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Generalized Low-Rank Optimization
for Ultra-dense Fog-RANs

Yuanming Shi, Kai Yang, and Yang Yang

Expectations for new wireless networks have become higher since mobile data has
grown exponentially and more diverse user services have emerged. Intensive deploy-
ment of network infrastructure can alleviate this pressure from the network architecture
level and make it still competitive. For the improvement of total energy efficiency and
network capacity, it is vital to deploy lots of radio access nodes that are equipped with
computing and storage ability, and this is also beneficial for low-latency services when
providing access for many moving equipments. The benefits of network densification
can be exploited using the emerging fog radio access network (Fog-RAN) architecture
through placing the computation and storage resources in the network edge. However,
such great promises come with arduous scientific problems. It is a must to make
some innovative work for the design of such complicated networks considering
kinds of types resources. In this chapter, we will develop a generalized low-rank
optimization model for performance enhancements in ultra-dense Fog-RANS, supported
by various motivating design objectives, including mobile edge caching, wireless
distributed computing, and topological interference alignment. Special attention is paid
on algorithmic approaches to handle nonconvex low-rank optimization problems via
Riemannian optimization.

Introduction

Fog-RANs

Cutting-edge technological advances like Internet of Things (IoTs), telemedicine,
cyberphysical systems, and mobile edge intelligence exert tremendous pressure on the
computation, communication, and storage capacities of wireless systems. To achieve
ubiquitous connectivity for anybody, anything, and at anytime, intensive deployment
is a good way [1]. The improvement of total energy efficiency [2], operation of
moving applications with low latency [3], and access of many equipments [4] are
also solved by this network architecture with computational and storable nodes. Such
ultra-dense networks help to integrate with new network technologies, such as cloud
radio access networks (Cloud-RANs) [5], edge caching [6], and mobile edge computing
[7]. And these can be finished through combing attractive ways in various fields
like software-defined networking [8], network function virtualization, and cloud
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and edge computing. To leverage the resources across the end devices, edge nodes,
and cloud data center, fog computing [9, 10] provides an end-to-end horizontal
architecture to distribute computing, storage, control, and networking functions to
the network edge.

By enabling fog computing in ultra-dense wireless networks, Fog-RANSs thus provide
a powerful platform to integrate the communication, storage, computing, control, and
network function at the widespread access nodes [2, 3, 11]. Particularly, ultra-dense
deployment of Fog-RANs, which are deployed intensively, can take full advantage
of dense networks by placing signal processing units and interference management
locally through SDN and edge computing [12]. In addition, the “content-centric”
approach is becoming the mainstream of the Internet rather than the “connection-
centric” to support massive data transmission [13]. The Fog-RANs can promote the
development of the network at the architectural level and provide better quality content
transmission through wireless edge caching [6]. At the same time, another problem
faced by resource-constrained mobile networks is the increase in computing content
in applications. And mobile edge computing offloads the computational process to
local storage, which is a very worthwhile approach. Therefore, ultra-dense Fog-RANs
are capable of achieving higher data rates and enabling low-latency content delivery, as
well as providing ultra-reliable and low-latency communications for many machine-type
communications [14].

Generalized Low-Rank Models

Ultra-dense Fog-RANs are very complicated to improve optimization, for which it is
vital to utilize the accessible information in network side. If you want to effectively
perform the encoding and decoding process, it is necessary to get some auxiliary
information such as local information and some locally cached content. So, we
design a novel low-rank matrix modeling framework, which combines the storage
and computing resource to utilize the network-side information. Recently, there has
been various research on interference management, which both considers the CSI
and basic information, and the main tool for this problem is alignment, coordination,
and multipoint transmission. However, the big pay of obtaining global CSI forces
many works that mainly aim to reduce strategies such as the mixed and tardy CSI.
Topology interference management (TIM) [15] is an effective solution, which only
needs to know some network connection information. The reason for this is that the
weak wireless channel considers path loss and shadow. But the TIM problem is a more
difficult problem and may not have all the results in each scenario and thus become
a linear index coding problem [15]. For the improvement of algorithm design in TIM
problem, a novel suggestion that suggests modeling the network copulation mode
in Fog-RANSs as a fragmentary matrix is proposed. Then it is helpful to do the linear
precoding and decoding in high quality, after the generalized matrix completion problem
is formulated.

