networks, by exploiting spatial
and temporal correlation of device activities. Furthermore, both convex methods
and nonconvex methods with theoretical guarantees have been evoking researcher’s
interests. For instance, the rigorous statistical analysis for sparse blind demixing is
called for further investigation. This is more challenging than the state-of-the-art
model [1, 5] which assumes that {xi} in

yj =
s∑

i=1

bHj hix
H
i aij , 1 ≤ j ≤ L,

are sparse. From the algorithmic perspective, more efficient and robust algorithms
are expected to be developed. For example, the learning argument methods have
been exploited to solve the sparse linear model, e.g., Learned Vector-AMP, Learned
AMP [4], and Learned ISTA for group sparsity, as introduced in Sect. 6.3.3.

Overall, given the promising results in applying structured signal processing
for low-overhead communications reported in this monograph, we expect these
methods will find abundant applications in practical IoT networks. We also hope
the methods introduced in the monograph will lead to more effective algorithms,
and inspire innovative approaches to exploit various structures in IoT systems, thus
enable more application scenarios.
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Chapter 8
Appendix

8.1 Conic Integral Geometry

In this section, several basic concepts of conic integral geometry theory are
introduced. We begin with the kinematic formula for cones which is the probability
that a randomly rotated convex cone shares a ray with a fixed convex cone. This
formula plays a vital role in characterizing the success or failure probability of an
estimation problem. The following introduction is based on [3].

8.1.1 The Kinematic Formula for Convex Cones

In the area of conic integral geometry, it is critical to identify the probability that a
randomly rotated convex cone shares a ray with a fixed convex cone. Considering
convex cones C and S in Rd , and a random orthogonal basis A ∈ Rd×d , we aim to
find an effective expression for the probability

P
{
C ∩AS ̸= {0}

}
. (8.1)

Studying this probability enables to understand the phase transition phenomena in
convex optimization problems with random data.

We start with the simple case of two dimensions where the solution to the
problem can be quickly computed. Consider two convex cones C and S in R2, and
assume that neither cone is a linear subspace. Then

P
{
C ∩AS ̸= {0}

}
= min

{
υ2(C)+ υ2(S), 1

}
, (8.2)

where υ2(·) returns the portion of the unit circle united by a convex cone in R2.
If one of the cones is a subspace, a similar formula can be derived. In spaces with
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higher dimensions, the representation of convex cones becomes more complicated.
In three dimensions, it might be troublesome to find a reasonable solution in general.
To address this issue, an extraordinary tool called the conic kinematic formula [19,
Thm. 6.5.6] has been developed. It shows that there exists an exact formula to
identify the probability that a randomly rotated convex cone shares a ray with a
fixed convex cone. Moreover, only d + 1 numbers are needed to summarize each
cone in d dimensions.

Fact 8.1 (The Kinematic Formula for Cones) Let C and S be closed convex
cones in Rn, one of which is not a subspace. Assuming a random orthogonal basis
A ∈ Rn×n, then

P
{
C ∩AS ̸= {0}

}
=

n∑

i=0

(
1+ (−1)i+1)

n∑

j=i

υi (C) · υn+i−j (S). (8.3)

For each k = 0, 1, 2, . . . , n, the operation υk maps a closed convex cone to a
nonnegative number, called the k-th intrinsic volume of the cone.

Even though the conic kinematic formula is beneficial for studying random
instances of convex optimization problems [2, 15], this approach suffers a strenuous
computation of expressions for the intrinsic volumes of a cone, except in the
simplest cases. To address this issue, the paper [3] provided a novel method that
makes the kinematic formula effective, which is elaborated in the following.

8.1.2 Intrinsic Volumes and the Statistical Dimension

The conic intrinsic volumes, illustrated in Fact 8.1, are the elemental geometric
invariants of a closed convex cone. That is, the conic intrinsic volumes do not depend
on the orientation of the cone within the space in which the cone is embedded, nor
on the dimension of that space. This quantity is similar to some quantity defined for
compact convex sets in Euclidean geometry, such as the usual volume, the surface
area, the mean width, and the Euler characteristic [18].

The intrinsic volume of a closed convex cone C in Rn consists of a sequel of
probability distributions on {0, 1, 2, . . . , n}, represented as

n∑

i=0

υi (C) = 1 and υi (C) ≥ 0 for i = 0, 1, 2, . . . , n. (8.4)

The work [3] established an extraordinary fact about conic geometry: for each
closed convex cone, the distribution of conic intrinsic volumes sharply concentrates
around its mean value. The precise statement on the concentration of intrinsic is
illustrated in Theorem 8.1. To begin with, we introduce several definitions that
contribute to Theorem 8.1.
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Definition 8.1 (Tail Functionals) Let C be a closed convex cone in Rn. For every
k = 0, 1, 2, . . . , n, the k-th tail functional is defined as

tk(C) := υk(C)+ υk+1(C)+ · · · =
n∑

j=k

υj (C). (8.5)

The k-th half-tail functional is given by

hk(C) := υk(C)+ υk+2(C)+ · · · =
n∑

j=k
j − k even

υj (C). (8.6)

Definition 8.2 (Statistical Dimension) Let C be a closed convex cone in Rn. The
statistical dimension δ(C) of the cone is given by

δ(C) :=
n∑

k=0

k υk(C). (8.7)

As Definition 8.1 shows, the statistical dimension indicates the dimensionality of a
convex cone. In particular, the statistical dimension is a canonical extension of the
dimension of a linear subspace to the class of convex cones.

Based on the aforementioned definition, we arrive at the theorem that demon-
strates the concentration of intrinsic volumes.

Theorem 8.1 (Concentration of Intrinsic Volumes [3]) Assuming that C is a
closed convex cone, the transition width is given by

ρ(C) :=
√
δ(C◦) ∧ δ(C).

Define a function

pC(γ ) := 4 exp
( −γ 2/8
ρ2(C)+ γ

)
for γ ≥ 0. (8.8)

Then

k− ≤ δ(C)− γ + 1 ;⇒ tk−(C) ≥ 1− pC(γ ); (8.9)

k+ ≥ δ(C)+ γ ;⇒ tk+(C) ≤ pC(γ ), (8.10)

where tk (8.5) is the tail functional, and ∧ is the operator that returns the minimum
of two numbers.
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8.1.3 The Approximate Kinematic Formula

Based on the concentration of intrinsic volumes provided in Theorem 8.1 and the
conic kinematic formula illustrated in Fact 8.1, we can arrive at the following
approximate kinematic formula.

Theorem 8.2 (Approximate Kinematic Formula [3]) Define a fix parameter α ∈
(0, 1). Let C and S be convex cones in Rn, and assume a random orthogonal basis
A ∈ Rn×n. Then

δ(C)+ δ(S) ≤ n−
√
n8 log(4/α) ;⇒ P

{
C ∩AS ̸= {0}

}
≤ α;

δ(C)+ δ(S) ≥ n+
√
n8 log(4/α) ;⇒ P

{
C ∩AS ̸= {0}

}
≥ 1− α.

Theorem 8.2 demonstrates that two rotated cones are prone to share a ray in
the case that the total statistical dimension of the two cones exceeds the ambient
dimension. For problems in conic integral geometry, the cone is analogous to a
subspace with approximate dimension δ(C). In the paper [3], a large class of random
convex optimization problems have been proved to exhibit a phase transition,
and the statistical dimension corresponding to each convex optimization problem
characterizes the location of the phase transition.

8.1.4 Computing the Statistical Dimension

The statistical dimension plays a vital role in conic integral geometry, which can
be used to identify that phase transitions occur in random convex optimization
problems. To efficiently compute the statistical dimension, the method proposed in
[3] is presented in the follows. We begin with several basic definitions. For a closed
convex cone C, the projection ProjC(x) that maps a point x onto a point on the cone
C which is nearest to x:

ΠC(x) := argmin
{
∥x − y∥ : y ∈ C

}
. (8.11)

For a general cone C ⊂ Rn, the polar cone C◦ is defined as the set of outward
normals of C:

C◦ :=
{
y ∈ Rn : ⟨y, x⟩ ≤ 0 for all x ∈ C

}
. (8.12)

Proposition 8.1 (Statistical Dimension (Recall Definition 2.2)) The statistical
dimension δ(C) of a closed convex cone C in Rn satisfies

δ(C) = E
[ ∥ΠC(g)∥2

]
, (8.13)

where g ∈ Rd is a standard Gaussian vector, and ΠC is defined in (8.11).
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The metric characterization of the statistical dimension illustrated in Proposition 8.1
enables to connect the approach based on integral geometry and to the approach
based on Gaussian process theory. The results can be obtained by a classic
argument called the spherical Steiner formula [19, Thm. 6.5.1]. Furthermore, the
formula (8.13) is related to another definition of parameter for convex cones called
the Gaussian width, i.e., for a convex cone C ⊂ Rn, the width is defined as

w(C) := E
[
supy∈C∩Sn−1 ⟨y, g⟩

]
,

where g ∈ Rd is a standard Gaussian vector. This relation enables us to compute
the statistical dimension by exploiting methods [4, 17] developed for the Gaussian
width.

8.2 Proof of Proposition 2.1

Without loss of generality, define that

Θ0 =
[(

θ10

)T
, . . . ,

(
θS0

)⊤
, 0M×(N−S)

]T
∈ CN×M,

where θ i0 are nonzero. Hence, (2.21) is reformulated as

δ
(
D

(
R̃G; Θ̃0

))
≤ inf

η≥0
E

[
dist2

(
G, η · ∂R̃G

(
Θ̃0

))]
, (8.14)

where G ∈ R2N×M is a standard Gaussian matrix. Since ∂R̃G(Θ̃0) = ∂RG(θ̃0)+
µ
2 ∂∥Θ̃0∥2F , we have

U ∈ ∂RG

(
Θ̃0

)

⇐⇒

⎧
⎪⎨

⎪⎩

UVj =
(
Θ̃0

)

Vj

/

∥∥∥∥
(
Θ̃0

)

Vj

∥∥∥∥
F

+µ
(
Θ̃0

)

Vj

if j = 1, . . . , S,

∥UVj ∥F ≤ 1 if j = S + 1, . . . , N,

(8.15)

where Θ̃Vj = 0 for j ̸= i for some Θ̃ ∈ R2N×M , defined in (2.23). Hence,

dist2(G, η · ∂R̃G(Θ̃0)) =
S∑

i=1

∥GVi − η((Θ̃0)Vi /∥(Θ̃0)Vi∥F + µ(Θ̃0)Vj )∥2F

+
N∑

i=S+1

max{∥GVi∥2 − η, 0}2. (8.16)
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Taking the expectation over the Gaussian matrixG, it arrives

E
[
dist2

(
G, η · ∂RG

(
Θ̃0

))]
= S

(
2M + η2

(
1+ 2µā + µ2b̄

))

+(N − S)
21−M

Γ (M)

∫ ∞

η
(u− η)2u2M−1e−

u2
2 du,

where ā = 1
S

∑S
i=1 ∥(Θ̃0)Vi∥F and b̄ = 1

S

∑S
i=1 ∥(Θ̃0)Vi∥2F . Letting ρ = S/N and

taking the infimum over η ≥ 0 completes the proof of (2.24).

