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Introduction

C-RANs

The proliferation of “smart” mobile devices, coupled with new types of wireless appli-
cations, has led to an exponential growth in wireless and mobile data traffic. In order
to provide high-volume and diversified data services, C-RAN [1, 2] has been proposed;
it enables efficient interference management and resource allocation by shifting all the
baseband units (BBUs) to a single cloud data center, i.e., by forming a BBU pool with
powerful shared computing resources. Therefore, with efficient hardware utilization at
the BBU pool, a substantial reduction can be obtained in both the CAPEX (e.g., via
low-cost site construction) and the OPEX (e.g., via centralized cooling). Furthermore,
the powerful conventional base stations are replaced by light and low-cost remote radio
heads (RRHs), with the basic functionalities of signal transmission and reception, which
are then connected to the BBU pool by high-capacity and low-latency optical fronthaul
links. The capacity of C-RANs can thus be significantly improved through network
densification and large-scale centralized signal processing at the BBU pool. By further
pushing a substantial amount of data, storage, and computing resources (e.g., the radio
access units and end-user devices) to the edge of the network, using the principle of
mobile edge computing (i.e., fog computing) [3], heterogeneous C-RANs [4], as well
as Fog-RANs and MENG-RANSs [5] can be formed. These evolved architectures will
further improve user experience by offering on-demand and personalized services and
location-aware and content-aware applications. In this chapter we investigate the com-
putation aspects of this new network paradigm, and in particular focus on the large-scale
convex optimization for signal processing and resource allocation in C-RANs.

Large-Scale Convex Optimization: Challenges and Previous Work

Convex optimization serves as an indispensable tool for resource allocation and sig-
nal processing in wireless networks [6-9]. For instance, coordinated beamforming [10]
often yields a convex optimization formulation, i.e., second-order cone programming
(SOCP) [11]. The network max—min fairness-rate optimization [12] can be solved
through the bisection method [11], in polynomial time; in this method a sequence
of convex subproblems needs to be solved. Furthermore, convex relaxation provides
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a principled way to develop polynomial-time algorithms for non-convex or NP-hard
problems, e.g., group-sparsity penalty relaxation for NP-hard mixed-integer non-linear
programming problems [2], semidefinite relaxation [7] for NP-hard robust beamforming
[13, 14] and multicast beamforming [15], and a sequential convex approximation to the
highly intractable stochastic coordinated beamforming problem [16].

Nevertheless, in dense C-RANSs [5], which may possibly need to handle hundreds of
RRHs simultaneously, resource allocation and signal processing problems will be dra-
matically scaled up. The underlying optimization problems will have a high dimension
and/or a large number of constraints, e.g., per-RRH transmit power constraints and per-
MU (mobile user) QoS constraints. For instance, for a C-RAN with 100 single-antenna
RRHs and 100 single-antenna MUs, the dimension of the aggregative coordinated beam-
forming vector of the optimization variables will be 10*. Most advanced off-the-shelf
solvers (e.g., SeDuMi [17], SDPT3 [18], and MOSEK [19]) are based on the interior-
point method. However, the computational burden of such a second-order method
makes it inapplicable for large-scale problems. For instance, solving convex quadratic
programs has cubic complexity [20]. Furthermore, to use these solvers the original prob-
lems need to be transformed to the standard forms supported by the solvers. Although
parser/solver modeling frameworks such as CVX [21] and YALMIP [22] can auto-
matically transform original problem instances into standard forms, they may require
substantial time to perform such a transformation [23], especially for problems with a
large number of constraints [24].

One may also develop custom algorithms to enable efficient computation by exploit-
ing the structures of specific problems. For instance, the uplink—downlink duality
[10] can be exploited to extract the structures of optimal beamformers [25] and
enable efficient algorithms. However, such an approach still has cubic complexity
since it performs matrix inversion at each iteration [26]. First-order methods, e.g.,
the alternating-direction method of multipliers (ADMM) algorithm [27], have recently
attracted attention for their distributed and parallelizable implementation as well as for
their capability of scaling to large problem sizes. However, most existing ADMM-based
algorithms cannot provide the certificates of infeasibility [13, 26, 28] which are needed
for such problems as max—min rate maximization [24] and group sparse beamforming
[2]. Furthermore, some of these algorithms may still fail to scale to large problem sizes,
owing to SOCP subproblems [28] or semidefinite programming (SDP) subproblems [13]
needed to be solved at each iteration.

Without efficient and scalable algorithms, previous studies of wireless coopera-
tive networks either only demonstrate performance in small-size networks, typically
with less than 10 RRHs, or resort to suboptimal algorithms, e.g., zero-forcing-based
approaches [29, 30]. Meanwhile, from the above discussion, we see that the large-scale
optimization algorithms to be developed should possess the following two features:

e they should scale well to large problem sizes with parallel computing capability;
e they should detect problem infeasibility effectively, i.e., provide certificates of
infeasibility.
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Figure 7.1 The proposed two-stage approach for large-scale convex optimization. The optimal
solution or the certificate of infeasibility can be extracted from x* by the ADMM solver.

A Two-Stage Approach for Large-Scale Convex Optimization

To address the above two requirements in a unified way, in this chapter we shall present
a two-stage approach, as shown in Fig. 7.1. The proposed framework [31] is capable
of solving large-scale convex optimization problems in parallel, as well as providing
certificates of infeasibility. Specifically, the original problem & is first transformed into
a standard cone programming form &.ope [20] based on the Smith-form reformulation
[32], which involves introducing a new variable for each subexpression in the disciplined
convex programming form [33] of the original problem. This will eventually transform
the coupled constraints in the original problem into a structured constraint consisting
only of two convex sets: a subspace, and a convex set formed by a Cartesian product
of a finite number of standard convex cones. Such a structure helps to develop efficient
parallelizable algorithms and enable infeasibility detection capability simultaneously via
solving the homogeneous self-dual embedding [34] of the primal—dual pair of standard
form by the ADMM algorithm.

As the mapping between the standard cone program and the original problem depends
only on the network size (i.e., the numbers of RRHs, MUs and antennas at each
RRH), we can pre-generate and store the structures of the standard forms with differ-
ent candidate network sizes. Then for each problem instance, i.e., given the channel
coefficients, QoS requirements, and maximum RRH transmit powers, we only need to
copy the original problem parameters to the standard cone-programming data. Thus, the
transformation procedure will be very efficient and can avoid repeatedly parsing and
re-generating problems [21, 22]. This technique is called matrix stuffing [23, 24] and is
essential for the proposed framework to scale well to large problem sizes. It may also
help rapid prototyping and testing in practical equipment development.