The strong modeling framework can also be utilized to deal with some other design
difficulties in Fog-RANSs. Being capable of caching content at the edge of the network
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can effectively optimize throughput and latency, which is due to the cacheable space of
densely deployed devices and access points [6]. In general, the placement and delivery
of content are two mainly parts of content-centric communications. However, edge
caching still has some serious problems unresolved because of the combination of
wired and wireless in Fog-RANSs. Fortunately, the information that is cached at different
devices can be cached by the fragmentary matrix framework, which could also be
expanded to distributed computing wireless networks [16]. MapReduce and Spark, as
the distributed computing structures whose main thought is that intermediate values in
the “map” phase based on the near accessible database, are seen as the side information
for the “reduce” phase. So, this could help decrease the communication payment in the
“shuffle” phase to get the intermediate values, which are not computed not in the “map”
phase. Some other problems, like the modeling design of distributed computing systems,
can also be solved by this fragmentary matrix modeling approach. The side information
modeling matrix is beneficial to reduce interference over r channel, which is utilized,
resulting in an interference-free channel with 1/r degrees of freedom (DoF) — i.e.,
the first-order data description. It is not difficult to find that the number of channels
is actually the matrix dimension, which also is the inverse of the realizable DoF. To
maximize the realizable DoF, we could get this minimum of the matrix rank, generating
the general optimization issue with lower rank considering the constraint set encoding
the network side information.

Low-Rank Optimization Algorithms

Convex Optimization Approaches

Various applications about machine learning, recommendation systems, and big data
analysis [17-19] benefit from the low-rank model. And some heuristic algorithms that
can ensure the optimality have been proposed because there is a constraint of low-
rank nonconvexity. As the rank of the matrix corresponds to the number of its nonzero
singular values, we seek the convex surrogate for the rank function using the sum of
its singular values — i.e., the nuclear norm. The nuclear norm is the convex hull of
the collection of atomic unit-norm rank-one matrices and is thus the tightest convex
relaxation of the rank function [17]. The resulting nuclear norm minimization can be
further reformulated as a semidefinite program, which if convex could be solved in
polynomial time. The optimality guarantees for the nuclear norm minimization can be
normally established via convex geometry analysis and the theory conic integral geom-
etry [20] for the problems in data science — e.g., low-rank matrix recovery. However,
the nuclear norm minimization approach cannot scope to a big problem because of
the high computation and memory costs, as we need to store and optimize the entire
matrix. Furthermore, many low-rank problems may have no effective convex relaxation.
In particular, the nuclear norm minimization approach is inapplicable to generalized
low-rank optimization problem for topological interference management in Fog-RANSs,
as it always returns a full rank solution [21]. It is thus critical to consider alternative
approaches, which can scale to large problem sizes and are effective to generalized low-
rank models.
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Riemannian Optimization over Matrix Manifolds

Another promising solution for low-rank optimized minimization is on the basis of ma-
trix factorization — e.g., the alternating minimization [18] and Riemannian optimization
method [22]. It is finished through recasting the original low-rank minimization problem
as solving a result of fixed-rank constraints optimization problems. The Riemannian
optimization framework has the ability of utilizing the Riemannian quotient manifold
of the fixed-rank matrices in the search space. What’s more, the Riemannian conjugate
gradient and trust-region algorithms are globally convergent (i.e., they converge to first-
order and second-order KKT points on manifolds [23]) with superlinear [24] and even
quadratic convergence rates [23]. The Riemannian algorithm has a higher speed conver-
gence and a smaller error solution, which is different from the alternating minimization
and gradient descent algorithms. Basically, the objective function in Riemannian
algorithm must have a certain smoothness [25]. As for the optimization problems
with a high dimension, the Riemannian algorithms can have a global optimality — e.g.,
dictionary learning [26], generalized phase retrieval [26], and community detection
problems [27]. If there are enough samples, it is definite to get the globally optimal
value, and each point could be evaded by Riemannian trust-region algorithms [26,27].
For general low-rank optimization problems in Fog-RANs, we shall propose well-
designed reformulation and smooth approximation approaches in order to harness the
benefits of Riemannian optimization techniques.

Qutline

In Section 15.2, we demonstrate that typical problems in ultra-dense Fog-RANSs can be
addressed by settling one or a sequence of generalized low-rank optimization problems.
Section 15.3 presents a systematic Riemannian optimization framework to solve the
generalized low-rank optimization problem by utilizing the quotient manifold architec-
ture of fixed-rank matrices. Consequences of numerical experiments are illustrated in
Section 15.5, then it is the summary and discussion in Section 15.6.

Generalized Low-Rank Models in Ultra-dense Fog-RANs

Here, we provide a generalized low-rank framework to optimize the computation, com-
munication and storage resources in ultra-dense Fog-RANSs. The typical examples of the
low-rank optimization for topological interference alignment and cache-aided interfer-
ence channel will be presented. More applications and unique challenges of settling the
generalized low-rank optimization problems will also be discussed.