8.3 Proof of Theorem 3.3

Theorem 3.3 can be justified via trajectory analysis for blind demixing via the
Wirtinger flow algorithm. This is achieved by proving that iterates of Wirtinger flow
sustain in the region of incoherence and contraction by exploiting the local geometry
of blind demixing. The steps of proving Theorem 3.3 are summarized as follows.

• Identifying local geometry in the region of incoherence and contraction
(RIC). First identify a region R, i.e., RIC, where the objective function
enjoys restricted strong convexity and smoothness near the ground truth z♮.
Furthermore, any point z ∈ R obeys the ℓ2 error contraction and the incoherence
conditions. Please refer to Lemma 8.1 for details. Hence, the convergence rate of
the algorithm can be established according to Lemma 8.2, if and only if all the
iterates of Wirtinger flow with spectral initialization are in the regionR.

• Establishing the auxiliary sequences via the leave-one-out approach. To
justify that the Wirtinger Flow algorithm enforces the iterates to stay within the
RIC, we introduce the leave-one-out sequences. Specifically, the leave-one-out
sequences are denoted by {ht,(l)

i , x
t,(l)
i }t≥0 for each 1 ≤ i ≤ s, 1 ≤ l ≤ m

obtained by removing the l-th measurement from the objective function f (h, x).
Hence, {ht,(l)

i } and {xt,(l)
i } are independent with {bj } and {aij }, respectively.

• Establishing the incoherence condition via induction. In this step, we employ
the auxiliary sequences to establish the incoherence condition via induction. For
brief, with z̃ti = [̃zt∗1 , . . . , z̃t∗s ]∗ where z̃ti = [̃ht∗

i x̃t∗
i ]∗, the set of induction

hypotheses of local geometry is listed as follows:

dist
(
zt , z♮

)
≤ C1

1

log2m
, (8.17a)

dist
(
zt,(l), z̃t

)
≤ C2

sµ√
m

√
µ2K log9m

m
, (8.17b)
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max
1≤i≤s,1≤j≤m

∣∣∣a∗ij
(
x̃t
i − x

♮
i

)∣∣∣ ≤ C3
1√

s log3/2m
, (8.17c)

max
1≤i≤s,1≤j≤m

∣∣∣b∗l h̃
t
i

∣∣∣ ≤ C4
µ√
m

log2m, (8.17d)

where C1, C3 are some sufficiently small constants, while C2, C4 are some
sufficiently large constants. That is, as long as the current iterate stays within
the RIC, the next iterate remains in the RIC.

– Concentration between original and auxiliary sequences. The gap between
{zt } and {zt,(l)} can be established via employing the restricted strong
convexity of the objective function in RIC.

– Incoherence condition of auxiliary sequences. Based on the fact that {zt }
and {zt,(l)} are sufficiently close, we can instead bound the incoherence of
h
t,(l)
i (resp. xt,(l)

i ) in terms of {bj } (resp. {aij }), which turns out to be much
easier due to the statistical independence between {ht,(l)

i } (resp. {xt,(l)
i }) and

{bj } (resp.{aij }).
– Establishing iterates in RIC. By combining the above bounds together, we

arrive at |a∗ij (xt
i − x

♮
i )| ≤ ∥aij∥2 · ∥xt

i − x
t,(l)
i ∥2 + ∥a∗ij (x

t,(l)
i − x

♮
i )∥ via

the triangle inequality. Based on the similar arguments, the other incoherence
condition can be established in Lemma 8.3.

– Establishing initial point in RIC. Lemmas 8.6–8.8 are integrated to justify
that the spectral initialization point is in RIC.

Lemma 8.1 (Restricted Strong Convexity and Smoothness for Blind Demixing
Problem P) Let δ > 0 be a sufficiently small constant. If the number of
measurements satisfies m ≫ µ2s2κ2K log5m, then with probability at least
1−O(m−10), the Wirtinger Hessian ∇2fclean(z) obeys

u∗
[
D∇2fclean(z)+ ∇2fclean(z)D

]
u ≥ 1

4κ
∥u∥22 and

∥∥∥∇2fclean(z)
∥∥∥ ≤ 2+ s (8.18)

simultaneously for all

u =

⎡

⎢⎣
u1
...

us

⎤

⎥⎦ with ui =

⎡

⎢⎢⎢⎣

hi − h′i
xi − x′i
hi − h′i
xi − x′i

⎤

⎥⎥⎥⎦
,

and D = diag
(
{W i}si=1

)

withW i = diag
([
βi1IK βi2IK βi1IK βi2IK

]∗)
.
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Here z satisfies

max
1≤i≤s

max
{∥∥∥hi − h

♮
i

∥∥∥
2
,
∥∥∥xi − x

♮
i

∥∥∥
2

}
≤ δ

κ
√
s
, (8.19a)

max
1≤i≤s,1≤j≤m

∣∣∣a∗ij
(
xi − x

♮
i

)∣∣∣ ·
∥∥∥x♮i

∥∥∥
−1

2
≤ 2C3√

s log3/2m
, (8.19b)

max
1≤i≤s,1≤j≤m

|b∗jhi | ·
∥∥∥h♮i

∥∥∥
−1

2
≤ 2C4µ√

m
log2m, (8.19c)

where (hi , xi ) is aligned with (h′i , x
′
i ), and one has max{∥hi − h

♮
i∥2, ∥h′i −

h
♮
i∥2, ∥xi − x

♮
i∥2, ∥x′i − x

♮
i∥2} ≤ δ/(κ

√
s), for i = 1, . . . , s and W i’s satisfy that

for βi1,βi2 ∈ R, for i = 1, . . . , s max1≤i≤s max
{
|βi1 − 1

κ |, |βi2 − 1
κ |

}
≤ δ

κ
√
s
.

Therein, C3, C4 ≥ 0 are numerical constants.

Based on the local geometry in the region of incoherence and contraction, we
further establish contraction of the error measured by the distance function.

Lemma 8.2 Suppose the number of measurements satisfies m ≫ µ2s2κ2K log5m
and the step size obeys η > 0 and η ≍ s−1. Then with probability at least 1 −
O(m−10), we have

dist
(
zt+1, z♮

)
≤ (1− η/(16κ))dist

(
zt , z♮

)
+ 3κ

√
s max
1≤k≤s

∥Ak(e)∥ ,

provided that

dist
(
zt , z♮

)
≤ ξ, (8.20a)

max
1≤i≤s,1≤j≤m

∣∣∣a∗ij
(
x̃t
i − x

♮
i

)∣∣∣ · ∥x♮i∥−12 ≤ 2C3√
s log3/2m

, (8.20b)

max
1≤i≤s,1≤j≤m

∣∣∣b∗j h̃
t
i

∣∣∣ ·
∥∥∥h♮i

∥∥∥
−1

2
≤ 2C4µ√

m
log2m, (8.20c)

for some constants C3, C4 > 0 and a sufficiently small constant ξ > 0. Here, h̃
t
i

and x̃t
i are defined as h̃

t
i = 1

αti
ht
i and x̃t

i = αtix
t
i for i = 1, . . . , s.



8.3 Proof of Theorem 3.3 119

Proof From the definition of αt+1
k , k = 1, . . . , s, one has

dist
(
zt+1, z♮

)2
≤

s∑

k=1

dist
(
zt+1
k , z

♮
k

)2

(i)
≤s

∥∥∥∥∥∥
1

αt+1
k

ht+1
k − h

♮
k

∥∥∥∥∥∥

2

2

+ s
∥∥∥αt+1

k xt+1
k − x

♮
k

∥∥∥
2

2

≤s
∥∥∥∥∥
1

αtk

ht+1
k − h

♮
k

∥∥∥∥∥

2

2

+ s
∥∥∥αtkx

t+1
k − x

♮
k

∥∥∥
2

2
, (8.21)

where k in the step (i) satisfies that k = argmax1≤i≤s dist(zt+1
i , z

♮
i )
2.

By denoting h̃
t
k = 1

αtk
ht
k, x̃t

k = αtkx
t
k, ĥ

t+1
k = 1

αtk
ht+1
k and x̂t+1

k = αtkx
t+1
k , we

have
⎡

⎢⎢⎢⎢⎣

ĥ
t+1
k − h

♮
k

x̂t+1
k − x

♮
k

ĥ
t+1
k − h

♮
k

x̂t+1
k − x

♮
k

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

h̃
t
k − h

♮
k

x̃t
k − x

♮
k

h̃
t
k − h

♮
k

x̃t
k − x

♮
k

⎤

⎥⎥⎥⎥⎦
− ηW k

⎡

⎢⎢⎢⎣

∇hk f (̃z
t )

∇xk f (̃z
t )

∇hk f (̃z
t )

∇xk f (̃z
t )

⎤

⎥⎥⎥⎦
, (8.22)

where

W k = diag
([∥∥x̃t

k

∥∥−2
2 IK

∥∥∥h̃t
k

∥∥∥
−2

2
IK

∥∥x̃t
k

∥∥−2
2 IK

∥∥∥h̃t
k

∥∥∥
−2

2
IK

])
.