Outline

In Section 7.2 we demonstrate that typical signal processing and resource allocation
problems in C-RANSs can be solved essentially through addressing one or a sequence
of large-scale convex optimization or convex feasibility problems. In Section 7.3, a sys-
tematic cone-programming form-transformation procedure is developed. The operator
splitting method with detailed discussions is presented in Section 7.4. Numerical results
will be reported in Section 7.5. We give a summary and conclusions in Section 7.6.
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Large-Scale Convex Optimization in Dense C-RANs

Consider the following parametric family &2 of convex optimization problems:
& :minimize fy(X; a)
X

S. t. fixa) <gixsa), i=1,...,m, 7.1)
uix; o) =vixsee), i=1,...,p, (7.2)

where x € R” is the vector of optimization variables and & € A is the problem parame-
ter vector; A denotes the parameter space. For each fixed & € A, the problem instance
P(a) is convex if the functions f; and g; are convex and concave, respectively, and
the functions u; and v; are affine. The reader should refer to [11] for an introduction
to the basics of convex optimization. In this section we will first illustrate that typical
optimization problems in C-RANs can be formulated in this parametric form of convex
programming, and then the proposed framework for large-scale convex optimization
will be introduced.

Convex Optimization Examples in C-RANs

To illustrate the wide-ranging applications of convex optimization in C-RANs, we
mainly focus on the generic scenario for downlink transmission with full cooperation
among the RRHs. The proposed methodology in this chapter can be easily applied to
uplink transmission and more general cooperation scenarios in heterogeneous C-RAN’s
[4, 8], Fog-RANs, and MENG-RANSs [5] as we need only exploit the convexity of the
resulting optimization problems.

Signal Model

Consider a downlink fully cooperative C-RAN with L multi-antenna RRHs and K
single-antenna MUs, where the /th RRH is equipped with N; antennas. The wireless
propagation channel from the /th RRH to the kth MU is denoted as hy; € CM, Vk, . The
received signal y; € C at MU & is given by

L L
Vo= hivisi+ ) Y Wivisi+m, VK, (7.3)
=1 i#k I=1

where sy is the encoded information symbol for MU k with E{|s¢|?} = 1, vix € CM is
the transmit beamforming vector from the /th RRH to the kth MU, and n; ~ CN(0, akz)
is the additive Gaussian noise at MU k.

We assume that the s; and n are mutually independent and that all the users apply
single-user detection. Therefore, the signal-to-interference-plus-noise ratio (SINR) of
MU £ is given by

H
Ihf v, |?
H 9’
Y iee M Vil? + of

SINRk(V1, . ..,Vk) = VK, (7.4)
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where hy = [h,{1 - -h,{L]T e CN, withN = Zlel Ny, is the channel vector consisting of
the channel coefficients from all the RRHs to the kth MU and v £ [V{ngk - 'VZk]T €
CV is the beamforming vector consisting of the beamforming coefficients from all the
RRHs to MU k.

Coordinated beamforming is an efficient way to design energy-efficient and spectrally
efficient systems [10] in which the beamforming vectors vy are designed to minimize
the network power consumption and maximize the network utility, respectively. Three
representative examples are given below to illustrate the power of convex optimization
to design efficient transmit strategies to optimize the system performance of C-RANS,
for which coordinated beamforming is the basic building block.

Example 7.1 Coordinated beamforming via second-order cone programming Con-
sider the following coordinated beamforming problem to, that of minimizing the
total transmit power while satisfying the QoS requirements and the transmit power
constraints for RRHs [14]:

L K
minimize Y Y [lvill3
Viseens VK
=1 k=1

|llk bk| > k—l s ( 5 )
H 2 2 k> ,...,I{ ;, a

K
dlvkl3 <P 1=1.....L (7.5b)
k=1

where y; > 0 is the target SINR for MU k and P; > 0 is the maximum transmit power
of the /th RRH.

Since the phases of v, will not change the objective function or constraints of problem
(7.5) [35], the SINR constraints (7.5a) are equivalent to the following second-order cone
constraints:

1
\/Zi;ﬁk Ihvil? +of < ﬁ%(hka), k=1,....K, (7.6)

where R(-) denotes the real part. Therefore, problem (7.5) can be reformulated as the
following (SOCP) problem:

L K
minimize Zvalkn%
Vi,...,VK

""" I=1 k=1

1
. t. \/Zl_#k Ihfvi|2 + o < ﬁ%(thVk), k=1,...,K, (7.7a)

K 2
Yo vkl3 =Py I=1,...L (7.7b)



154

9781107142664c07 CUP/QUEK-L1 September 3,2016 13:33 Page-154

Large-Scale Convex Optimization for C-RANs

Example 7.2 Network power minimization via group sparse beamforming To
design a green C-RAN the network power consumption, including the power consump-
tion of each RRH and of each associated fronthaul link, needs to be minimized while
satisfying the QoS requirements for all the MUs. Mathematically, we need to solve the
following network-power minimization problem [2]:

L K L

- I

minimize > —lIvill; + ) P{(Supp(v) N\ Vi # )
""" I=1 k=1 I=1

s. t. (7.7a), (1.7b), (7.8)

where 1; > 0 is the drain-inefficiency coefficient of the radio frequency power amplifier
and P; > 0 is the relative fronthaul-link power consumption [2], representing the static
power saving when both the RRH and the corresponding fronthaul link are switched off.
Here, I(Supp(v)NV; # 0) is an indicator function that takes the value 0 if Supp(v)NV; =
@ (i.e., all the beamforming coefficients at the /th RRH are zeros, indicating that the
corresponding RRH is switched off) and 1 otherwise, where V; is defined as V; :=
{K ZIL;I N+ 1,....K Zlel N;}; Supp(v) is the support of the beamforming vector
v =[] € CKV with v; = [v]},....v]" € CVK as the aggregated beamforming
vector at RRH /. Problem (7.8) is a mixed combinatorial optimization problem and is
NP-hard in general.

Observing that all the beamforming coefficients in the vector v; will be set to zero
simultaneously when the /th RRH is switched off, the aggregate beamforming vector v
has the group-sparsity structure if multiple RRHs need to be switched off to reduce the
network power consumption [36]. A three-stage group sparse beamforming algorithm
with polynomial time complexity was thus proposed to minimize the network power
consumption by adaptively selecting active RRHs via controlling the group-sparsity
structure of the aggregative beamforming vector v. Specifically, in the first stage, the
group-sparsity structure of the aggregated beamformer v is induced by minimizing the
following weighted mixed £ /¢>-norm of v:

L
Zsocp : minimize ; wllvill2
s. t. (7.7a), (7.7b), (7.9)

where w; > 0 is the corresponding weight for the beamformer coefficient group v;. On
the basis of the (approximate) group sparse beamformer v*, which is the optimal solu-
tion to the convex SOCP problem socp, (7.9), in the second stage an RRH selection
procedure is performed to switch off some RRHs so as to minimize the network power
consumption. In this procedure we need to check whether the remaining RRHs can sup-
port the QoS requirements for all the MUs, i.e., to check the feasibility of problem (7.9)
given the active RRHs. In the third stage, we need to further minimize the total transmit
power with those RRHs determined as active while satisfying the QoS requirements for
all the MUs, which is amounts to solving a coordinated beamforming problem, as in
Example 7.1. More details on the group sparse beamforming algorithm can be found
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in [2]. Extensions on semidefinite programming for network power minimization with
imperfect channel state information in multicast C-RANs can be found in [14].