A Generalized Low-Rank Framework

Consider the generalized low-rank optimization problem with the rank function as the
objective

Py : minimizerank(M) subjectto M € C, (15.1)

M eCmxn



15.2.2

“9781108497930c15” — 2020/1/21 — 10:29 — page 281 — #5

Generalized Low-Rank Optimization for Ultra-dense Fog-RANs 281

where matrix M € C™*" is the optimization variable and C is the feasible constraint
set. The rank-constrained version of the generalized low-rank optimization problem is
given as follows:

P : minimize f (M) subject to rank(M) =r, (15.2)

M eCm=n

where matrix M € R™*" is the optimization variable and r < min{m,n} is known as a
priori. The readers are encouraged to refer to [17, 18] for the applications of generalized
low-rank models in data science. In this section, we will show that typical optimization
problems in ultra-dense Fog-RANs could be formulated as a generalized low-rank opti-
mization problem. Even though the structured low-rank formulation enjoys the benefits
of modeling flexibility, the rank function is nonconvex, which brings computational
challenges. Observing that the minimum rank of problem P can be found by settling
the fixed-rank optimization problem P, we thus focus on developing a systematic
framework for solving the rank-constrained optimization.

Low-Rank Optimization Examples in Fog-RANs

Ultra-dense Fog-RANSs are strictly complicated to obtain an optimized result, for which
it is not realistic to utilize the available network-side information for system design.
To demonstrate the wide-ranging applications of low-rank optimization in Fog-RANs,
we mainly focus on the topological interference management problem [21]. The pro-
posed framework can be principled to extend more typical scenarios in Fog-RANs,
including mobile edge caching systems [28] and on-device distributed computing sys-
tems [29], where the side information can be exploited to efficiently optimize across
the communication, computation, and storage resources via the generalized low-rank
optimization.

System Model

Consider a partially connected K -user interference channel with single-antenna trans-
mitters and receivers shown in Figure 15.1(a), which is a typical architecture in Fog-
RANSs. Without loss of generality, we assume the k-th transmitter and the k-th receiver
are connected. Each message W; is available to transmitter k£ and shall be delivered to
receiver k. The channel coefficient #;; € C between transmitter / and user k is nonzero
only for (k,l) € SU{(i,i) : i =1, ..., K}, where Sis the set of interference links. Block
fading channel model is assumed — i.e., /iy stays static over r subsequent channels —
during which the input and output relationship is given by

Yk = iy + Y humi + 2 Ye=1,... K. (15.3)
k,)eS

xr € C is the transmitted signal by the k-th transmitter over r channel uses, yx € C”
is the received signal at the k-th receiver, and z; € C” represents the isotropic additive
white Gaussian noise — i.e., zx ~ CN(O0, o,%Ir). The average power constraint of each
transmitter is given by }]E[Hac,- 121 < P, where p > 0 is the maximum transmit power.
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(a) TIM problem (b) Cache-aided interference (c) Side information model-
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Figure 15.1 (a) A typical example of TIM problem in the partially-connected 5-user interference
channel. The index set of connected links is given by S = {(1,3),(1,4),(2,3),(2,4),(3,1),(3,5),
(4,1),(4,5),(5,1)}. (b) A typical example of cache-aided five-user interference channel. The
index set of cached messages at each receiver is given by C1 = {2,5}, C» = {1,5}, C3 = {2,4},
Cy = (2.3} and Cs = {1,3,4}. (0) Let M = [M;;] = [ully;] € CK*K ‘where u; € C" and

v; € C” are precoding and decoding vectors, and 7 denotes the number of channel extensions for
transmission. The incomplete matrix M, which has known entries indexed by S, is the side
information modeling matrix for (a) and (b). M;; = 1 represents the preservation of wished
signals for each receiver, M;; = 0,V(i, j) € Srepresents the cancellation of interferences, and
M;j = %,Y(, j) ¢ SU{(i,i)} can be arbitrary (unknown) values.

Messages W1, Ws, ..., Wk are assumed to be mutually independent. If there exists
an encoding and decoding scheme such that as the code word’s length N approaches
infinity, the probability of erroneous decoding for all messages can be arbitrarily small
simultaneously [30], we claim that the rate tuple (R1, Ra, ..., Rg) is achievable. In the
partially connected K -user interference channel, DoF is defined as [15,31]

R.
DoF; = lim sup ——, Vi. (15.4)
p—oo log(p)

The DoF area D is further defined as the closure of achievable DoF tuples. In particular,
the symmetric DoF is given by the maximum value DoFy, such that DoF allocation
DoF; = DoFsyn, Vi is inside the DoF region —1i.e.,

R sym

DoFsym = lim sup sup
p—=o0 (Rsym Rsym)ED log(p)

.....

(15.5)

It is particular interesting to study linear schemes for interference management be-
cause of the low complexity and the DoF optimality in a number of scenarios [15, 31,
32]. We thus focus on linear interference management schemes and take DoF as the
performance metric, which is realized by exploiting the intrinsic correlation between
DoF and matrix rank.