(8.23)

The Wirtinger Hessian without noise of fclean(z) in terms of zi can be written as

∇2
zi
fclean :=

[
C

E∗
E

C

]
, (8.24)

where C := ∂
∂zi

(
∂fclean
∂zi

)∗
and E := ∂

∂zi

(
∂fclean
∂zi

)∗
. The Wirtinger Hessian of

fclean(z) in terms of z is thus represented as

∇2fclean(z) := diag
({
∇2
zi
fclean

}s
i=1

)
, (8.25)

where the operation diag({Ai}si=1) generates a block diagonal matrix with the diag-
onal elements being matrices A1, . . . ,As . According to the fundamental theorem
of calculus provided in [13], together with the definition of the noiseless objective
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function fclean and the noiseless Wirtinger Hessian ∇2
zk
fclean, we get ∇2

zk
fclean,

⎡

⎢⎢⎢⎣

∇hk f (̃z
t )

∇xk f (̃z
t )

∇hk f (̃z
t )

∇xi f (̃z
t )

⎤

⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎣

∇hk fclean(̃z
t )

∇xk fclean(̃z
t )

∇hk fclean(̃z
t )

∇xk fclean(̃z
t )

⎤

⎥⎥⎥⎦
+

⎡

⎢⎢⎢⎣

Ak(e)x
t
k

A ∗
k (e)h

t
k

Ak(e)x
t
k

A ∗
k (e)h

t
k

⎤

⎥⎥⎥⎦

= H k

⎡

⎢⎢⎢⎢⎣

h̃
t
k − h

♮
k

x̃t
k − x

♮
k

h̃
t
k − h

♮
k

x̃t
k − x

♮
k

⎤

⎥⎥⎥⎥⎦
+

⎡

⎢⎢⎢⎣

Ak(e)x
t
k

A ∗
k (e)h

t
k

Ak(e)x
t
k

A ∗
k (e)h

t
k

⎤

⎥⎥⎥⎦
, (8.26)

where H k =
∫ 1
0 ∇2

zfclean (z(τ )) dτ with z(τ ) := z♮ + τ
(
z̃t − z♮

)
and Ak(e) =∑m

j=1 ejbja
∗
kj and A ∗

k (e) =
∑m

j=1 ejakjb
∗
j . Since z(τ ) lies between z̃t and z♮, we

derive from the assumption (8.20) that for all τ ∈ [0, 1],

dist(z(τ ), z♮) ≤ ξ ≤ δ,

max
1≤i≤s,1≤j≤m

∣∣∣a∗ij
(
xi (τ )− x

♮
i

)∣∣∣ ≤ C3√
s log3/2m

,

max
1≤i≤s,1≤j≤m

∣∣∣b∗jhi (τ )
∣∣∣ ≤ C4µ√

m
log2m,

for some constants C3, C4 > 0 and the constant ξ > 0 being sufficiently small.
For simplicity, denote ẑt+1

k = [̂ht+1∗
k x̂t+1∗

k ]∗. Substituting (8.26) to (8.22), one
has

[
ẑt+1
k − z

♮
k

ẑt+1
k − z

♮
k

]

= ϕt
k + ψ t

k, (8.27)

where

ϕt
k = (I − ηW kH k)

[
z̃tk − z

♮
k

z̃tk − z
♮
k

]

, ψ t
k =

⎡

⎢⎢⎢⎣

Ak(e)x
t
k

A ∗
k (e)h

t
k

Ak(e)x
t
k

A ∗
k (e)h

t
k

⎤

⎥⎥⎥⎦
.

Take the Euclidean norm of both sides of (8.27) to arrive

∥∥ϕt
k + ψ t

k

∥∥
2 ≤

∥∥ϕt
k

∥∥
2 +

∥∥ψ t
k

∥∥
2 . (8.28)
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We first control the second Euclidean norm at the right-hand side of Eq. (8.28):

∥∥ψ t
k

∥∥2
2 = 2

(
∥Ak(e)∥2

∥∥xt
k

∥∥2
2 +

∥∥A ∗
k (e)

∥∥2 ∥ht
k∥22

)
≤ 16 ∥Ak(e)∥2 , (8.29)

where we use the fact that max{∥xk∥2, ∥hk∥2} ≤ 2 for 1 ≤ k ≤ s. Based on the
paper [13, Section C.2], the squared Euclidean norm of ϕt

k is bounded by

∥∥ϕt
k

∥∥2
2 ≤ 2(1− η/8)

∥∥∥̃ztk − z
♮
k

∥∥∥
2

2
, (8.30)

under the assumption (8.20). We thus conclude that

∥∥ϕt
k + ψ t

k

∥∥
2 ≤

√
2(1− η/8)1/2

∥∥∥̃ztk − z
♮
k

∥∥∥
2
+ 4 ∥Ak(e)∥ , (8.31)

and hence
∥∥∥̃zt+1

k − z
♮
k

∥∥∥
2
≤

∥∥∥̂zt+1
k − z

♮
k

∥∥∥
2
≤
√
2/2

∥∥ϕt
k + ψ t

k

∥∥
2

≤ (1− η/16)
∥∥∥̃ztk − z

♮
k

∥∥∥
2
+ 3 ∥Ak(e)∥ . (8.32)

Integrate the above inequality (8.32) for i = 1, . . . , s, we further get

dist
(
zt+1, z♮

)
≤ (1− η/16)dist

(
zt , z♮

)
+ 3
√
s max
1≤k≤s

∥Ak(e)∥ . (8.33)

Lemma 8.3 Suppose the induction hypotheses hold true for t-th iteration and the
number of measurements obeys m ≫ (µ2 + σ 2)s2K log8m. Then with probability
at least 1−O(m−9),

max
1≤i≤s,1≤j≤m

∣∣∣b∗l h̃
t+1
i

∣∣∣ · ∥h♮i∥−12 ≤ C4
µ√
m

log2m, (8.34)

provided that C4 is sufficiently large and the step size obeys η > 0 and η ≍ s−1.

Proof Similar to the strategy used in [13, Section C.4], it suffices to control
|b∗l 1

αti
ht+1
i | to finish the proof, since

max
1≤i≤s,1≤l≤m

∣∣∣∣∣∣
b∗l

1

αt+1
i

ht+1
i

∣∣∣∣∣∣
≤

∣∣∣∣∣
αti

αt+1
i

∣∣∣∣∣ max
1≤i≤s,1≤l≤m

∣∣∣∣∣b
∗
l

1

αti

ht+1
i

∣∣∣∣∣

≤ (1+ δ)

∣∣∣∣∣b
∗
l

1

αti

ht+1
i

∣∣∣∣∣ (8.35)
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for some small δ ≍ 1/ log2m, where the last step bases on

∣∣∣∣∣
αt+1
i

αti
− 1

∣∣∣∣∣ !
1

log2m
≤ δ. (8.36)

The gradient update rule for ht+1
i is written as

1

αti

ht+1
i = h̃

t
i − ηξi

m∑

j=1

s∑

k=1

bjb
∗
j

(
h̃
t
kx̃

t∗
k − h

♮
kh

♮∗
k

)
akja

∗
ij x̃

t
i + ηξi

m∑

j=1

ejbja
∗
ij x̃

t
i ,

(8.37)

where ξi = 1
∥x̃ti ∥22

and h̃
t
i = 1

αti
ht
i and x̃

t
i = αtix

t
i for i = 1, . . . , s. The formula (8.37)

can be further decomposed into the following terms:

1

αti

ht+1
i = h̃

t
i − ηξi

m∑

j=1

s∑

k=1

bjb
∗
j h̃

t
kx̃

t∗
k akja

∗
ij x̃

t
i + ηξi

m∑

j=1

s∑

k=1

bjb
∗
jh

♮
kx

♮∗
k akja

∗
ij x̃

t
i

+ ηξi

m∑

j=1

ejbja
∗
ij x̃

t
i

= h̃
t
i − ηξi

s∑

k=1

h̃
t
k

∥∥∥x♮k
∥∥∥
2

2
− ηξivi1 − ηξivi2 + ηξivi3 + ηξivi4, (8.38)

where

vi1 =
m∑

j=1

s∑

k=1

bjb
∗
j h̃

t
k

(
x̃t∗
k akja

∗
ij x̃

t
i − x

♮∗
k akja

∗
ijx

♮
i

)

vi2 =
m∑

j=1

s∑

k=1

bjb
∗
j h̃

t
k

(
x
♮∗
k akja

∗
ijx

♮
i − ∥x

♮
k∥22

)

vi3 =
m∑

j=1

s∑

k=1

bjb
∗
jh

♮
kx

♮∗
k akja

∗
ij x̃

t
i

vi4 =
m∑

j=1

ejbja
∗
ij x̃

t
i ,

which bases on the fact that
∑m

j=1 bjb
∗
j = IK . In what follows, we bound the above

four terms, respectively.
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1. We start with |b∗l vi1| via the operation that

|b∗l vi1| =
∣∣∣∣

m∑

j=1

b∗l bjb
∗
j

[ s∑

k=1

h̃
t
k

(
a∗ij

(
x̃t
i − x

♮
i

) (
a∗kj x̃

t
k

)∗

+ a∗ijx
♮
i

(
a∗kj

(
x̃t
k − x

♮
k

))∗ )]∣∣∣∣ ≤ s

m∑

j=1

|b∗l bj |
{

max
1≤k≤s,1≤j≤m

∣∣∣b∗j h̃
t
k

∣∣∣
}
·

{
max

1≤k≤s,1≤j≤m

∣∣∣a∗kj (̃x
t
k − x

♮
k)
∣∣∣
(∣∣∣a∗kj x̃

t
k

∣∣∣+
∣∣a∗kjx

♮
k

∣∣
)}

. (8.39)

Based on the inductive hypothesis (8.17c) and the concentration inequality [13]

max
1≤i≤s,1≤j≤m

∣∣∣a∗ijx
♮
i

∣∣∣ ≤ 5
√
logm, (8.40)

with probability at least 1−O(m−10), it yields

max
1≤k≤s,1≤j≤m

∣∣∣a∗kj x̃
t
k

∣∣∣ ≤ max
1≤k≤s,1≤j≤m

∣∣∣a∗kj
(
x̃t
k − x

♮
k

)∣∣∣

+ max
1≤k≤s,1≤j≤m

∣∣∣a∗kjx
♮
k

∣∣∣ ≤ 6
√
logm, (8.41)

as long as m is sufficiently large. We further derive that

max
1≤k≤s,1≤j≤m

∣∣∣a∗kj
(
x̃t
k − x

♮
k

)∣∣∣
(∣∣∣a∗kj x̃

t
k

∣∣∣+
∣∣∣a∗kj x̃

♮
k

∣∣∣
)

≤ 1√
s log3/2m

· 11
√
logm ≤ 11C3

1
logm

. (8.42)

Substituting (8.42) into (8.39) and combining lemma [13, Lemma 48] such that

m∑

j=1

|b∗l bj | ≤ 4 logm, (8.43)

we get

|b∗l vi1| ! s logm ·
{

max
1≤k≤s,1≤j≤m

∣∣∣b∗j h̃
t
k

∣∣∣
}
· C3

1
logm

! sC3 max
1≤k≤s,1≤j≤m

∣∣∣b∗j h̃
t
k

∣∣∣

≤ 0.1s max
1≤k≤s,1≤j≤m

∣∣∣b∗j h̃
t
k

∣∣∣ , (8.44)

as long as C3 is sufficiently small.
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2. Regarding to |b∗l vi3|, one has

|b∗l vi3| ≤

∣∣∣∣∣∣

m∑

j=1

b∗l bjb
∗
j

(
s∑

k=1

h
♮
kx

♮∗
k akj

)

a∗ijx
♮
i

∣∣∣∣∣∣

+

∣∣∣∣∣∣

m∑

j=1

b∗l bjb
∗
j

(
s∑

k=1

h
♮
kx

♮∗
k akj

)

a∗ij
(
x̃t
i − x

♮
i

)
∣∣∣∣∣∣
. (8.45)

Lemma 8.4 Suppose m ≫ s2K logm for some sufficiently large constant C > 0.
Then with probability at least 1−O(m−10), there is

∣∣∣∣∣∣

m∑

j=1

b∗l bjb
∗
j

(
s∑

k=1

h
♮
kx

♮∗
k akj

)

a∗ijx
♮
i − b∗l h

♮
i

∣∣∣∣∣∣
! µ√

m
. (8.46)

Proof See Appendix 8.3.1.