Example 7.3 Stochastic coordinated beamforming via sequential convex approx-
imations In practice, inevitably there will be uncertainty in the available channel
state information (CSI). Such uncertainty may originate from various sources, e.g.,
training-based channel estimation [37], limited feedback [38], delays [39, 40], hard-
ware deficiencies [41], or partial CSI acquisition [16]. The uncertainty in the available
CSI brings a new technical challenge for system design. To guarantee performance, we
impose a probabilistic QoS system constraint by assuming that the distribution informa-
tion of the channel knowledge is available. Considering a unicast transmission scenario,
the stochastic coordinated beamforming problem is formulated to minimize the total
transmit power while satisfying a probabilistic QoS system constraint, as follows [16]:

L K
minimize ZZHVlkHz
v VK

b =1 k=1

|hf v |2
=% k=1,.. Kt >1—¢, (7.10)

S. t. Pr
>k MVil? + o

where the distribution information for the hy is known and O < € < 1 indicates that the
QoS requirements should be guaranteed for all the MUs simultaneously with probability
at least 1 — €. However, problem (7.10) is a joint chance-constrained program [42] and
is known to be intractable in general.

In [16] a stochastic difference-of-convex (DC) programming algorithm was pro-
posed for finding a KKT point by solving the following stochastic convex programming
problems iteratively:

L K
minimize Z Z v ||?
V1,...,VK k>0 =1 k=1

subject to u(v, k) — u(v¥!,0) — 2(Vyu(v¥1,0),v — vy < ke, (7.11)

where u(v,v) = E {max1§k§K+1 Si(v, h, v)} is a convex function with si(v,h,v) =
Y Vihiv 4+ o2 + Y v Vv k = 1, K, and sgqi(v.hv) =
Zlel yflvf’ h;hi’v; are convex quadratic functions in v. Here, the complex gradient
of u(v, 0) with respect to v* (the complex conjugate of v) is given by

Vyu(v,0) = E{Vys53+(v, h, 0)}, (7.12)

where k* = arg1 inalg lsk(v, h, 0), and Vyssi(v, h,0) = [vrili<i<x (1 < k < K), with
<k<K+

vi; € CN given by

H .71 H . D) <
vw:{(hkhk—kyl h,hl)vl ifi#k1<k<K, a1

0, otherwise,
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and Vyssgy1(v,h, k) = [vgi1,ili<i<k With vy ; = yi_lhihfiv,-,\?’i. Furthermore, the
gradient of u(v, 0) with respect to « is zero, as k = 0 is a constant in the function u(v, 0).

To solve the stochastic convex programming problem (7.11) efficiently at each itera-
tion, the sample-average approximation method is further adopted; this involves solving
the following convex quadratically constrained quadratic program (QCQP):

L K
e 2
Pqcqe : minimize ; ; vkl
1 M
5. t. T > s — (W9, 0) = 2(Vyeu(v?, 0), v — V) < ke,
m=1
sk(v, hm, K) <Xm, Xu>0, k>0, Vkm (7.14)

Here, x = [xpli<m<m € RM is the collection of slack variables with M independent
realizations of the random vector h € CNK.

More examples on applying convex optimization for resource allocation and signal
processing in wireless cooperative networks can be found in [8, 9, 31]. In summary, the
above examples illustrate that the new architecture of C-RANs brings up new design
challenges, while convex optimization can serve as a powerful tool to formulate and
solve these problems. Meanwhile, as the problem sizes scale up in C-RANS, it becomes
critical to solve the resulting convex optimization problems efficiently.

A Unified Framework for Large-Scale Convex Optimization

As presented previously, a sequence of convex optimization problems & needs to be
solved for typical signal processing and resource allocation problems in C-RANSs. In
dense C-RANs the BBU pool can support hundreds of RRHs for simultaneous trans-
mission and reception [1]. Therefore, all the resulting convex optimization problems
& are shifted into a new domain with a high problem dimension and a large num-
ber of constraints. Although the convex programs & can be solved in polynomial time
using the interior-point method, which is implemented in most advanced off-the-shelf
solvers (e.g., public software packages like SeDuMi [17] and SDPT3 [18] and commer-
cial software packages like MOSEK [19]), the computational cost of such second-order
methods will be prohibitive for large-scale problems. However, most custom algorithms,
e.g., the uplink—downlink approach [10] and the ADMM-based algorithms [13, 26, 28],
fail either to scale well to large problem sizes or to detect infeasibility effectively.

To overcome the limitations of the scalability of state-of-art solvers and the capability
of infeasibility detection of custom algorithms, in this chapter we propose a two-stage
large-scale optimization framework as shown in Fig. 7.1. Specifically, in the first stage
the original problem will be transformed into a standard cone programming, thereby
providing the capability of infeasibility detection and parallel computing. This will
be presented in Section 7.3. In the second stage, the first-order alternating-direction
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method of multipliers (ADMM) algorithm [27], i.e., the operator splitting method, will
be adopted to solve the large-scale homogeneous self-dual embedding (HSD) system.
This will be presented in Section 7.4.

Matrix Stuffing for Fast Cone-Programming Transformation

Consider the following parametric family &2 of primal conic optimization problems:

Peone - minimize ¢’ v
V.1

S. t. Av+pu=h, (7.15a)
(v,p) e R* x K, (7.15b)

where v € R"” and u € R™ (with n < m) are the optimization variables, A € R™*",
beR" ceR" and K =K x---x K, € R"is a Cartesian product of g closed convex
cones. Here, each /C; has dimension m; such that Z?:l m; =m.Let B = {A,b,c} € D
be the problem data with D as the data space.

Although K; is allowed to be any closed convex cone, we are primarily interested in
the following symmetric cones:

e the nonnegative reals, Ry = {x € R|x > 0};
e asecond-order cone, Q% = {(y,x) € R x R 1||x|| < y};
e a positive semidefinite cone, §', = {X € R X = X7 X > 0}.

In particular, a problem instance Pcone(B) is known as a linear program (LP), SOCP, or
SDP if all the cones K; are restricted to R, o4, or S, respectively. Therefore, almost
all the original convex optimization problem family %7 can be equivalently transformed
into the standard conic optimization problem family &2 on the basis of the princi-
ple of disciplined convex programming [33]. This equivalence means that the optimal
solution or the certificate of infeasibility of the original problem instance &(«) can
be extracted from the solution to the corresponding equivalent cone-program instance
P cone(ﬂ ).

To develop a generic large-scale convex optimization framework, instead of exploit-
ing the special structures in the original specific problems &7, we propose to work with
the transformed equivalent standard conic optimization problems &¢one. This approach
bears the following advantages.

1. The convex programs & can be equivalently transformed into the standard cone
programs Pcope. This will be presented in Section 7.3.1.

2. The homogeneous self-dual embedding of the primal—dual pair of the standard cone
program cone can be induced, thereby providing certificates of infeasibility. This
will be presented in Section 7.4.1.

3. The feasible set in Pqpe is formed by two sets: a subspace constraint (7.15a) and a
convex cone K, which is formed by the Cartesian product of smaller convex cones.
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This salient feature will be exploited to enable parallel and scalable computing in
Section 7.4.2.

Standard Conic Optimization Transformation

Our goal is to map the parameters « in the original convex optimization problem family
& to the problem data B in the equivalent standard conic optimization problem family
Pone With the description of the convex cone K. The general idea of such a transfor-
mation is to rewrite the original problem family &7 in a Smith form by introducing a
new variable for each subexpression in the disciplined convex programming form [33]
of the problem family &2. In the following we will take the coordinated beamforming
problem as an example to illustrate such a transformation.