Example 15.1 Topological interference management. Linear interference alignment
[31] is a powerful tool to mitigate interferences, which has the ability to achieve half the
cake for every user in a K -user interference channel. Let v; € C" and u; € C" be the
transmit and receiver beam-forming vector at transmitter j and receiver i, respectively.
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Let s; be the encoded information symbol for transmitter k with unit power — i.e.,
E{|sx|>} = 1. The received signal by receiver k is thus given as

Yr = hixvisk + Z hiivisi + zx. (15.6)
k,eS

Linear interference alignment is an asymptotically high SNR regime. To accomplish
decoding, we impose the constraints that the desired signal space Ay vy is complemen-
tary to the interference space Z(hz‘) <& hkivi at each receiver i. That is, the interference
terms are aligned and then canceled, while the desired signal is preserved by projecting
the received signal vector y; onto the space u; —1i.e.,

huuflv #0, Yk =1,...,K, (15.7)
hullv; =0, (k,j) € S. (15.8)

If both conditions (15.7) and (15.8) are satisfied, we can obtain parallel interference-free
channels over r channel uses. Thus, 1/r DOF is realized for message W;. Note that we
can further rewrite conditions (15.7) and (15.8) as the following channel independent
conditions:

ullve 20, Yk =1,..,K, (15.9)
ulv; =0, (k,j) € S. (15.10)

Therefore, the transceivers w;’s and v;’s are designed based only on the network topol-
ogy information instead of acquiring instantaneous channel state information (CSI).
This approach is termed topological interference management (TIM), with which the
information symbol s can be estimated from

e = (ubv) ubly,. (15.11)

To assist numerical algorithm design, we specify ukHvk = 1 for condition (15.7)

without loss of generality. By defining M = [u}"v il = [M;j] € CK*K  conditions
(15.7) and (15.8) can be further rewritten as

Pa(M) = Ik, (15.12)

where Ik is the K x K identity matrix. The orthogonal projection onto 2 —i.e., Pgq :
CKxK _ CK*K _ preserves M;; for (i, j) € Q2 and is zero for (i, j) ¢ 2. Here the set
Qis defined as Q = {i x j, (i, j) € SU{(k,k)}}. To avoid trivial solutions, we make the
assumption that r < min{m,n}. Since M = UV with U = [uy, ... ,uK]H e CKxr
and V = [v1,...,vx] € C"*K we have rank(M) = r and achievable DoF as 1/r for
each message. Thus, we can find the maximum achievable DoF by solving the following
low-rank optimization problem [21]:

Priv : minimize rank(M) subject to Po(M) = Ik. (15.13)

M ecRKxK

The modeling framework is illustrates in Figure 15.1, where Figure 15.1(a) shows a
five-user interference channel and Figure 15.1(c) shows the corresponding modeling
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matrix. The target of TIM is to achieve the side information modeling matrix, followed
by extracting the precoder and decoder [21].

Note that we restrict problem Ptpy to the true area without losing any performance
despite of achievable DoFs. This is because the problem parameter I is a real matrix,
and if the element X;; = u:-*vj,‘v’i # j,(i,j) ¢ S is restricted to the real field, the
corresponding signals will not contribute any interference.

Example 15.2 Mobile edge caching. In Fog-RANs, mobile edge caching is realized
by pushing contents to mobile edges in advance at off-peak time, whose advantages
have been demonstrated in facilitating interference management [33]. Thus, the caching
capability can reduce the end-to-end latency within networks. Consider that mobile
users are cache enabled, and we shall adopt the topological interference management
technique to avoid the overwhelming CSI acquisition overhead in ultra-dense Fog-
RANSs. Let Ry € {1,...,K} (k ¢ Ry) be the index set of messages cached at mobile
user k, for which they have been delivered during off-peak time. Thus, the received
signal at mobile user k can be rewritten as

Yi = hpeviesk + Z hiivisi + Z hkjvisj + z. (15.14)
iRy, (k,)eS J# Rk, )eS
Likewise, interference alignment is achieved by preserving the desired signals while

canceling interferences, resulting in the following topological interference alignment
condition:

ulve 20, Vk=1,...,K, (15.15)
uflvi=0, (k,j) €S, j ¢ Re. (15.16)
Then the desired signal s; will be decoded from
5 = (u,t'vk)—lu,t'(yk -y hk,»vjsj), (15.17)
jeRx

while achieving 1/r symmetric DoF for each message delivery. Therefore, by denoting
M = [M;] = [u}"v i1, the transceiver could be achieved by settling the following
low-rank optimization problem:

Pcache : minimize rank(M) subject to Po(M) = Ik, (15.18)

M cRKxK

where Q = {i x j,(i,j) € SU{(k,k)},j ¢ R;}. Figure 15.1(b) gives an illustrative
example of a cache-enabled five-user interference channel, where the side information
is shown in the side information modeling matrix in Figure 15.1(c).