Regarding to the second term in (8.45), we exploit the same technical method as in
controlling |b∗l vi1|, which yields

∣∣∣∣∣∣

m∑

j=1

b∗l bjb
∗
j

(
s∑

k=1

h
♮
kx

♮∗
k akj

)

a∗ij
(
x̃t
i − x

♮
i

)
∣∣∣∣∣∣

≤ s

m∑

j=1

|b∗l bj |
{

max
1≤k≤s,1≤j≤m

∣∣∣b∗jh
♮
k

∣∣∣
}
·
{

max
1≤k≤s,1≤j≤m

∣∣∣a∗kj
(
x̃t
k − x

♮
k

)∣∣∣
}
·

{
max

1≤k≤s,1≤j≤m

∣∣∣a∗kjx
♮
k

∣∣∣
}

≤ 4s logm · µ√
m

· C3
1√

s log3/2m
· 5

√
logm

! C3

√
sµ√
m

, (8.47)

where the second step arises from the incoherence, the induction hypothesis (8.17c)
and the condition (8.40) and [13, Lemma 48]. Combining the above inequalities and
the incoherence, one achieves

∣∣b∗l vi3
∣∣ !

∣∣∣b∗l h
♮
i

∣∣∣+ µ√
m

+ C3

√
sµ√
m

! (1+ C3
√
s)

µ√
m
, (8.48)

as long as picking up sufficiently small C3 > 0.
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3. We further move to control |b∗l vi2|. The idea of proof is based on the strategy in
[13, Section C.4], which groups {bj }1≤j≤m into bins each containing τ adjacent
vectors. Similarly to the paper [13], we assume m/τ to be an integer. For 0 ≤
l ≤ m− τ , one has

b∗1

τ∑

j=1

bl+jb
∗
l+j

( s∑

k=1

h̃
t
kzijkl

)
= b∗1

τ∑

j=1

bl+1b
∗
l+1

( s∑

k=1

h̃
t
kzijkl

)

+ b∗1

τ∑

j=1

(
bl+jb

∗
l+j −bl+lb

∗
l+1

) ( s∑

k=1

h̃
t
kzijkl

)

= piτ1 + piτ2 + piτ3, (8.49)

where

zijkl = x
♮∗
k ak,j+la

∗
i,j+lx

♮
i −

∥∥∥x♮i
∥∥∥
2

2
,

piτ1 =
s∑

k=1

( τ∑

j=1

zijkl

)
b∗1bl+1b

∗
l+1h̃

t
k,

piτ2 = b∗1

τ∑

j=1

(
bl+j − bl+1

)
b∗l+j

s∑

k=1

h̃
t
kzijkl,

piτ3 = b∗1

τ∑

j=1

bl+1(bl+j − bl+1)
∗

s∑

k=1

h̃
t
kzijkl .

We will control three terms in (8.49), respectively.

(a) According to [13, Section C.4], with probability at least 1−O(m−10),
∣∣∣∣∣∣

τ∑

j=1

zijkl

∣∣∣∣∣∣
≤

∣∣∣∣
τ∑

j=1

(
max

{∣∣∣a∗k,l+jx
♮
k

∣∣∣
2
,
∣∣∣a∗i,l+jx

♮
i

∣∣∣
2
}
−

∥∥∥x♮i
∥∥∥
2

2

)∣∣∣∣ !
√
τ logm.

(8.50)

Combining above bound, we control the first term in (8.49) as

|piτ1| ! s
√
τ logm|b∗1bl+1| max

1≤k≤s,1≤j≤m

∣∣∣b∗l h̃
t
k

∣∣∣ . (8.51)
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The summation over all bins is given as

m
τ −1∑

d=0

∣∣∣∣∣∣

τ∑

j=1

zijk(dτ )b
∗
1bdτ+1b

∗
dτ+1h̃

t
k

∣∣∣∣∣∣

! s
√
τ logm

m
r −1∑

d=0

∣∣b∗1bdτ+1
∣∣ max
1≤k≤s,1≤j≤m

∣∣∣b∗l h̃
t
k

∣∣∣ . (8.52)

Substituting the bound

m
τ −1∑

d=0

∣∣b∗1bdτ+1
∣∣ ≤ K

m
+O

(
logm
τ

)
, (8.53)

provided in [13, Section C.4], into the inequality (8.52) yields

m
τ −1∑

d=0

∣∣∣∣∣∣

τ∑

j=1

zijk(dτ )b
∗
1bdτ+1b

∗
dτ+1h̃

t
k

∣∣∣∣∣∣

!

⎛

⎝ sK
√
τ logm
m

+
√
s2 log3m

τ

⎞

⎠ max
1≤k≤s,1≤j≤m

∣∣∣b∗l h̃
t
k

∣∣∣

≤ 0.1 max
1≤k≤s,1≤j≤m

∣∣∣b∗l h̃
t
k

∣∣∣ , (8.54)

as long as m≫ Ks
√
τ logm and τ ≫ s2 log3m.

(b) The second term of (8.49), piτ2, is controlled by

|piτ2| ≤ max
1≤k≤s,1≤l≤m

∣∣∣b∗l h̃
t
k

∣∣∣

√√√√
τ∑

j=1

∣∣b∗1(bl+j − bl+1)
∣∣2·

√√√√
τ∑

j=1

s∑

k=1

(
|max

{∣∣∣a∗k,l+jx
♮
k

∣∣∣
2
,
∣∣∣a∗i,l+jx

♮
i

∣∣∣
2
}
−

∥∥∥x♮k
∥∥∥
2

2

)2

!
√
sτ max

1≤k≤s,1≤l≤m

∣∣∣b∗l h̃
t
k

∣∣∣

√√√√
τ∑

i=1

∣∣b∗1(bl+j − bl+1)
∣∣2, (8.55)

where the first inequality is due to Cauchy–Schwarz and the second step
holds because of the following lemma.
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Lemma 8.5 Suppose τ ≥ C log4m for some sufficiently large constant C >

0, with probability at least 1−O(m−10), one has

τ∑

j=1

s∑

k=1

(
|max

{∣∣∣a∗k,l+jx
♮
k

∣∣∣
2
,
∣∣∣a∗i,l+jx

♮
i

∣∣∣
2
}
−

∥∥∥x♮k
∥∥∥
2

2

)2

! sτ. (8.56)

Proof This claim can be identified easily from [13, Appendix D.3.1].

We further sum over all bins of size τ to obtain
∣∣∣∣∣∣
b∗1

m
τ −1∑

d=0

τ∑

j=1

(
bdτ+j − bdτ+1

)
b∗dτ+j

s∑

k=1

h̃
t
kzijk(dτ )

∣∣∣∣∣∣

≤

⎧
⎨

⎩
√
sτ

m
τ −1∑

d=0

√√√√
τ∑

i=1

∣∣b∗1(bdτ+j − bdτ+1)
∣∣2
⎫
⎬

⎭ · max
1≤k≤s,1≤l≤m

∣∣∣b∗l h̃
t
k

∣∣∣

≤ 0.1
√
s max
1≤k≤s,1≤l≤m

∣∣∣b∗l h̃
t
k

∣∣∣ . (8.57)

Here, the last line arises from [13, Lemma 51] such that for any small
constant c > 0,

m
τ −1∑

d=0

√√√√
τ∑

j=1

∣∣b∗1(bdτ+j − bdτ+1)
∣∣2 ≤ c

1√
τ
, (8.58)

as long as m≫ τK logm.
(c) The third term of (8.49), piτ3, obeys that

|piτ3| ≤|b∗1bl+1|
{ τ∑

j=1

s∑

k=1

(
|max

{ ∣∣∣a∗k,l+jx
♮
k

∣∣∣
2
,
∣∣∣a∗i,l+jx

♮
i

∣∣∣
2
}
−

∥∥∥x♮k
∥∥∥
2

2

)2}
·

max
1≤k≤s,1≤l≤m−τ,1≤j≤τ

∣∣∣∣(bl+j − bl+1)
∗h̃t

k

∣∣∣∣

! sτ |b∗1bl+1| max
1≤k≤s,1≤l≤m−τ,1≤j≤τ

∣∣∣∣(bl+j − bl+1)
∗h̃t

k

∣∣∣∣, (8.59)

where the last line relies on the inequality (8.56) and the Cauchy–Schwarz
inequality.
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The summation over all bins is given as

m
τ −1∑

d=0

∣∣∣∣∣∣
b∗1

τ∑

j=1

bdτ+1(bdτ+j − bdτ+1)
∗

s∑

k=1

h̃
t
kzijk(dτ )

∣∣∣∣∣∣

! τ s

m
τ −1∑

d=0

|b∗1bdτ+1| · max
1≤k≤s,1≤l≤m−τ,1≤j≤τ

∣∣∣∣(bl+j − bl+1)
∗h̃t

k

∣∣∣∣

! s logm max
1≤k≤s,1≤l≤m−τ,1≤j≤τ

∣∣∣∣(bl+j − bl+1)
∗h̃t

k

∣∣∣∣

! cC4
sµ√
m

log2m, (8.60)

where the last relation makes use of (8.53) and the claim

max
1≤j≤τ

|(bj − b1)
∗h̃t

k| ≤ cC4
µ√
m

logm, (8.61)

for some sufficiently small constant c > 0, provided that m≫ τK log4m.
(d) Combining the above results together, we get

|b∗1vi2| ≤(0.1+ 0.1
√
s) max

1≤k≤s,1≤l≤m

∣∣∣b∗l h̃
⊤
k

∣∣∣+O

(
cC4

sµ√
m

log2m
)
.

(8.62)

4. We end the proof with controlling |b∗l vi4|:

|b∗l vi4| =

∣∣∣∣∣∣

m∑

j=1

b∗l bj eja
∗
ij x̃

t
i

∣∣∣∣∣∣
≤

m∑

j=1

|b∗l bj | ·
{

max
1≤k≤s,1≤j≤m

∣∣∣a∗kj x̃
t
k

∣∣∣
}
· |ej |

≤ 4 logm · 6
√
logm · σ

2

m
, (8.63)

where the last step arises from the inequality (8.41), (8.43) and the assumption
|ej | ! σ 2/m≪ 1. It thus yields

|b∗l vi4| ! σ 2 log
3/2m

m
≤ logm, (8.64)

as long as m≫ σ 2√logm.