Example 7.4 Standard cone program for coordinated beamforming Consider the
coordinated beamforming problem (7.7) with the objective function as ||v|2, which can
be rewritten as the following disciplined convex programming form [33]:

minimize ||v|»
s. . DVl <P, 1=1,...,L, (7.16a)
ICkv + gilla < Barfv, k=1,....K, (7.16b)

where v = T+ /v, D = blkdiag(D},...,DK} e RVKXNK with DF =

[ONzxzﬁ;iM Y ONIxZiL=I+]Ni:| e RN g = [0 o]0 e REF! r
T ~
Log_l)N, B 0 y| € BY and G = [ 0T e REHDOK win

Ci = blkdiag{hy, ..., h} € RVEXK,

Smith form reformulation To arrive at the standard cone program Py, We rewrite
problem (7.16) in the following Smith form [32] by introducing a new variable for each
subexpression in (7.16):

minimize X
S. t. |x1]| = x0, X1 =1,
Gi1(D, Gak), VK, 1, (7.17)

where G (/) is the Smith-form reformulation for the transmit power constraint for RRH
[ (7.16a), given as follows:

(y(l),yll) e QKNH—I
Gyl =P eR, (7.18)

y, =Dy e REM

s
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and G,(k) is the Smith-form reformulation for the QoS constraint for MU k (7.16b),
given as follows:

(15, t5) € KT,
l‘é = ,Bkl',{V eR,
Go(k): { tF =4 + t& e REHL, (7.19)
t5 = Crv e REFL,
té = 8 S RK+I.

Nevertheless, the Smith form reformulation (7.17) is not convex owing to the non-
convex constraint ||X;|| = xg. We thus relax this non-convex constraint to ||x{|| < xo,
yielding the following relaxed Smith form:

minimize X
s. L. Go, 91D, Ga(k), k.1, (7.20)

where

NK+1
Go : {(xo’xl) €@ (7.21)

x; = v € RVK,

It can be easily proved that the constraint ||X1|| < x¢ has to be active at the optimal
solution, otherwise we could always scale down x¢ in such a way that the cost function
is further minimized while still satisfying the constraints. Therefore, we conclude that
the relaxed Smith form (7.20) is equivalent to the original problem (7.16).

Conic reformulation Now the relaxed Smith-form reformulation (7.20) is readily
reformulated as the standard cone-programming form opne. Specifically, define opti-
mization variables [xp; v] with the same type of equations as in Gp; then Gy can be
rewritten as

M(xo; v] + pp = m, (7.22)
where the slack variables u( belong to the following convex set,
po € QVETL, (7.23)

and M € RVE+HDXVEK+D and m e RVE+ are given as follows:

—1 0
M= =|— 7.24
] =l (.24

respectively. Now define optimization variables [y(l); v] with the same type of equations
as in G1(I); then G (l) can be rewritten as

Pyivl+pl =p', (7.25)

where the slack variables ull € RENI+2 belongs to the following convex set formed by
the Cartesian product of two convex sets,

i€ Q' x NIt (7.26)
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and P! € RENAHDXNK+D and pl e RENH2 are given as follows:

., pl=| 0 |, (7.27)

respectively. Next, define optimization variables [£X; v] with the same type of equations
as in G (k); then G»(k) can be rewritten as

Q& vl + uk = ¢, (7.28)

where the slack variables ﬂlﬁ € RX+3 belong to the following convex set formed by the
Cartesian product of two convex sets,

ph e Q' x O+, (7.29)

and Qf € REK+IXWK+D and ¢k € RK*3 are given as follows:

, =101, (7.30)

respectively.
Therefore, we arrive at the standard form & qpe by writing the optimization variables
v € R" as follows:

v =[x03¥0s - 5t tKovl, (7.31)

and ¢ = [1;0,_1]. The structure of the standard cone-programming P, is character-
ized by the following data:

n=1+L+ K+ NK, (7.32)
L
m=L+K)+NK+1)+ Z(KN[ + D+K(K + 2), (7.33)
=1
K= Ql N Ql XQNK+1 % QKN]+1 N QKNL+1
—
L+ K times L times
x QK2 x ... x QK+ (7.34)

K times
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where /C is the Cartesian product of 2(L+ K)+ 1 second-order 1s, and A and b are given
as follows:

_ | _ - VP
1 JPL
1 —/311‘{w 0
1 |—Bxrk 0
—1 0
—Ink Onk
—1 0
—D Okw, (7.35)
-1 0
-Dy. Oxn,
—1 0
-C g
-1 0
L —Ck | L 8k _
Extension to the complex case For hy € CA V; € CV, we have
T
R(hy) —J(hye) R(vi)
hily, — [~ . , 7.36
V= s Ry | L3 (7.30)

—_— ) — —

hy, Vi

where h; € R?V*2 and ¥; € R?V. Therefore, the complex-field problem can be changed
into a real-field problem by the transformations hy = hy and v; = v;.

Matrix Stuffing for Fast Transformation

Inspired by the recent work [23] on fast-optimization code deployment for embedding a
second-order cone program, we propose to use the matrix stuffing technique [23, 24] to
transform the original problem instance &7 (a) into the standard cone-program instance
Pone(B) quickly. Specifically, for any given network size we first generate and store
the structure that maps the original problem family & to the standard conic optimiza-
tion problem family &.qne. Thus, the pre-stored standard-form structure includes the
problem dimensions (i.e., m and n), the description of V (i.e., the array of the cone sizes
[m1,ma, ..., mgy]), and the symbolic problem parameters B8 = {A, b, ¢}. This procedure
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can be done offline. Furthermore, to reduce the storage and memory overhead we store
the problem data B in a sparse form [43] by storing only the non-zero entries.

Using the pre-stored structure, for a given problem instance &?(a) we need only copy
its parameters & to the corresponding problem data f in the standard conic-optimization
problem family Pcone. As the procedure for transformation needs only to copy memory,
it thus is suitable for fast transformation and can avoid repeated parsing and generating
as in parser/solver modeling frameworks like CVX [21] and YALMIP [22].

Example 7.5 Matrix stuffing for the coordinated beamforming problem For the
convex coordinated beamforming problem (7.16), to arrive at the standard cone program
form Peone(B), we need only copy the parameters of the transmit power constraints P;
to the data of the standard form, i.e., for the /P; in b, copy the parameters of the SINR
thresholds y to the data of the standard form, i.e., the i in A, and copy the parameters
of the channel realizations hy to the data of the standard form, i.e., the r; and Cj in A.
As we need to copy the memory only for the transformation, this procedure can be very
efficient compared with state-of-the-art numerical-based modeling frameworks such as
CVX.