Note that we consider the single data stream case in these examples — i.e., each
message Wy is represented with a single information symbol s; € C. They can be easily
expanded to ordinary multiple data streams cases, where message Wj has representation
vector s; € C% with d; data streams.
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Discussions

A generalized low-rank optimization framework has been widely developed for opti-
mizing across communication resources, computation resources, storage resources, and
data analysis in the ecosystem of ultra-dense Fog-RANs [1], including

. interference management for achievable DoF [21, 34] and sum-rate [35] maxi-
mization;

. mobile edge caching with cache-enabled receivers [28] and transmitters [36];

. user admission control [37] with topological interference management;

. data shuffling in wireless distributed fog computing systems [29];

. low-latency communication in massive [oT networks [38]; and

. high-dimensional data processing for mobile edge caching in Fog-RANs [39].

These applications demonstrate that the generalized low-rank optimization frame-
work is a powerful tool for modeling system design and optimization problems in ultra-
dense Fog-RANs. However, the nonconvexity of the rank function makes it critical to
solve the generalized low-rank optimization problem scaling to large network sizes.
Furthermore, the nuclear norm relaxation approach is inapplicable to problems Prpyv
and Pcache since Trace(M) < || M ||, with || - ||« is the nuclear norm. For this reason,
problem P could be seen as a generalized low-rank optimization problem lacking
in effective convex relaxation approaches, which motivates the design of nonconvex
paradigms in Fog-RANS.

The Power of Nonconvex Paradigms for Ultra-dense Fog-RANs

In this section, we illustrate some fresh trends in nonconvex optimization algorithms.
The generalized low-rank optimization problems fall in the category of solving a
sequence of optimization problems on the matrix manifold. We then introduce the
general Riemannian optimization framework and its implementation details.

Low-Rank Optimization via Nonconvex Factorization

Recently, a new line of works focusing on developing efficient nonconvex proce-
dures for low-rank optimization problems has attracted much attention, and some
among them have provided an optimality guarantee [19]. Progress has been made
on nonconvex approaches, including projected gradient methods, stochastic gradient
methods, conditional gradient methods, Riemannian manifold optimization algorithms,
for machine learning problems and high-dimensional statistical problems such as
phase retrieval, low-rank matrix completion, and blind deconvolution. Particularly,
manifold optimization is becoming a powerful and general approach to address
nonconvex optimization problems by exploiting manifold structures of problems.
Manifold structures such as rank constraint and orthogonality are ubiquitous in machine
learning applications, including dimensionality reduction, sensor network localization,
low-rank matrix recovery, community detection, and phase synchronization.
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General formulation of Riemannian optimization framework [25] is given by

Prmanifold : minimize f(X), (15.19)
XeM

where f(X) is a smooth (C°°) objective function on a smooth manifold M. Observing
that the set of fixed-rank matrices

M = {X e REXK : rank(X) = r) (15.20)

is a smooth manifold [22], our generalized low-rank optimization problems Ptp and
Pcache thus can be addressed by alternatively performing the following fixed-rank opti-
mization

minimize f(X) = |Pa(X) — Ik |3

X eRKxK

subject torank(X) =r, (15.21)

and increasing rank r [21,40]. The minimum rank of matrix X can thereby be detected
as the minimum r such that the affine constraint Pq(X) = Ik is satisfied.

Riemannian optimization on fixed-rank manifold is based on reparameterizing a
fixed-rank matrix via matrix factorization X = UV, Note that this low-rank matrix
factorization is not unique as X remains invariant under the transformation

U, V) US ', vsT (15.22)

for all matrices S € GL(r) —i.e., the set of r x r full rank matrices. This indeterminacy

makes the critical points of the objective function f (UVT) not isolated on RK*" x
RK xr.

We encode the invariance transformation (15.22) in an abstract search space and
optimize problems directly over a set of equivalence classes —i.e.,

(U V) :={US,VST): § e GL(r)}. (15.23)
The set of equivalence classes is termed as the quotient space and is denoted by
M, == M/GL(r), (15.24)

where the total space M is the product space RX*" x RX>" Consequently, problem
(15.21) can be studied on the quotient space —i.e.,

T&I}g?\l/tze FAXD, (15.25)

where [ X] = [(U, V)] is defined in (15.23).

The Framework of Riemannian Optimization

We will first give a brief introduction on Riemannian optimization framwrok at a high-
level standpoint. Riemannian optimization generalizes the concepts for standard uncon-
strained optimization algorithms, including gradient and Hessian, from Euclidean space
to Riemannian manifold, thereby creating an new paradigm of studying the constraints
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ALGORITHM 15.1 Riemannian optimization framework for problem P yanifola

~

. Initialize: initial point Xy, k = 0
2: while not converged do

3: Choose a descent direction & and a step size oy via implementing different
algorithms such as conjugate gradient method, trust-region method, etc.
4. Update Xy4+1 = Rx,(aré;)
50 k=k+1.
6: end while
Output: X