8.3 Proof of Theorem 3.3 129

5. Putting the above results together, there exists some constant C8 > 0 such that

∣∣∣b∗l h̃
t+1
i

∣∣∣ ≤ (1+ δ)

{ ∣∣∣b∗l h̃
t
i

∣∣∣− ηξi

s∑

k=1

∣∣∣b∗l h̃
t
k

∣∣∣+ (1+ 0.1
√
s + 0.1s)

max
1≤k≤s,1≤j≤m

∣∣∣b∗j h̃
t
k

∣∣∣+ C8(1+ C3
√
s)ηξi

µ√
m

+ C8cC4ηξi
sµ√
m

log2m+ C8ηξi logm
}

(i)
≤

(
1+O

(
1

log2m

)){
(1− 0.7sηξi )C4

µ√
m

log2m

+ C8(1+ C3
√
s)ηξi

µ√
m

+ C8cC4ηξi
sµ√
m

log2m+ C8ηξi logm
}

(ii)
≤ C4

µ√
m

log2m. (8.65)

Here, step (i) arises from the induction hypothesis (8.17d), step (ii) holds as log
as c > 0 is sufficiently small, i.e., (1 + δ)C8ηξic ≫ 1, and η > 0 is some
sufficiently small constant, i.e., η ≍ s−1. In order for the proof to go through, we
need to pick the sample size that

m≫ (µ2 + σ 2)τK log4m, (8.66)

where τ = c10s
2 log4m with some sufficiently large constant c10 > 0.

8.3.1 Proof of Lemma 8.4

Denote

wij = b∗l bjb
∗
j

(
s∑

k=1

h
♮
kx

♮∗
k akj

)

a∗ijx
♮
i . (8.67)

Combining the fact that E[aija∗ij ] = IK , E[akja∗ij ] = 0 for k ̸= i and∑m
j=1 bjb

∗
j = IK , we can represent the objective quantity as the sum of

independent random variables,

m∑

j=1

b∗l bjb
∗
j

(
s∑

k=1

h
♮
kx

♮∗
k akj

)

a∗ijx
♮
i − b∗l h

♮
i =

m∑

j=1

(
wij − E(wij )

)
. (8.68)
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Based on the definition of sub-exponential norm [21], i.e., denoted as ∥ ·∥ψ1 , we get

∥wij − E[wij ]∥ψ1

(i)
≤ 2∥wij∥ψ1

(ii)
≤ 4

s∑

k=1

∣∣b∗l bj
∣∣
∣∣∣b∗jh

♮
k

∣∣∣ max
1≤q≤s

∥∥∥a∗qjx
♮
q

∥∥∥
2

ψ2
(8.69)

(iii)
!

∣∣b∗l bj
∣∣ sµ√

m
, (8.70)

where (i) uses the centering property of the sub-exponential norm [21, Remark
5.18], (ii) arises from the relationship between the sub-exponential norm and
the sub-Gaussian norm [21, Lemma 5.14], and (iii) occurs since the incoherence
condition and the fact that ∥a∗kjx

♮
k∥ψ2 ! 1. According to [13, Section C.4.1], one

has

W :=
√√√√ 1

m

m∑

j=1

∥∥wij − E[wij ]
∥∥2
ψ1
≍ µ√

m

s
√
K

m
. (8.71)

It can further invoke [10, Corollary 1] to obtain

P

⎛

⎝

∣∣∣∣∣∣
1
m

m∑

j=1

(
wij − E[wij ]

)
∣∣∣∣∣∣
≥ t

⎞

⎠ ≤ exp

(

1− m

8
min

{
t

2W
,

(
t

2W

)2
})

.

(8.72)

By taking t = 2εW for ε ∈ (0, 1), we obtain with probability at least 1 − exp(1 −
mε2/8),

m∑

j=1

(wij − E[wij ]) ≤ 2εWm ! εs
√
K

µ√
m
. (8.73)

Thus, choosing ε ≍ 1/s
√
K , we conclude that with probability at least 1− exp(1−

cm/s2K) for some constant c > 0,

∣∣∣∣∣∣

m∑

j=1

(wij − E[wij ])

∣∣∣∣∣∣
! µ√

m
. (8.74)

We finished the proof by observing that m ≫ s2K logm as claimed in the
assumption.
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Lemma 8.6 With probability at least 1−O(m−9), there exists some constantC > 0
such that

min
αi∈C,|αi |=1

{∥∥∥αih0
i − h

♮
i

∥∥∥+
∥∥∥αix0

i − x
♮
i

∥∥∥
}
≤ ξ

κ
√
s
and (8.75)

min
αi∈C,|αi |=1

{∥∥∥αih0,(l)
i − h

♮
i

∥∥∥+
∥∥∥αix0,(l)

i − x
♮
i

∥∥∥
}
≤ ξ

κ
√
s
, (8.76)

and ||α0i |− 1| < 1/4, for each 1 ≤ i ≤ s, 1 ≤ l ≤ m, provided that

m ≥ C(µ2 + σ 2)sκ2K logm/ξ2.

Lemma 8.7 Suppose that m ≫ (µ2 + σ 2)s2κ2K log3m. Then with probability at
least 1−O(m−9),

dist
(
z0,(l), z̃0

)
≤ C2

sκµ√
m

√
µ2sK log5m

m
and (8.77)

max
1≤i≤m

∣∣∣b∗l h̃
0
i

∣∣∣ ·
∥∥∥h♮i

∥∥∥
−1

2
≤ C4

µ log2m√
m

. (8.78)

Proof With a similar strategy as in [13, Section C.6], we first show that the
normalized singular vectors of M i and M

(l)
i , i = 1, . . . , s are close enough. We

further extend this inequality to the scaled singular vectors, thereby converting the
ℓ2 metric to the distance function defined in (3.30). We finally prove the incoherence
in terms of {bj }mj=1.

Recall that ȟ
0
i and x̌0

i are the leading left and right singular vectors of M i , i =
1, . . . , s, and ȟ

0,(l)
i and x̌

0,(l)
i are the leading left and right singular vectors of M(l)

i ,
i = 1, . . . , s. By exploiting a variant of Wedin’s sinΘ theorem [8, Therorem 2.1],
we derive that

≤
c1

∥∥∥
(
M i −M

(l)
i

)
x̌
0,(l)
i

∥∥∥
2
+ c1

∥∥∥ȟ
0,(l)∗
i

(
M i −M

(l)
i

)∥∥∥
2

σ1

(
M

(l)
i

)
− σ2(M i )

, (8.79)

for i = 1, . . . , s with some constant c1 > 0. According to [13, Section C.6], for
i = 1, . . . , s, we have

σ1

(
M

(l)
i

)
− σ2(M i ) ≥ 3/4−

∥∥∥M(l)
i − E[M(l)

i ]
∥∥∥− ∥M i − E[M i]∥ ≥ 1/2,

(8.80)
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where the last step comes from [12, Lemma 6.16] provided that m ≫ (µ2 +
σ 2)sK logm. As a result, we obtain that for i = 1, . . . , s

∥∥∥β0,(l)
i ȟ

0
i − ȟ

0,(l)
i

∥∥∥
2
+

∥∥∥β0,(l)
i x̌0

i − x̌
0,(l)
i

∥∥∥
2

≤ 2c1
{∥∥∥

(
M i −M

(l)
i

)
x̌
0,(l)
i

∥∥∥
2
+

∥∥∥ȟ
0,(l)∗
i

(
M i −M

(l)
i

)∥∥∥
2

}
, (8.81)

where

β
0,(l)
i := argmin

α∈C,|α|=1

∥∥∥αȟ
0
i − ȟ

0,(l)
i

∥∥∥
2
+

∥∥∥αx̌0
i − x̌

0,(l)
i

∥∥∥
2
. (8.82)

It thus suffices to control the two terms on the right-hand side of (8.81). Therein,

M i −M
(l)
i = blb

∗
l

s∑

k=1

h
♮
kx

♮∗
k akla

∗
il + elbla

∗
il . (8.83)

1. To bound the first term, we observe that
∥∥∥
(
M i −M

(l)
i

)
x̌
0,(l)
i

∥∥∥
2

=
∥∥∥∥∥blb

∗
l

s∑

k=1

h
♮
kx

♮∗
k akla

∗
il x̌

0,(l)
i + ejbja

∗
il x̌

0,(l)
i

∥∥∥∥∥
2

≤ max
1≤k≤s

s∥bl∥2 ·
∣∣∣b∗l h

♮
k

∣∣∣ ·
∣∣∣a∗klx

♮
i

∣∣∣ ·
∣∣∣a∗il x̌

0,(l)
i

∣∣∣+ ∥bl∥2 · |el | ·
∣∣∣a∗il x̌

0,(l)
i

∣∣∣

≤ 30
sµ√
m

·
√
K log2m

m
+ 5σ 2

m

√
K logm

m
, (8.84)

where we use the fact that ∥bl∥2 = √
K/m, the incoherence condition, the

bound (8.40), the assumption |ej | ≤ σ 2

m , and the condition that with probability
exceeding 1−O(m−10),

max
1≤l≤m

∣∣∣a∗il x̌
0,(l)
i

∣∣∣ ≤ 5
√
logm, (8.85)

due to the independence between x̌
0,(l)
i and ail [13, Section C.6].
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2. To control the second term, we observe that

∥∥∥ȟ
0,(l)∗
i

(
M i −M

(l)
i

)∥∥∥
2

=
∥∥∥∥∥ȟ

0,(l)∗
i blb

∗
l

s∑

k=1

h
♮
kx

♮∗
k akla

∗
il + elȟ

0,(l)∗
i bla

∗
il

∥∥∥∥∥
2

≤ s max
1≤k≤s

∥∥a∗il
∥∥
2 ·

∣∣∣b∗l h
♮
k

∣∣∣ ·
∣∣∣a∗klx

♮
k

∣∣∣ ·
∣∣∣b∗l ȟ

0,(l)
i

∣∣∣+
∥∥a∗il

∥∥
2 · |el | ·

∣∣∣b∗l ȟ
0,(l)
i

∣∣∣

≤
(
15

√
µ2s2K logm

m
+ 3
√
K
σ 2

m

)
·
( ∣∣∣b∗l ȟ

0
i

∣∣∣+
√
K

m

∥∥∥α̃i ȟ
0
i − ȟ

0,(l)
i

∥∥∥
2

)
,

(8.86)

where |̃αi | = 1. Here, the last step easily arises from the similar strategy used
in (8.84) and [13, Section C.6]. Substitution of the bounds (8.84) and (8.86)
into (8.81) yields

∥∥∥β0,(l)
i ȟ

0
i − ȟ

0,(l)
i

∥∥∥
2
+

∥∥∥β0,(l)
i x̌0

i − x̌
0,(l)
i

∥∥∥
2

≤ 2C1

{
30

µ√
m

·
√
s2K log2m

m
+ 5σ 2

m

√
K logm

m

×

⎛

⎝15

√
µ2s2K logm

m
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√
K
σ 2

m

⎞

⎠ ·

∣∣∣b∗l ȟ
0
i

∣∣∣+

⎛

⎝15

√
µ2s2K logm
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√
K

m
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√
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σ 2
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⎞