Practical Implementation Issues

We have presented a systematic way to equivalently transform the original problems &
to standard conic optimization problems Z.one. The resultant structure that maps the
original problem to the standard form can be stored and reused for fast transforming via
matrix stuffing. This can significantly reduce the modeling overhead compared with the
parser/solver modeling frameworks such as CVX. However, it requires tedious manual
work to find the mapping, and it may not be easy to verify its correctness. Chu et al.
[23] made an attempt that was intended to automatically generate the code for matrix
stuffing. However, so far the corresponding software package QCML [23] is far from
complete and may not be suitable for our applications. Extending numerically based
transformation modeling frameworks like CVX to symbolically based transformation
modeling frameworks like QCML is non-trivial and requires tremendous mathematical
and technical effort.

Operator Splitting for Large-Scale Homogeneous Self-Dual Embedding

Although the standard cone program Pcope itself is suitable for parallel computing via
the operator splitting method [44], directly working on this problem may fail to provide
certificates of infeasibility. To address this limitation, on the basis of the recent work
by O’Donoghue et al. [45] we propose to solve the homogeneous self-dual embedding
[34] of the primal-dual pair of the cone program Z.qne. The resultant homogeneous
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self-dual embedding is further solved via the operator splitting method, also known as
the ADMM algorithm [27].

Homogeneous Self-Dual Embedding of Cone Programming

The basic idea of homogeneous self-dual embedding is to embed the primal and dual
problems of the cone program Pcqye into a single feasibility problem (i.e., finding a
feasible point of the intersection of a subspace and a convex set) such that either the
optimal solution or the certificate of infeasibility of the original cone program cone
can be extracted from the solution of the embedded problem.

The dual problem of Py is given by [45]

Deone : Maximize —an
A
s. t. —ATn—i-X:c,
(A, ) € {0} x K*, (7.37)

where L € R" and n € R™ are the dual variables and * is the dual cone of the convex
cone K. Define the optimal values of the primal program ... and dual program Zgone
as p* and d*, respectively. Let p* = +o00 and p* = —oo indicate primal infeasibility
and unboundedness, respectively. Similarly, let * = —oo and d* = +o00 indicate dual
infeasibility and unboundedness, respectively. We assume strong duality for the convex
cone program Pgope, i.€., p* = d*, including the cases when they are infinite. This is a
standard assumption made when practically designing solvers for conic programs, e.g.,
itis assumed in [17-19, 34, 45]. Besides this, we do not make any regularity assumption
on the feasibility and boundedness assumptions on the primal and dual problems.

Certificates of Infeasibility

Given the cone program Z.one, @ main task is to detect feasibility. However, most exist-
ing custom algorithms assume that the original problem &2 is feasible [10] or provide
heuristic ways to handle infeasibility [26]. Nevertheless, the only way to detect infeasi-
bility effectively is to provide a certificate or proof of infeasibility, as presented in the
following proposition.

PROPOSITION 7.1 (Certificates of infeasibility) The following system,
Av+pu=>b, pek, (7.38)
is infeasible if and only if the following system is feasible
ATp=0, pek*, by<o. (7.39)

Therefore, any dual variable 5 satisfying the system (7.39) provides a certificate or proof
that the primal program Zone (equivalently, the original problem &) is infeasible.
Similarly, any primal variable v satisfying the system

—Avek, cv<o, (7.40)

is a certificate of the infeasibility of the dual program Zepe.-
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Proof This result follows directly from the theorem of strong alternatives [11, Section
5.8.2]. O

Optimality Conditions
If the transformed standard cone program .. is feasible then (v*, u*, A*, n*) are opti-
mal if and only if they satisfy the following Karush—Kuhn-Tucker (KKT) conditions:

Av' +pu* —b =0, (7.41)
AT =\ +ce=0, (7.42)

") 't =0, (7.43)
W*, AN e R x K x {0} x K*. (7.44)

In particular, the complementary slackness condition (7.43) can be rewritten as
v +biyr =0, (7.45)

which explicitly forces the duality gap to be zero.

Homogeneous Self-Dual Embedding

We can first detect feasibility by Proposition 7.1 and then solve the KKT system if
the problem is feasible and bounded. However, the disadvantage of such a two-phase
method is that two related problems (i.e., checking feasibility and solving KKT con-
ditions) need to be solved sequentially [34]. To avoid such inefficiency, we propose to
solve the following homogeneous self-dual embedding [34]:

Av+u—bt =0, (7.46)
ATp—A+4cr =0, (7.47)
cv+blp+x =0, (7.48)
W, 1,1, 7,6) € R" x K x {0}" x £* x Ry x Ry, (7.49)

which embeds all the information on infeasibility and optimality into a single system by
introducing two new nonnegative variables t and «, which encode different outcomes.
Thus the homogeneous self-dual embedding can be rewritten in the following compact
form:

Fusp :find  (X,y)
s.t. y=Qx,
xel, yecCr (7.50)

where

A 0 AT ¢ v
pl=|-A 0 bl||g]. (7.51)
K ' —pTo ||

T S— e N—

Q X
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In (7.51), x € R+l y ¢ R+l Q g RUmHn+DXxntntl) 0 — R 5 [C* x R, and
C* = {0}" x KL x R4. This system has a trivial solution with all variables as zeros.

The homogeneous self-dual embedding problem Zgsp is thus a feasibility problem
finding a non-zero solution in the intersection of a subspace and a convex cone. Let
(v, , X, 7, 7,k) be a non-zero solution of the homogeneous self-dual embedding. We
then have the following remarkable trichotomy, derived in [34]:

e Casel, 7 > 0,« =0, then

v=v/t, f=1n/t, RL=p/t (7.52)

are the primal and dual solutions to the cone program Pope.
e Case2, 7 =0, x > 0; this implies that Iy + bTrl < 0. Then
1. Ifb’y < Othenfj = g / (—bTp) is a certificate of primal infeasibility, as

ATj=0, §ev, bvj=-1 (7.53)
2. If ¢’'v < 0 then = v/(—c!$) is a certificate of dual infeasibility, as
—AveV, cv=-1. (7.54)
e Case 3, 7 = « = 0; no conclusion can be made about the cone problem ...

Therefore, from the solution to the homogeneous self-dual embedding, we can extract
either the optimal solution (based on (7.31)) or the certificate of infeasibility for the
original problem. Furthermore, as the set (7.49) is a Cartesian product of a finite number
of sets, this will enable parallelizable algorithm design. With these distinct advantages
of homogeneous self-dual embedding, in the sequel we focus on developing efficient
algorithms to solve the large-scale feasibility problem .#ysp via the operator splitting
method.

The Operator Splitting Method

Conventionally, the convex homogeneous self-dual embedding .#psp can be solved
via the interior-point method, e.g. [17-19, 34]. However, the computational cost of
such a second-order method can still be prohibitive for large-scale problems. Instead,
O’Donoghue et al. [45] developed a first-order optimization algorithm based on the
operator splitting method, i.e., the ADMM algorithm [27], to solve a large-scale homo-
geneous self-dual embedding. The key observation is that the convex cone constraint
in psp is the Cartesian product of smaller standard convex cones (i.e., second-
order cones, semidefinite cones, and nonnegative reals), which enables parallelizable
computing.