TXk:M Xk

M

Figure 15.2. Graphical representation of the concept of matrix manifold optimization

in Euclidean space from the view of non-Euclidean space. The basic elements of a
Riemannian optimization framework in the computational space M consist of choosing
a descent direction & x, determining a step size ay in the k-th iteration, and defining
a pullback operation, called retraction, to make sure that the next point lies in the
manifold. A descent direction & x is chosen from the tangent space of manifold M,
which is the linearization of the manifold at X and denoted as Tx, M. With the
computed descent direction & x and step size a, the notion of moving from Xy in the
direction of ;& x is given by the pullback operation R x, (ax &), where the retraction
operator is defined as Rx : RX¥*KX — Af. Based on the above notions, a general
matrix manifold optimization algorithm is presented in Algorithm 15.1, whose graphic
representation is illustrated in Figure 15.2. We will show more details about Riemannian
optimization in Section 15.4.
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Practical Implementation

We have thus far presented the high-level Riemannian optimization framework. Here,
we will discuss the implementation of Riemannian optimization algorithms.

Manopt: A MATLAB Toolbox for Optimization on Manifolds

Optimization on manifolds, or Riemannian optimization, aims at finding optimizers
(at least local) for problem Pranifold, Where the search space M is a smooth manifold
endowed with a Riemannian structure. A Manopt toolbox [41] is built thanks to the
maturity of the smooth Riemannian optimization theory, its widespread applications,
and its excellent performance. The toolbox architecture consists of different types of
manifolds, solvers for different algorithms, and problem-dependent descriptions. To
address an optimization problem on a predefined Riemannian manifold, we can simply
choose the manifold from the library, make a description of the cost function and
derivatives (possible gradient and Hessian) on this manifold, and pass the parameters
on to a solver. Some accompanying tools have also been designed, such as checking its
derivatives and approximating its Hessian based on the gradient numerically. A manifold
in Manopt is obtained by calling a factory. The descriptions of its manifold structure
include retraction, projection on tangent spaces, operation for converting a Euclidean
gradient and Hessian to Riemannian gradient and Riemannian Hessian, etc.

Pymanopt: A Python Toolbox for Optimization on Manifolds

The Pymanopt toolbox [42] for Riemannian optimization is built with Python. To further
improve the usability for the average user, Pymanopt supports various Python libraries
for automated differentiation. This is based on the fact that computing and implement-
ing gradients and Hessian is laborious and error prone, especially for cost functions
with matrix variables. For example, the Riemannian trust-region algorithm requires
the Hessian information (which is a high-rank tensor). It is tedious and error prone
to implement even for an experienced user. To address these difficulties, Pymanopt
combines Riemannian optimization and automated differentiation, thereby improving
the convenience and efficiency for practitioners. This makes the implementation of the
Riemannian trust-region method in Pymanopt as easy as using one of the first-order or
even derivative-free methods.

Matrix Optimization on Quotient Manifold

We present the details of Riemannian optimization algorithms, which are used to
settle the fixed-rank optimization problem (15.25). It is performed on the quotient
manifolds and exploits the symmetry structure (i.e., the quotient manifold geometry)
in the search space of the fixed-rank constraint and the Hessian of the least-squares
structure of the cost function. Specifically, the problem structures will be presented in
Section 15.4.1. The matrix representations of all the optimization ingredients are
provided in Section 15.4.2, and then algorithm implementation details are provided
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in Section 15.4.3. Section 15.4.4 provides the convergence rates and computational
complexity.

Problem Structures for Fixed-Rank Matrices

We use the symmetry in the fixed-rank constraint for efficient Riemannian optimization
algorithms design.

Quotient Manifold

Let ~ be an equivalence relation in the toral (computational) space M. By this equiva-
lence property, the quotient manifold M/ ~ includes all elements that are equivalence
classes —ie., [X] = {Y € M :' Y ~ X}. That is, if [X ] is an element in the
quotient manifold M/ ~, then it has matrix representation X in M. In the context of
the presented fixed-rank constraint, M/ ~ is identified with the fixed-rank manifold
M. The optimization on a quotient manifold relies on defining the “linearization” of
the search space, choosing a “search” direction, and determining a way to “move” on the
manifold. We will show the details for developing these objects that allow us to develop
a first-order Riemannian conjugate gradient algorithm and second-order Riemannian
trust-region algorithm in the following part.

The quotient manifold M/ ~ is an abstract space. So we shall define a matrix repre-
sentation in the tangent space 7x M for each element of the tangent space 7| x1(M/ ~)
at [ X']. Equivalently, we should restrict the matrix representation of 7;x(M/ ~) to the
directions in the tangent space 7x M on M at X without inducing any displacement
along the equivalence class [ X']. To achieve this goal, we decompose the tangent space
Tx M into two complementary subspaces — i.e., the vertical space and the horizontal
subspace, where Vx @ Hx = Tx M. The vertical space Vx is given by the space
tangent to the equivalence class [ X]. Its complementary subspace — i.e., the horizon-
tal space Hx — can provide a modeling representation of the abstract tangent space
Tix)(M/ ~) [25, section 3.5.8]. We can always find a unique element in the horizontal
space ¢ x € Hx for any tangent vector [ x; € T;x)(M/ ~) in the abstract space at
[X]. This unique element & x is called the horizontal lift of & x. The horizontal space
is chosen as an orthogonal complement of Vx in the sense of a Riemannian metric (an
inner product), which is a subspace of Tx M.