⎠
∥∥∥α̃i ȟ

0
i − ȟ

0,(l)
i

∥∥∥
2

}
. (8.87)

Since the inequality (8.87) holds for any |̃αi | = 1, we can pick up α̃i = β0,(l)

and reformulate (8.87) as

⎛

⎝1− 30c1

√
µ2s2K logm

m
·
√
K

m
− 6
√
K
σ 2

m

⎞

⎠ ·
∥∥∥β0,(l)

i ȟ
0
i − ȟ

0,(l)
i

∥∥∥
2

+
∥∥∥β0,(l)

i x̌0
i − x̌

0,(l)
i

∥∥∥
2

≤ 60c1
µ√
m

·
√
s2K log2m

m
+ 10c1σ 2

m

√
K logm

m

+

⎛

⎝30c1

√
µ2s2K logm

m
+ 6c1

√
K
σ 2

m

⎞

⎠
∣∣∣b∗l ȟ

0
i

∣∣∣ . (8.88)
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With the assumption that m ≫ (µ + σ 2)sK log1/2m, it yields 1 −
30c1

√
µ2s2K logm

m ·
√

K
m − 6

√
K σ 2

m ≤ 1
2 . Hence,

max
1≤i≤s,1≤j≤m

∥∥∥β0,(l)
i ȟ

0
i − ȟ

0,(l)
i

∥∥∥
2
+

∥∥∥β0,(l)
i x̌0

i − x̌
0,(l)
i

∥∥∥
2

≤ 120c1
µ√
m

·
√
s2K log2m

m
+ 20c1σ 2

m

√
K logm

m

+

⎛

⎝60c1

√
µ2s2K logm

m
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√
K
σ 2

m

⎞

⎠ · max
1≤i≤s,1≤j≤m

∣∣∣b∗l ȟ
0
i

∣∣∣ .

(8.89)

It thus suffices to control max1≤i≤s,1≤j≤m |b∗l ȟ
0
i |. Denote M i x̌

0 = σ1(M i )ȟ
0
i

and

W i =
m∑

j=1

bj

⎛

⎝
∑

k ̸=i

b∗jh
♮
kx

♮∗
k akj + ej

⎞

⎠ a∗ij , (8.90)

which further leads to

∣∣∣b∗l ȟ
0
i

∣∣∣ = 1
σ1(M i )

∣∣∣b∗l M i x̌
0
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(i)
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)
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♮
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∗
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0
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+ 2
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i

∣∣∣

(ii)
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⎝
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♮
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∣∣∣ ·
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♮
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0
i
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}

+ 2∥bl∥2 · ∥W i∥ · ∥x̌0
i ∥2
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√
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m
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√
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{ ∣∣∣a∗j x̌
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i
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i x̌0
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0,(j)
i

∥∥∥
2

}

(iv)
≤

√
K

m logm
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µ log2m√
m
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√
µ2K log3m

m

· max
1≤j≤m

∥∥∥β0,(j)
i x̌0

i − x̌
0,(j)
i
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2
, (8.91)
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where β0,(j)
i is defined in (8.82). Here, (i) arises from the low bound σ1(M i ) ≥ 1

2
and the triangle inequality. (ii) uses the Cauchy–Schwarz inequality. The step
(iii) comes from combining the incoherence condition, the bound (8.40), the
triangle inequality, the estimate:

∑m
j=1 |b∗l bj | ≤ 4 logm [13, Lemma 48],

∥bl∥ = √
K/m and ∥x̌0

i ∥2 = 1. The last step (iv) exploits the inequality (8.85)
to yield that with probability 1−O(m−9) [12],

∥W i∥ ≤
1

2
√
logm

, (8.92)

if m≫ (µ2 + σ 2)sK log2m. The bound (8.91) further leads to

max
1≤i≤s

∣∣∣b∗l ȟ
0
i

∣∣∣≤
√

K
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2
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Combining the bound (8.89) and (8.93) gives

max
1≤i≤s,1≤l≤m
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. (8.94)

As long as m≫ (µ2 + σ 2)s2K log2m, we have

⎛
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√
µ2s2K logm

m
+ 12c1

√
K
σ 2

m

⎞

⎠ · 120
√
µ2s2K log3m

m
≤ 1/2.

(8.95)
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Reformulating the inequality (8.94), we have

max
1≤i≤s,1≤l≤m

∥∥∥β0,(l)
i ȟ

0
i − ȟ

0,(l)
i
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2
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i x̌0
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≤ C4
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m

√
µ2s2K log5m

m
, (8.96)

for some constant C4 > 0. Taking the bound (8.96) together with (8.93), it yields

max
1≤i≤s,1≤l≤m

∣∣∣b∗l ȟ
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i
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K

m logm
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m
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µ log2m√

m
, (8.97)

for some constant c2 > 0, as long as m≫ (µ2 + σ 2)sK log2m.

We further scale the preceding bounds to the final version. Based on [13, Section
C.6], one has
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2

}
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(8.98)

Taking the bounds (8.84), (8.96), and (8.98) collectively yields

min
αi∈C,|αi |=1

∥∥∥αih0
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2
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m
,

(8.99)

for some constant c5 > 0, as long as m≫ (µ2 + σ 2)s2K log2m.
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Furthermore, by exploiting the technical methods provided in [13, Section C.6],
we have

dist
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)
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m
, (8.100)

where α0i is defined in (3.30) and satisfies

1
2
≤ |α0i | ≤ 2. (8.101)

Here, the step (i) occurs since the feasible set for the latter optimization problem
is smaller, and (ii) follows directly from [13, Lemma 19], [13, Lemma 52]. This
accomplishes the proof for the claim (8.77). We further move to the proof for the
claim (8.78).

In terms of |b∗l h̃
0
i |, one has
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(8.102)

based on fact that

1
2
≤ σ1(M i ) ≤ 2. (8.103)

Lemma 8.8 Suppose the sample complexity m ≫ (µ2 + σ 2)s3/2K log5m. Then
with probability at least 1−O(m−9),

max
1≤i≤s,1≤j≤m
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Proof Recall several alignment parameters defined before:
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Combining (8.17a) and (8.100) with the triangle inequality yields that
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where the last step holds as long as m≫ (µ2 + σ 2)s
√
sK log9/2m.

According to [13, Section C.7 ], [13, Lemma 55 ], and the bound (8.100), it
implies that
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Based on the above estimate, we can show that with high probability,
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where (i) arises from the triangle inequality, (ii) uses Cauchy–Schwarz inequality
and the independence between x0,(l)

i and ail , (iii) holds since (8.106), and (iv) occurs
as long as m≫ (µ2 + σ 2)s3/2K log4m.

8.4 Theoretical Analysis of Wirtinger Flow with Random
Initialization for Blind Demixing

Based on the notations for blind demixing introduced in Sect. 3.4.2, we present
the theoretical analysis of Wirtinger flow with random initialization in this section,
which is based on [6]. It demonstrates that random initialization which enjoys a
model-agnostic and natural initialization implementation for practitioners is good
enough to guarantee Wirtinger flow to linearly converge to the optimal solution.

To present the theorem, we begin with introducing some notations. Let h̃
t
i and x̃

t
i

be

h̃
t
i =

1

ωt
i

ht
i and x̃t

i = ωt
ix

t
i , (8.108)

for i = 1, . . . , s, respectively, where alignment parameters are denoted as ωi .
Without loss of the generality, we assume that the ground truth x

♮
i = qie1 for

i = 1, . . . , s, where 0 < qi ≤ 1, i = 1, . . . , s are some constants and define a
parameter κ = maxi qi

mini qi
. For simplification, for i = 1, . . . , s, the first entry and the

rest entries of xt
i are denoted as

xti1 and xt
i⊥ :=

[
xtij

]

2≤j≤N
, (8.109)

respectively. Hence, (8.113) and (8.114) can be reformulated as

αxi := x̃ti1 and βxi :=
∥∥x̃t

i⊥
∥∥
2 . (8.110)
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Define the norm of signal component and the perpendicular component in terms of
hi for i = 1, . . . , s, as
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〉
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2
, (8.111)
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, (8.112)

respectively. Likewise, the norms of the signal component and the perpendicular
component in terms of xi for i = 1, . . . , s are given by

αxi :=
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2
, (8.113)
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, (8.114)

respectively.

Theorem 8.3 ([6]) Assuming that the initial points are randomly generated
as (3.33), and the stepsize η > 0 obeys η ≍ s−1. Suppose that the sample size
satisfies

m ≥ Cµ2s2κ4 max{K,N} log12m

for some sufficiently large constant C > 0. Then with probability at least 1 −
c1m

−ν − c1me−c2N with some constants ν, c1, c2 > 0, for a sufficiently small
constant 0 ≤ γ ≤ 1 and Tγ ! s log(max {K,N}), it holds that
1. The randomly initialized Wirtinger flow linearly converges to z♮, i.e.,

dist(zt , z♮) ≤ γ
(
1− η

16κ

)t−Tγ ∥z♮∥2, t ≥ Tγ ,

2. The magnitude ratios of the signal component to the perpendicular component
in terms of ht

i and xt
i obey

max
1≤i≤s

αhti
βhti

" 1√
K logK

(1+ c3η)
t , (8.115a)

max
1≤i≤s

αxti
βxti

" 1√
N logN

(1+ c4η)
t , (8.115b)

respectively, where t = 0, 1, · · · for some constant c3, c4 > 0.
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The precise statistical analysis on the computational efficiency of Wirtinger flow
with random initialization is illustrated in Theorem 8.3. In Stage I, it takes randomly
initialized Wirtinger flow Tγ = O(s log(max {K,N})) iterations to reach a local
region near the ground truth that enjoys strong convexity and strong smoothness.
In Stage II, it takes O(s log(1/ε)) iterations to linearly converge ε-accurate point.
Hence, the randomly initialized Wirtinger flow is guaranteed to converge to the
ground truth with the iteration complexityO(s log(max {K,N})+s log(1/ε))where
the sample size is m " s2 max {K,N}poly logm.

The proof of Theorem 8.3 is briefly summarized in the following. The key
idea is to investigate the dynamics of the iterates of Wirtinger flow with random
initialization.

1. Stage I:

• Dynamics of population-level state evolution. Establish the population-level
state evolution of αxi (8.116a) and βxi (8.116b), αhi (8.117a), βhi (8.117b),
respectively:

αxt+1
i

= (1− η)αxti
+ η

qiαhti

α2
hti

+ β2
hti

, (8.116a)

βxt+1
i

= (1− η)βxti
. (8.116b)

Similarly, the population-level state evolution for both αhti and βhti :

αht+1
i
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+ η

qiαxti

α2
xti
+ β2

xti

, (8.117a)

βht+1
i

= (1− η)βhti
, (8.117b)

where the sample size approaches infinity. The approximate state evolution
(8.118) is then established, which is significantly close to the population-level
state evolution:
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βht+1
i

=
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⎝1− η +
ηqiϕhti

α2
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⎠βhti
, (8.118b)
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αxt+1
i
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⎠αxti
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(
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(8.118c)

βxt+1
i

=
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⎝1− η +
ηqiϕxti

α2
hti

+ β2
hti

⎞

⎠βxti
, (8.118d)

where the perturbation terms are denoted as {γhti }, {γxti }, {ϕhti }, {ϕxti }, {υhti },
and {υxti }.