Specifically, the homogeneous self-dual embedding problem .%#ysp can be rewritten
as

minimize Icycx(X,y) + IQx=y(X,¥), (7.55)
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where Ig is the indicator function of the set S, i.e., Is(z) is zero for z € S and 400
otherwise. By replicating the variables x and y, problem (7.55) can be transformed into
the following consensus form [27, Section 7.1]:

ZapMMm :minimize ey (X, ¥) + Igz=y(X. ¥)
s. t. x,y) = (X, Y), (7.56)

which is readily solved by the operator splitting method.

Applying the ADMM algorithm [27, Section 3.1] to the problem &apmm and elim-
inating the dual variables by exploiting the self-dual property of the problem Zusp
(refer to [45, Section 3] on how to simplify the ADMM algorithm), the final algorithm
is obtained as follows:

= @4 Q) + yl),
OSapmm : { xH1 = & — yli), (1.57)
y[i+1] - y[i] — gl X+,

where IT¢(x) denotes the Euclidean projection of x onto the set C. This algorithm has
an O(1/k) convergence rate [46] with k as the iteration counter (i.e., e-accuracy can be
achieved in O(1/¢) iterations) and will not converge to zero if a non-zero solution exists
[45, Section 3.4]. Empirically, this algorithm can converge to modest accuracy within a
reasonable amount of time. As the last step is computationally trivial, in the sequel we
will focus on how to solve the first two steps efficiently.

Subspace Projection Algorithms

The first step in the algorithm OSapmm is a subspace projection. After simplifica-
tion [45, Section 4], we essentially need to solve the following linear equation at each

iteration, i.e.,
I —AT v pld
A=) 050

— ~——
S X b
for the given v[!l and y!7 at iteration i, where S € R¥*? with d = m + n is a symmetric
quasidefinite matrix [47]. Several approaches will be presented to solve the large-scale
linear system (7.58) efficiently, i.e., so as to trade off the solving time and accuracy.

Factorization Caching Approach

To enable quicker inversions and reduce memory overhead via exploiting the sparsity of
the matrix S, the method of sparse permuted LDLT factorization [43] can be adopted.
Specifically, such a factor-solve method can be carried out by first computing the sparse
permuted LDL factorization as follows:

S = PLDL7P7, (7.59)

where L is a lower-triangular matrix, D is a diagonal matrix [44], and P with pl=p7
is a permutation matrix to fill in the factorization [43], i.e., the non-zero entries in L.
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Such a factorization exists for any permutation P, as the matrix S is symmetric quasidef-
inite [47, Theorem 2.1]. Computing the factorization costs much less than O(1/ 3d%)
flops, while the exact value depends on d and the sparsity pattern of S in a complicated
way. Note that this factorization needs to be computed only once, in the first iteration,
and can be cached for reusing in the sequent iterations for subspace projections. This is
called the factorization caching technique [45].

Given the cached factorization (7.59), solving subsequent projections x = S~ !'b
(7.58) can be carried out by solving the following much easier equations,

Px; =b, Lx, =x;, Dx3=x, LTX4 = X3, P'x = X4, (7.60)

which cost respectively zero flops, O(sd) flops by forward substitution with s as the
number of non-zero entries in L, O(d) flops, O(sd) flops by backward substitution, and
zero flops, respectively [11, Appendix C].

Approximate Approaches
To scale the linear system (7.58) to large problem sizes for, approximate algorithms can

be adopted to trade off the accuracy of the solution and the solving time. We first rewrite
(7.58) as follows:

v =1+ ATA) Tl — ATyl (7.61)
7 =7 + Av. (7.62)

The conjugate gradient method [48] is then applied to find an approximation to the above
linear system. Specifically, let G = I + AT A. The conjugate gradient algorithm to find
x such that Gx=b is given by [48, Section 10.2]

B =ri_iri1/ (r[_ori2), (7.63)
Pr = Ti—1 + BiPi_1, (7.64)
ar =r1i_ -1/ (PL GPy) (7.65)
Xy = Xk—1 + akPy, (7.66)
ry = rip—1 — o Gpy. (7.67)

This is used until the norm of the residual ||rg||; is sufficiently small. As the iterations
only require a matrix—vector multiplication operation, the conjugate gradient method
can be very efficient. Other approximate approaches to solving the linear system (7.61),
(7.62) can be found in [48]. The applicability of the approximate algorithms method
is based on the fact that if the subspace projection error is bounded by a summable
sequence then the ADMM algorithm OS apmm Will converge [45, 49].

Cone Projection

Proximal Algorithm

The second step in the algorithm OSapmwM is to project a point @ onto the cone C.
As C is the Cartesian product of a finite number of smaller convex cones C;, we can
perform projection onto C by projecting onto C; separately and in parallel. Furthermore,
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the projection onto each convex cone can be done with closed forms. For example, for
nonnegative real C; = R, we have that [50, Section 6.3.1]

Me,(©) = 0, (7.68)

where the nonnegative-part operator (-)+ is taken elementwise. For the second-order
cone C; = {(y,x) € R x RP~1||x|| <y}, we have that [50, Section 6.3.2]

0, l@l2=<-rt,
e(w,7) =1 (w,7), w21 (7.69)
(172)A + t/ll@ll2)(@, @l2), lel2 > |t].

For the semidefinite cone C; = {X € R”"|X = XT,X > 0}, we have that [50, Section
6.3.3]

M, (R) = Y (\)4um], (7.70)
i=1

where Y, A;u;uiT is the eigenvalue decomposition of . More examples on the cone
projection (e.g., the exponential cone projection) can be found in [50].

Randomized Algorithms

Although the cone projection can be performed in parallel with closed forms, the scaling
may be prohibitive on the semidefinite cone projection via eigenvalue decomposition.
Therefore, to scale well to large problem sizes for SDP problems, it is of great interest
to develop efficient algorithms to solve approximately the semidefinite cone projec-
tion problem with rigorous performance and convergence guarantees for the resulting
ADMM algorithm OS Apmm -

Randomized sketching provides powerful randomized and sampling techniques for
large-scale matrices by compressing them into much smaller matrices, thereby saving
solving time and memory by reducing the problem dimensions. For semidefinite cone
projection, to project a symmetric matrix A € R"*" onto the positive semidefinite cone,
we need to first perform its eigenvalue expansion and then drop the terms associated with
negative eigenvalues. The randomized algorithms for the eigenvalue decomposition of
the symmetric matrix A € R"*" generally consist of the following simple steps [51]:

1. generate the orthonormal matrix Q € R™*" (m < n) such that |[A — QQTA| < ¢
with € as the computational tolerance;

2. form the smaller matrix B = QAQ”;

compute an eigenvalue decomposition B = VAVT;

4. form the orthonormal matrix U = QV such that A ~ UAU”.

by

For step 1, several efficient randomized schemes were discussed in [51, Section 4]
to minimize the sampling size and computational cost for producing the matrix Q. A
simple scheme is based on the Gaussian random matrix. In step 3, once we have B we
can adopt any of the standard deterministic factorization techniques in [51, Section 3.3]
to produce eigenvalue decomposition. More efficient algorithms for factorization can
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be found in [51, Section 5.2] by exploiting the information in Q. Typically, random-
ized algorithms only require O(n? log(k)) flops while classic algorithms require O(n>k)
flops to do eigenvalue decomposition for a rank-k matrix A. More recent progress on
randomized sketching methods for numerical linear algebra can be found in [52, 53].