An inner product for any two elements in the tangent space gx : Tx M x Tx M —
R at X € M is called the Riemannian metric on the total space. It further defines a
Riemannian metric g;x : Tjx(M/ ~) x Tix(M/ ~) — R on the quotient manifold
M/ ~, which is given by

ax1€xMx) = ex(Ex,nx). (15.26)

Here 1y x7 and £[x are two vectors in the abstract tangent space Tjx(M/ ~), and
nx,<&x give their horizontal lifts in H x at X . Note that the definition of Riemannian
metric on quotient manifold requires that the expression g x (£ x, 17 x ) on the total space
is irrelevant to the specific representation along the equivalence class [ X]. That is, if
Y ~ X, then the metric in (15.26) obeys the equality gx({x.nx) = gy &y, Ny)
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for 1y and &y being the horizontal lifts of 17;x and &;x) at Y. We call that such a
Riemannian metric is invariant to the equivalence relation ~.

Riemannian Metric
For fixed-rank matrices, a particular Riemannian metric that is invariant on the total
space M and takes the symmetry (15.22) into account is given by

gx(Ex.nx) = T(VIVE ) + TiW T UHE v, (15.27)

where X = (U,V) is the factorization model and {x,x € Tx M. Note that
(Eu, Ev) € REXT 5 REXT js the matrix characterization of & x (and similarly 1x).

Here we will show that (15.27) remains invariant to the transformation (15.22).
Assuming that Y € [X] is another element in the equivalent class with matrix
representation (U M -1l VM) fora particular nonsingular square matrix M, the matrix
representations of the tangent vectors £y and 1y are given by (Egrpyz-1, Ev pgr) and
(Mum-1> v M), respectively. In addition, if the horizontal lifts of & x} (similarly for
Nix7) at X and Y are respectively given by & x and &y, we have Egypr-1 = .EUM_]
and Eypar = Ey M7 [25, example 3.5.4] (similar for Ny ). It is then obtained that
gx(Ex,nx) = gy (&y, Ny ), which demonstrates the invariance of the metric (15.27)
to the transformation (15.22). Therefore, a unique metric is defined on the quotient
space M/ ~.

Matrix Representation for the Quotient Manifolds

Given the metric (15.27) defined on M, the development of Riemannian ingredients
required for Riemannian optimization algorithms follows [25]. The tangent space
Tx M, horizontal space Hx, and vertical space Vx have the following matrix

characterizations:
Tx M = REX"  REXT (15.28)
He ={Cu.Co): U VTV =U"U, VY, (15.29)
Ve = {(<UAVAT): A e R, (15.30)

where (g7, Cy € RE*T,

We further need to define a projection from the tangent space onto the horizontal
space, which is denoted by the linear operator [1x : Tx M +— Hx. For an element
nx € T'x M, the projection onto the horizontal space is given by

Mx(nx)= My +UA,ny — VATD), (15.31)

where A € R™" is obtained by ensuring that the projection of nx belongs to the
horizontal space in (15.29) and given by
Ulqu +UMNVIV =UTU(y — VADTV

15.32
= A =05, vvIv)y! —wTo)y " 'U ). (12
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By choosing the metric in (15.27) and the horizontal space as the orthogonal com-
plement of Vx, the quotient manifold M/ ~ becomes a Riemannian submersion of
(M, g) [25, section 3.6.2]. This makes it convenient to develop matrix representations of
the Riemannian ingredients on the quotient manifold M/ ~, which will be introduced
in the following part.

Riemannian Gradient
The horizontal lift of the Riemannian gradient grad; x| f of f on M/ ~ has matrix
representation
horizontal lift of grad, x1 f = gradx f = ﬁ(vTV)‘l, E(UTU)” , (15.33)
L] U FN%
where grad x f is the Riemannian gradient of f in M. 9f/9dU and 9f/dV denote the
partial derivatives of function f with respectto U and V/, respectively.