• Dynamics of approximate state evolution. Show that if αhi (8.111),
βhi (8.112), αxi (8.113), and βxi (8.114) obey the approximate state
evolution (8.118), it has some Tγ = O(s log(max {K,N})) such that
dist(zTγ , z♮) ≤ γ . Furthermore, the ratio αhi /βhi and αxi /βxi enjoys
exponential growth.

• Leave-one-out arguments. Identify the conditions where αhi , βhi , αxi ,
and βxi obey the approximate state evolution (8.118) with high probability,
followed by demonstrating the iterates of randomly initialized Wirtinger flow
that solve the blind demixing problem satisfy the conditions.

2. Stage II: Local geometry in the region of incoherence and contraction.
Invoke the prior theory provided in [5] to show local convergence of the random
initialized Wirtinger flow in Stage II.

8.5 The Basic Concepts on Riemannian Optimization

As a supplementary of Sect. 3.4.3, we introduce some basic concepts on Riemannian
optimization via some examples. More details can be referred to the book [1].

Embedded Submanifolds Denote N as a subset of a manifold M , which N
admits at most one differentiable structure [1, Section 3.3]. Some examples of
embedded submanifold are provided in the following.

Example 8.1 (The Stiefel Manifold) The Stiefel manifold is an embedded subman-
ifold of Rm×n. For n ≤ m, a Stiefel manifold can be denoted as

St(n,m) :=
{
X ∈ Rm×n : X⊤X = In

}
, (8.119)

which is the set of all m × n orthonormal matrices, where In denotes the n × n

identity matrix. For n = 1, the Stiefel manifold St(n,m) reduces to the unit sphere
Sm−1.
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Tangent Vectors and Tangent Spaces Denote Fx(M ) as the set of smooth real-
valued functions. A tangent vector ξx to a manifold M at a point x is a mapping
from Fx(M ) to R. For f ∈ Fx(M ), there exists a curve φ on M with φ(0) = x,

such that

ξxf = d(f (φ(t)))
dt

∣∣∣∣
t=0

. (8.120)

Based on the curve φ, it yields a straightforward identification of the tangent space
TxM with the set

{
φ′(0) : φ curve inM ,φ(0) = x

}
. (8.121)

An example of tangent space for sphere is presented in the following.

Example 8.2 (Tangent Space to a Sphere) Define a curve in the unit sphere Sn−1 as
t E→ γ (t), and there is γ0 at t = 0. Since γ (t) ∈ Sn−1 for all t, it holds that

γ⊤(t)γ (t) = 1 (8.122)

for all t. Equation (8.122) is differentiated in terms of t , yielding

γ̇⊤(t)γ (t)+ γ⊤(t)γ̇ (t) = 0. (8.123)

Thus ẋ(0) is an entry of the set

{
x ∈ Rn : γ⊤0 x = 0

}
. (8.124)

Furthermore, let x belong to the set (8.124). Then the curve

t E→ γ (t) := γ0 + tx

∥γ0 + tx∥

is on Sn−1 and it holds γ̇ (0) = x. Hence (8.124) is a subset of Tγ0S
n−1, and

Tγ S
n−1 =

{
x ∈ Rn : γ⊤x = 0

}
(8.125)

is the set of vectors orthogonal to the curve γ in Rn.

Riemannian Metric As mentioned above, the notion of a directional derivative
can be generalized by tangent vectors. To further identify which direction of act
from x yields the steepest decrease in f, a notion of length with respect to tangent
vectors is required. This can be achieved by assigning an inner product ⟨·, ·⟩x, i.e.,
a symmetric positive-definite or bilinear operator, to each tangent space TxM . The
inner product ⟨·, ·⟩x for the point x ∈ M is called the Riemannian metric, which
can be represented as gx .
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Product Manifolds The differentiable structure defined by two compact manifold
M1 and M2, M1 ×M2 is called the product of the manifolds M1 and M2. Its
manifold topology is equivalent to the product topology [1, Section 3.1.6], which
means that the geometry concepts on the product manifolds can be represented
by the set of elementwise geometry concepts on individual manifold. An example
of product manifolds in the blind demixing problem (3.41) is introduced in the
following.

Example 8.3 (Product Manifolds in the Blind Demixing Problem (3.41)) Taking
the individual manifold M as an example, a smoothly varying inner product
gX(ζX, ηX), where ζX, ηX ∈ TXM , characterizes the notion of length that applies
to each tangent space TXM . With a smoothly varying inner product gX, the
manifold M is called the Riemannian manifold, and the inner product is called
the Riemannian metric. Denote M as the Riemannian manifold endowed with
the Riemannian metric gXk , where k ∈ [s] with [s] = {1, 2, . . . , s}. The set of
matrices (X1, . . . ,Xs) where Xk ∈ M , k = 1, 2 . . . , s is denoted as M s =
M ×M × · · ·×M︸ ︷︷ ︸

s
, and is called product manifold.

Based on the Riemannian geometry concepts, the notion of length on the product
manifold can be characterized via endowing tangent space TVM s with the smoothly
varying inner product, given by

gV (ζV , ηV ) :=
∑s

k=1
gXk (ζXk

, ηXk
), (8.126)

where ζV , ηV ∈ TVM s and ζXk
, ηXk

∈ TXkM . Since M is the Riemannian
manifold endowed with the Riemannian metric gXk for ∀k ∈ [s], the product
manifoldM s is also a Riemannian manifold, endowed with the Riemannian metric
gV .

Quotient Manifolds Computations related to subspaces are generally operated via
representing the subspace by the span of corresponding matrices’ columns. For a
given subspace, to represent the subspace with a unique matrix, it is beneficial to
divide the set of matrices into classes of “equivalent” elements that serve as the
same object. This operation yields the geometry concept of quotient spaces, which is
called quotient manifolds when concerning the Riemannian manifold optimization.
We first present the general theory of quotient manifolds, then we introduce the
corresponding representations of the blind demixing problem.

Denote a manifold endowed with an equivalence relation as ∼M . Then the
equivalence class containing x can be represented by the set

[x] := {y ∈M : y ∼ x}, (8.127)

which contains all elements that are equivalent to a point x. The quotient of M by
∼ is defined as

M / ∼:= {[x] : x ∈M }, (8.128)
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which contains all equivalence classes of ∼ in M . Thus, the points of M / ∼ are
subsets of M , and the set M is called the total space of the quotient M / ∼ .

Furthermore, a natural projection that maps the elements in the manifold M to
the quotient manifold M / ∼ is defined as π : M →M / ∼. If and only if x ∼ y,
it holds that π(x) = π(y) such that [x] = π−1(π(x)).

An example of quotient manifold in the blind demixing problem (3.41) is
provided in the following.

Example 8.4 (Quotient Manifold in the Blind Demixing Problem) According to the
blind demixing problem given by (3.20):

find rank(W i ) = 1, for W 1, . . . ,W s

subject to
∥∥∥
∑s

i=1
Ai (W i )− y

∥∥∥
2
≤ ε,

this problem is a rank-constrained optimization problem. The key idea of Rieman-
nian optimization for rank-constrained problem is based on matrix factorization
[16, 23]. Specifically, the factorizationMk = wkw

H
k in problem (3.41) is established

to identify rank-one Hermitian positive semidefinite matrices [22, 23]. Nevertheless,
the factorization Mk = wkw

H
k is not unique since the transformation wk E→ akwk

with ak ∈ {ak ∈ C : aka∗k = a∗k ak = 1} makes the matrix wkw
H
k unchanged. To

address this indeterminacy, the transformation wk E→ akwk where k = 1, 2, . . . , s,
is embedded in an abstract search space, which constructs the equivalence class:

[Mk] = {akwk : aka∗k = a∗k ak = 1, ak ∈ C}. (8.129)

The product of [Mk]’s yields the equivalence class

[V ] = {[Mk]}sk=1, (8.130)

which is denoted as M s/ ∼, called the quotient space. Since the quotient manifold
M s/ ∼ is an abstract space, the matrix representations defined in the computational
space are needed to represent corresponding abstract geometric objects in the
abstract space [1], thereby implementing the optimization algorithms. Denote an
element of the quotient space M s/ ∼ as Ṽ and its matrix representation in
the computational space M s as V . Hence, there exists Ṽ = π(V ) and [V ] =
π−1(π(V )), where the mapping π : M s →M s/ ∼ is the natural projection.

Riemannian Submanifolds Denote an embedded submanifold of a Riemannian
manifoldM asM . Note that each tangent space TxM can be termed as a subspace
of TxM . Hence, the Riemannian metric g on M can be derived by a Riemannian
metric ḡ of M given by

gx(η, ζ ) = ḡx(η, ζ ), η, ζ ∈ TxM . (8.131)
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This implies that M is a Riemannian manifold. The manifold M with the
Riemannian metric gx is called a Riemannian submanifold of M . The orthogonal
complement of the tangent space TxM in TxM is called the normal space toM at
x, which is denoted by (TxM )⊥ :

(TxM )⊥ =
{
η ∈ TxM : gx(η, ζ ) = 0 for all ζ ∈ TxM

}
. (8.132)

Thus, the sum of an element of TxM and an element of (TxM )⊥ can yield an
element η ∈ TxM :

η = Pxη + P⊥x η, (8.133)

where P⊥x is the orthogonal projection onto (TxM )⊥ and Px is the orthogonal
projection onto TxM . We first present a simple example, i.e., sphere Sn−1 which is
a Riemannian submanifold of Rn. Based on the Riemannian submanifold of product
manifolds, we further introduce the decomposition of the tangent space TVM s of
the product manifold M s in the blind demixing problem.

Example 8.5 (Sphere) On the unit sphere Sn−1 which is a Riemannian submanifold
of Rn, the inner product derived from the Euclidean inner product on Rn is
represented as

⟨ξ , ζ ⟩x := ξ⊤ζ . (8.134)

The normal space is

(
TxS

n−1
)⊥

= {xθ : θ ∈ R}, (8.135)

and the projections are given by Pxξ =
(
I − xx⊤

)
ξ, P⊥x ξ = xx⊤ξ for x ∈ Sn−1.