Although randomized algorithms can exploit randomness as a source for speedup,
it is non-trivial to apply these algorithms directly for approximate cone projections
with performance and convergence guarantees for the resulting operator splitting algo-
rithm OSapmm. It is thus of great interest to establish theoretical guarantees for the
randomized cone projection methods in the algorithm OS ApmM-

Practical Implementation Issues

We have thus far presented the two-stage parallel computing framework for large-scale
convex optimization in dense C-RANs. Here, we will discuss implementation issues of
the proposed framework in C-RANS, thereby exploiting the computational architectures
to obtain further speed gains.

Parallel and Distributed Implementation

The operator splitting algorithm OSapmm that we have presented is compact and
parameter-free, with parallelizable computing and linear convergence. In particular,
each iteration of the algorithm is simple and easy for parallel and distributed comput-
ing. This allows the algorithm OS apymw to utilize the cloud computing environments in
C-RANs with shared computing and memory resources in a single BBU pool. Specif-
ically, the parallel algorithms can be leveraged in the subspace projection for LDLT
factorization and sparse matrix—vector multiplication [54]. The cone projection can be
parallelized easily by projecting onto K; separately and in parallel. However, it is chal-
lenging to accommodate the operator splitting algorithm to the distributed environments
in heterogeneous C-RANSs [4, 8], Fog-RAN, and MENG-RAN [5]. In particular, mes-
sage updates across the network (e.g., backhaul network) and synchronization among
heterogenous computation units will significantly increase the communication complex-
ity in the distributed algorithms, which may result in delay and loss of performance.
Therefore, it is critical to design large-scale distributed optimization algorithms with the
minimal requirements of synchronization and communication.

Real-Time Implementation

In dense C-RANsS, to satisfy the strict low-latency demands, e.g., in Tactile Internet the
end-to-end latency is constrained to one millisecond [55], we need to solve large-scale
optimization problems in a millisecond. This brings significant challenges compared
with large-scale optimization problems in machine learning and big data, where latency
is not a big issue but the problem dimension is often in the order of millions.

To solve a large-scale optimization problem in a real-time way, one promising
approach is to leverage the symbolic subspace and cone projections. The general idea is
to generate and store all the structures and descriptions of the algorithm for the specific
problem family Zcope. Eventually, the ADMM solver can be symbolically based so as
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to provide numerical solutions for each problem instance Pone(B) extremely quickly
within a hard real-time deadline. This idea has already been successfully applied in the
code generation system CVXGEN [56] for real-time convex quadratic optimization [57]
and in the interior-point based SOCP solver [58] for embedded systems. It is of great
interest to implement this idea for the operator splitting algorithm OS apym for general
real-time conic optimization.

Numerical Results

In this section we simulate the proposed two-stage large-scale convex optimization
framework for performance optimization in dense C-RANs. The corresponding MAT-
LAB code that can reproduce all the simulation results using the proposed large-scale
convex optimization algorithm is available online.'

We considered the following channel model for the link between the kth MU and the
Ith RRH:

hy = 107H0/20 /fonsat, Yk, I, (7.71)

where L(dy;) is the path loss in dB at distance dy;, as in [2, Table 1], sz is the shad-
owing coefficient, ¢y is the antenna gain, and fi; is the small-scale fading coefficient.
We used the standard cellular network parameters as in [2, Table I]. All the simulations
were carried out on a personal computer with a 3.2 GHz quad-core Intel Core i5 pro-
cessor and 8 GB of RAM running Linux. The reference implementation of the operator
splitting algorithm SCS is available online;? it is a general software package for solv-
ing large-scale convex cone problems based on [45] and can be called by the modeling
frameworks CVX and CVXPY [59]. The settings (e.g., the stopping criteria) of SCS can
be found in [45].

The proposed two-stage approach framework, termed “Matrix Stuffing+SCS”, is
compared with the following state-of-the-art frameworks:

o CVX+SeDuMi/SDPT3/MOSEK This category adopts second-order methods. The
modeling framework CVX will first automatically transform the original problem
instance (e.g., the problem & written in disciplined convex programming form)
into the standard cone-programming form and then call an interior-point solver, e.g.,
SeDuMi [17], SDPT3 [18], or MOSEK [19].

o CVX+SCS In this framework based on first-order methods, CVX first transforms
the original problem instance into the standard form and then calls the operator
splitting solver SCS.

We define the modeling time as the transformation time for the first stage, the solving
time as the time spent on the second stage, and the fotal time as the time for the two
stages to solve one problem instance. As the large-scale convex optimization algorithm

1 https://github.com/ShiYuanming/large-scale-convex-optimization
2 https://github.com/cvxgrp/scs
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should scale well to both the modeling part and the solving part simultaneously, the time
comparison of each individual stage will demonstrate the effectiveness of the proposed
two-stage approach.

Given the network size, we first generate and store the problem structure of the stan-
dard conic optimization problem family Z.ope, i.e., the structure of A, b, ¢, and the
descriptions of K. As this procedure can be done offline for all the candidate network
sizes, we thus ignore this step for time comparison. The following procedures to solve
the large-scale convex optimization problem instances &(«) are repeated with different
parameters « and sizes using the proposed framework Matrix Stuffing+SCS:

1. Copy the parameters in the problem instance #(a) to the data in the pre-stored
structure of the standard cone program Z.ope.

2. Solve the resultant standard conic optimization problem instance Pone(f) using the
solver SCS.

3. Extract the optimal solutions of Z(a) from the solutions to Pcone(B) produced by
the solver SCS.

Finally, note that all the interior-point solvers are multiple threaded (i.e., they can
utilize multiple threads to gain extra speedups), while the operator splitting algorithm
solver SCS is single threaded. Nevertheless, we will show that SCS performs much
faster than the interior-point solvers. We also emphasize that the operator splitting
method is aimed to scale well to large problem sizes and thus to provide solutions to
modest accuracy within a reasonable time, while the interior-point method’s intended
to provide highly accurate solutions. Furthermore, the modeling framework CVX pro-
vides rapid prototyping and a user-friendly tool for automatic transformations for
general problems, while the matrix-stuffing technique targets large-scale problems for
the specific problem family 2. Therefore, these frameworks and solvers are not really
comparable in view of their different purposes and application capabilities. We mainly
use them to verify the effectiveness and reliability of our proposed framework in terms
of solution time and solution quality.

Effectiveness and Reliability of the Large-Scale Optimization Framework

Consider a network with L two-antenna RRHs, K single-antenna MUs, and L = K,
where all the RRHs and MUs are uniformly and independently distributed in the square
region [—3000,3000] x [—3000,3000] meters. We consider the total transmit-power
minimization problem “socp with the objective function as ||V||% and the QoS require-
ments for each MU as y;, = 5 dB, Vk. Table 7.1 demonstrates for comparison the running
time and solutions using different convex optimization frameworks. Each point of the
simulation results is averaged over 100 randomly generated network realizations (i.e.,
one small-scale fading realization for each large-scale fading realization).