Example 8.6 (Product Manifolds in Problem (3.41)) Considering the product man-
ifold M s endowed with the Riemannian metric (8.126), the tangent space TVM s

can be decomposed into two complementary vector spaces, given by Absil et al. [1]

TVM
s = VVM

s ⊕HVM
s , (8.136)

where⊕ is the direct sum operator. Particularly, the set of vectors which are tangent
to the set of equivalence class (8.130) is denoted as the vertical space, i.e., VVM s .
While the set of vectors which are orthogonal to the equivalence class (8.130) is
denoted as the horizontal space, i.e.,HVM s . Hence the tangent space TṼ (M

s/∼)
at the point Ṽ ∈ M s/∼ can be represented by the horizontal space HVM s at
point V ∈M s . Hence, the matrix representation of ηṼ ∈ TṼ (M

s/ ∼) [1, Section
3.5.8] can be represented by a unique element ηV ∈HVM s . Additionally, for each
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ξV , ηV ∈ TVM s , by exploiting the Riemannian metric gV (ζV , ηV ) (8.126),

gṼ (ζ Ṽ , ηṼ ) := gV (ζV , ηV ) (8.137)

defines a Rimannian metric on the quotient space M s/ ∼ [1, Section 3.6.2], where
ζ Ṽ , ηṼ ∈ TṼM

s . With the Riemannian metric (8.137), the natural projection
π : M s → M s/ ∼ is a mapping from the quotient manifold M s/ ∼ to the
computational space, which is also called Riemannian submersion M s [1, Section
3.6.2]. According to the Riemannian submersion theory, the objects on the quotient
manifold can be represented by corresponding objects in the computational space,
which facilitates to develop Riemannian optimization algorithm on the Riemannian
manifold.

8.6 Proof of Theorem 3.4

Based on the notions mentioned in Sect. 3.4.3.2, the Euclidean gradient of f (v) in
problem (3.41) with respect to wk is given by

∇wk f (v) = 2 ·
∑L

i=1

(
ciJ ki + c∗i J

H
ki

)
· wk, (8.138)

where ci =
∑s

k=1[Jk(wkw
H
k )]i − yi . According to the definition of the horizontal

space given in Table 3.4, it yields that ∇wk f (v) is in the horizontal space due to
∇wk f (v)

Hwk = wH
k ∇wk f (v). Thus, the update rule in the Riemannian gradient

descent algorithm, i.e., Algorithm 3.3, can be reformulated as

w[t+1]
k = w[t]

k −
αt

2
∥∥∥w[t]

k

∥∥∥
2

2

∇wk f (v)|w[t]
k
, (8.139)

according to the definition of the Riemannian metric gwk and the retraction Rwk in
Table 3.4. The update rule can be reformulated as

[
w[t+1]
k

w[t+1]
k

]

=
[
w[t]
k

w[t]
k

]

− αt
∥∥∥w[t]

k

∥∥∥
2

2

⎡

⎣
∂f

∂wH
k

|
w
[t]
k

∂f

∂wH
k

|
w
[t]
k

⎤

⎦ , (8.140)

according to the fact that ∇wk f (v) = 2 ∂f (v)
∂wH

k

.

The proof of Theorem 3.4 is summarized as follows.

• Lemma 8.9 characterizes the local geometry in the region of incoherence and
contraction (RIC) illustrated in Definition 8.3, where the objective function
f (v) (3.41) enjoys restricted strong convexity and smoothness near the ground
truth v♮.
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• Based on the property of the local geometry, Lemma 8.10 establishes the error
contraction, i.e., convergence analysis.

• Lemma 8.11 demonstrates that the iterates of Algorithm 3.3, including the
spectral initialization point, stay within the RIC. This is achieved by exploiting
the induction arguments.

Definition 8.3 ((φ,β, γ , v♮) − R the Region of Incoherence and Contraction)
Define vi = [xH

i hH
i ]H ∈ CN+K and v = [vH1 · · · vHs ]H ∈ Cs(N+K). For v ∈

(φ, θ, γ , v♮)−R, there exists

dist
(
vt , v♮

)
≤ φ, (8.141a)

max
1≤i≤s,1≤j≤m

∣∣∣cHij
(
x̃t
i − x

♮
i

)∣∣∣ ·
∥∥∥x♮i

∥∥∥
−1

2
≤ C2θ, (8.141b)

max
1≤i≤s,1≤j≤m

∣∣∣bHj h̃
t
i

∣∣∣ ·
∥∥∥h♮i

∥∥∥
−1

2
≤ C3γ , (8.141c)

where some constants C2, C3 > 0 and some sufficiently small constants φ, θ, γ >

0. Additionally, h̃
t
i and x̃

t
i are defined as h̃

t
i = 1

ψ t
i

ht
i and x̃

t
i = ψ t

i x
t
i for i = 1, . . . , s,

with the alignment parameter ψ t
i .

The Riemannian Hessian is denoted as Hessf (v) := diag({Hesswi f}si=1).

Lemma 8.9 ([7]) Assuming a sufficiently small constant δ > 0. If the number
of measurements satisfies m ≫ µ2s2κ2 max {N,K} log5m, then with probability
exceeding 1− O(m−10), Hessf (v) satisfies

zH [DHessf (v)+ Hessf (v)D] z ≥ 1
4κ
∥z∥22

and ∥Hessf (v)∥ ≤ 2+ s (8.142)

simultaneously for all

z =
[
zH1 · · · zHs

]H
with zi =

[ (
xi − x′i

)H (
hi − h′i

)H (
xi − x′i

)⊤ (
hi − h′i

)⊤ ]H
,

and D = diag
(
{W i}si=1

)
with

W i = diag
([
βi1IK βi2IN βi1IK βi2IN

]∗)
.

Here v is in the region (δ, 1√
s log3/2 m

, µ√
m
log2m, v♮)−R, and one has

max{
∥∥∥hi − h

♮
i

∥∥∥
2
,
∥∥∥h′i − h

♮
i

∥∥∥
2
,
∥∥∥xi − x

♮
i

∥∥∥
2
,
∥∥∥x′i − x

♮
i

∥∥∥
2
} ≤ δ/(κ

√
s),
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for i = 1, . . . , s and W i’s satisfy that for βi1,βi2 ∈ R, for i = 1, . . . , s

max
1≤i≤s

max
{∣∣∣∣βi1 −

1
κ

∣∣∣∣ ,
∣∣∣∣βi2 −

1
κ

∣∣∣∣

}
≤ δ

κ
√
s
.

Therein, C2, C3 ≥ 0 are numerical constants.

Lemma 8.10 ([7]) Assuming that the step size satisfies αt > 0 and αt ≡ α ≍ s−1,
then with probability exceeding 1− O(m−10),

dist
(
vt+1, v♮

)
≤

(
1− α

16κ

)
dist

(
vt , v♮

)
, (8.143)

provided that the number of measurements followsm≫ µ2s2κ4 max {N,K} log5m
and v is in the region (δ, 1√

s log3/2 m
, µ√

m
log2m, v♮)−R, which is denoted as Rbd.

Lemma 8.11 ([7]) Assuming the number of measurements

m≫ µ2s2κ2 max {K,N} log6m,

then the spectral initialization point v0 is in the region Rbd with probability
exceeding 1− O(m−9).

Assuming that t-th iteration vt is in the region Rbd and the number of measure-
ments satisfy

m≫ µ2s2κ2 max {K,N} log8m,

then with probability exceeding 1−O(m−9), the (t + 1)-th iteration vt+1 is also in
the regionRbd, which the step size satisfies αt > 0 and αt ≡ α ≍ s−1.

8.7 Basic Concepts in Algebraic–Geometric Theory

In this section, we will introduce some basic concepts in algebraic–geometry theory,
which contribute to the proof of Theorems 5.5 and 5.6. The content in this section
is based on the paper [20].

8.7.1 Geometric Characterization of Dimension

Denote polynomials in R[x] = R[x1, . . . , xn] as f1, . . . , fs , their common root
position VRn(f1, . . . , fs), called an algebraic variety, is defined as

VRn(f1, . . . , fs) :=
{
ζ ∈ Rn : fi(ζ ) = 0, ∀i ∈ [s]

}
. (8.144)
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Considering the dimension of VRn(f1, . . . , fs), for the case of a single equation,
i.e., s = 1, VRn(f1) is a hypersurface of Rn endowed with dimension n− 1; this is
similar to the situation where a single linear equation identifies a linear subspace of
dimension one less than the ambient dimension. There are other more complicated
cases where VRn(f1) consists of a single point or no points, which is similar to
algebra where a linear subspace has zero dimension only if it contains a single point
or the origin point. In these cases, the common root position of the polynomials in
the algebraic closure C of R is considered:

VCn(f1, . . . , fs) :=
{
ζ ∈ Cn : fi(ζ ) = 0, ∀i ∈ [s]

}
. (8.145)

The dimension of (8.145) VCn(f1, . . . , fs) ⊂ Cn can be characterized by a well-
developed theory [9, 11, 14]. The geometric characterization of dimVCn(f1, . . . , fs)

is presented by the following definition.

Definition 8.4 If Y = V (g1, . . . , gr ) for some polynomials g1, . . . , gr ∈ C[x],
Y ⊂ Cn is defined to be closed. If Y = V (g1, . . . , gr ) is not the union of two
proper closed subsets, Y is defined to be irreducible. The dimension of geometric
object VCn(f1, . . . , fs) is defined to be the largest non-negative integer d such that
there is a chain of the form

VCn(f1, . . . , fs) ⊃ Y0 " Y1 " Y2 " · · · " Yd, (8.146)

where Yi for any i ∈ {1, . . . , d} is a closed irreducible subset of VCn(f1, . . . , fs).

Definition 8.4 can be termed as a generalization of the notion of dimension in
linear algebra. For instance, considering that Y is a linear subspace of Cn, dimY
is the same as the maximal length of a descending chain of linear subspaces. The
descending chain can be derived by removing a single basis vector of Y at each
step. Please refer to Example 8.7 for details.

Example 8.7 Define a unit vector ei with the value of 1 at position i zeros and zeros
at the rest positions. Then Yi = Span(e1, . . . , en−i ), Cn admits a chain

Cn = Y0 " Y1 " Y2 " · · · " Yn−1 " Yn := {0}. (8.147)

Furthermore, the following propositions present several structural property about
algebraic varieties.

Proposition 8.2 Define Y = VCn(f1, . . . , fs) for some fi ∈ C[x]. With irre-
ducible closed sets of Cn defined in Definition 8.4, i.e., Yi , Y can be represented
as Y = Y1 ∪ · · · ∪ Yd for some positive integer d. The set Y is minimal, that is,
removing one of the Yi would yield a union that is a strictly smaller set than Y . The
Yi for i ∈ {1, . . . , d} are called the irreducible components of Y .
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Definition 8.4 along with Proposition 8.2 demonstrate that the dimension of
VCn(f1, . . . , fs) is zero if and only if the algebraic varieties VCn(f1, . . . , fs) consist
of a finite number of points. These varieties are concerned in the paper [20].

Proposition 8.3 Define Y = VCn(f1, . . . , fs). Then the dimension of Y is 0 if and
only if Y consists of a finite number of points of Cn.
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