For the modeling time comparisons, this table shows that the time value of the
proposed matrix-stuffing technique ranges between 0.01 and 30 seconds for different
network sizes and can bring a speedup of about 15 to 60 times compared with the
parser/solver modeling framework CVX. In particular, for large-scale problems, the
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Table 7.1 Time and solution results for different convex optimization frameworks

Network Size (L = K) 20 50 100 200
. Total time (s) 81164  N/A N/A N/A

CVX+SeDuMi Objective (W) 122488 N/A N/A N/A

Total time (s) 50398  330.6814 N/A N/A
VX+SDPT

CVX+SDPT3 Objective (W) 122488 65216  N/A N/A
Total time (s) 12072 516351 N/A N/A

CVX+MOSEK Objective (W) 122488 65216  N/A N/A
Total time (s) 0.8501 56432 510472 725.6173

CVX4SCS Modeling time (s) 07563 44301  38.6921  534.7723
Objective [W] 122505 65215 3.1303  1.5404
Total time (s) 01137 27222 262242 3282037

Matrix Stuffing+SCS ~ Modeling time (s)  0.0128 02401 24154 295813
Objective (W) 122523 65193 3.1296  1.5403

transformation using CVX is time consuming and becomes the bottleneck, as the mod-
eling time is comparable with and even larger than the solving time. For example, when
L = 150, the modeling time using CVX is about 3 minutes, while matrix stuffing only
requires about 10 seconds. Therefore, matrix stuffing for fast transformation is essential
for solving large-scale convex optimization problems quickly.

For the solving time (which can be easily calculated by subtracting the modeling
time from the total time) using different solvers, this table shows that the operator split-
ting solver can provide a speedup of several orders of magnitude over the interior-point
solvers. For example, for L = 50, the speedup is about 20 and 130 times over MOSEK
and SDPTS3, respectively, while SeDuMi is inapplicable for this problem size as the run-
ning time exceeds the predefined maximum value, i.e., one hour. In particular, all the
interior-point solvers fail to solve large-scale problems (i.e., L = 100, 150, 200), which
is indicated as N/A, while the operator splitting solver SCS can scale well to large prob-
lem sizes. Regarding the largest problems, with L = 200, the operator splitting solver
can solve them in about 5 minutes.

Regarding the quality of the solutions, Table 7.1 shows that the proposed framework
can provide a solution to modest accuracy within much less time. For the two problem
sizes, i.e., L = 20 and L = 50, which can be solved by the interior-point frameworks, the
optimal values attained by the proposed framework are within 0.03% of that obtained
via the second-order-method frameworks.

In summary, the proposed two-stage large-scale convex optimization framework
scales well to simultaneous large-scale problem modeling and solving. Therefore it
could provide an effective way to evaluate the system performance via large-scale opti-
mization in dense wireless networks. However, its implementation and performance in
practical systems still needs further investigation. In particular, this set of results indi-
cates that the scale of cooperation in dense wireless networks may be fundamentally
constrained by the computation complexity on time.
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Max—Min Fairness Rate Optimization

We will simulate the minimum network-wide achievable rate maximization problem
using the max—min fairness optimization algorithm in [24, Algorithm 1] via the bisection
method, which requires solving a sequence of convex feasibility problems. We will not
only show the quality of the solutions and speedups provided by the proposed framework
but also demonstrate that the optimal coordinated beamformers significantly outperform
low-complexity and heuristic transmission strategies, i.e., zero-forcing beamforming
(ZFBF) [30, 60], regularized zero-forcing beamforming (RZF) [61], and maximum ratio
transmission (MRT) [62].

Consider a network with L = 55 single-antenna RRHs and K = 50 single-antenna
MUs uniformly and independently distributed in the square region [—5000,5000] x
[—5000, 5000] meters. Figure 7.2 demonstrates the minimum network-wide achievable
rate (which is defined as the transmit power at all the RRHs divided by the receive noise
power at all the MUs) versus SNR using different algorithms. Each point of the simu-
lation results is averaged over 50 randomly generated network realizations. For optimal
beamforming, this figure shows the accuracy of the solutions obtained by the proposed
framework compared with the first-order method framework CVX+SCS. The average
solving time and modeling time for obtaining a single point for the optimal beamform-
ing with CVX+SCS and Matrix Stuffing+SCS are (176.3410, 55.1542) seconds and
(82.0180, 1.2012) seconds, respectively. This shows that the proposed framework can
reduce both the solving time and modeling time via warm-starting and matrix stuffing,
respectively.

7 : : : : : . .

—— Optimal Coordinated Beamforming
—&—Regularized Zero-forcing Beamforming V
—H— Zero-forcing Beamforming

—6—Maximum Ratio Transmission

Minimum Network-wide Achievable Rate (bps/Hz)

SNR (dB)

Figure 7.2 The minimum network-wide achievable rate versus transmit SNR with 55
single-antenna RRHs and 50 single-antenna MUs.
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Furthermore, this figure also shows that optimal beamforming can achieve quite an
improvement for the per-user rate compared with the suboptimal transmission strategies
RZF, ZFBF, and MRT; this clearly shows the importance of developing optimal beam-
forming algorithms for such networks. The average solving time and modeling time for
a single point using CVX+SDPT3 for the RZF, ZFBF, and MRT are (2.6210, 30.2053)
seconds, (2.4592, 30.2098) seconds, and (2.5966, 30.2161) seconds, respectively. Note
that the solving time is very small, because we only need to solve a sequence of lin-
ear programming problems for power control when the directions of the beamformers
are fixed during the bisection search procedure. The main time-consuming part is the
transformation using CVX.

Summary and Discussion

In this chapter we have presented a unified two-stage framework for large-scale opti-
mization in dense C-RANs. We showed that various performance optimization problems
in C-RANSs can be essentially solved by solving one, or a sequence of, convex opti-
mization or convex feasibility problems. The proposed framework requires only the
convexity of the underlying problems without any other structural assumptions, e.g.,
smooth or separable functions. This is achieved by first transforming the original convex
problem to a standard form via matrix stuffing and then using the ADMM algorithm to
solve the homogeneous self-dual embedding of the primal-dual pair of the transformed
standard cone program. Simulation results demonstrate the infeasibility detection capa-
bility, the modeling flexibility and computing scalability, as well as the reliability of the
proposed framework.

In principle one may apply the proposed framework to any large-scale convex opti-
mization problem; one needs only to focus on the standard conic optimization form
reformulation as well as to compute the proximal operators for different cone projec-
tions. However, in practice the following issues need to be addressed in order to provide
a user-friendly framework and to assist practical implementation.

1. Developing a software package automatically generating the code for matrix stuffing
is desirable but challenging in terms of reliability and correctness verification.

2. Efficient subspace and cone projection algorithms are highly desirable. In partic-
ular, the randomized algorithms may provide a powerful method to scale up the
projections at each iteration, thereby trading off the solving time and the accuracy
of solutions.

3. It is of great interest to implement the proposed large-scale convex optimization
framework in C-RANs by exploiting parallel and distributed computation archi-
tectures, thereby further investigating the feasibility of this approach for real-time
applications with strict low-latency requirements in wireless networks.

4. It is also of interest apply the proposed framework to various non-convex optimiza-
tion problems, e.g., optimization on manifolds [63, 64].
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