Riemannian Hessian

In order to develop second-order Riemannian optimization algorithms, we need to
define the connection Vg, 1x, which plays the role of the directional derivative of
the gradient along a search direction. Since both the Riemannian gradient and the
search direction should be elements in the tangent space for Riemannian optimization,
Riemannian connection is given as a covariant derivative of vector field nx with
respect to another vector field & x . By applying the Koszul formula [25, theorem 5.3.1],
the matrix characterization of the Riemannian connection in the total space M can be
computed as

Vexix =Dnx[éx]+ (Ay. Av) (15.34)
Ay = nuSym(EyVYVIV) ™! 4 EySym(ny, VIV V) ™!
—USym(1y, &) (VIV) ™! (15.35)
Ay = qySymEGUYUTU) ™ + &y Sym(n U)U " U)™!
— VSym(n;E)WU U, (15.36)

where the symmetric operation Sym(Z) extracts the symmetric part of matrix Z —i.e.,
Sym(Z) = (Z+ Z T)/ 2. Dnx[&x] is the Euclidean directional derivative, which is
given by

Dnxlex]:=lm (xiex —Nx)/1- (15.37)

The Riemannian connection on the quotient manifold M/ ~, denoted as Vg 4 1 x].
has a unique matrix representation [25, proposition 5.3.3] given by

horizontal lift of V¢ o nix7 = Mx (Ve x nx), (15.38)

where ;x| and 1y x are two vector fields in the quotient manifold M/ ~, and
their horizontal lifts in the total space M are respectively given by & x and 1x. The
projection operator IT x (-) follows the definition in (15.31).
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Figure 15.3 Visual representation of retraction and vector transport in Riemannian optimization

Based on the definition of Riemannian connection, we further define the Riemannian
Hessian operator Hess;x1f[&x7] as the directional derivative of the Riemannian
gradient in the direction &[x). The matrix expression for the horizontal lift of the
Riemannian Hessian in M/ ~ can be derived from (15.38) and (15.34) and is
given by

horizontal lift of Hess; x7/[&x7] = I x (Ve 5 grad x f), (15.39)

where {rx7 € Tixj(M/ ~) is a vector field in the tangent space of the quotient
manifold M/ ~ and £ x € H x is its horizontal lift.

Retraction

As we discussed, an iterative Riemannian optimization algorithm requires defining the
retraction operation Rx : Hx — M : Ex — Rx(&x) [25, definition 4.1.1],
which represents “moving in a direction” on the Riemannian manifold. A natural update
X+ = Rx (& x) on the manifold M with a search direction { x = (S, Ev) € Hx is
given by

Ry(&y)=U+¢&y, Rv(Ev)=V + <y, (15.40)

which translates into the update [ X ;] = [Rx (¢ x)] on M/ ~. The retraction operation
is illustrated in Figure 15.3(a).

Vector Transport

A vector transport [25, definition 8.1.1] Tx_y &x on a manifold M, is a smooth
mapping that transports a vector & x in the tangent space at X to a vector in the
tangent space at Y under certain conditions. For our problem where the total space is
an open subset of the Euclidean space, the matrix representation of the vector transport
is given by

horizontal lift of 7 x 1 v1&1x]1 = Ny (Ex). (15.41)

The concept of vector transport is illustrated in Figure 15.3(b).
All concrete Riemannian ingredients are summarized in Table 15.1.
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Table 15.1 Riemannian ingredients

minimizex o4, f(X) with X = UVT

Matrix representation X =U,V)

Total space M RExr 5 REXr

Group action WML, vMT"), M e GL(r)

Quotient space M/ ~ REXr 5 REXT /GL(r)

Vectors in the ambient space (Zu, Zy) € REXT x RExr

Matrix representation of a tangent vector &y, &y) € REXT 5 RExr

Ex e Tx M

Riemannian Metric for & x,nx € Tx M ex(Exnx)= Tr((VTV)élTJ nu) + Tr(UT U)é;r/nv)
Vertical space Vx {(wUA,VAT): A e R}, where A is given by (15.32)
Horizontal space H x {Cu.Cv) e RO xRE . UT(y VTV = UTUC(,V}
Projection of a vector nx € Tx M onto the Nx(nx)=0Qu+UAnv — V AT), where A is given by
horizontal space H x (15.32)

Retraction of a vector & x in the horizontal space Rx(Ex)=U+ ¢y, V+<Ev)

onto the manifold
Matrix representation of the Riemannian gradient (%(VT V)L, %(UTU)_I), where 0f /U and df /0V

grad x f are the partial derivatives of f with respect to U and V,
respectively

Matrix representation of the Riemannian Hessian [Mx (Ve 5 grad x f), where grad x f has the representation

Hess x f[& x ] along a vector ¢ x in the horizontal —shown above, the Riemannian connection V¢ 5 17 x is given

space in (15.34), and the projection operator ITx is defined
in (15.31)

Matrix representation of the vector transport of £ x Iy (& x ), where the projection operator Ty~ is defined in
at the horizontal tangent space of X to the tangent  (15.31)
space of Y’

Riemannian Optimization Algorithms

Based on the matrix representations of the Riemannian ingredients on abstract search
space M,/ ~, we shall implement Riemannian optimization algorithms in the compu-
tation space M. To trade off the computational complexity and the convergence rate,
we present a first-order Riemannian conjugate gradient algorithm and a second-order
Riemannian trust-region algorithm in this subsection.

Riemannian Conjugate Gradient Method

The Riemannian gradient descent algorithm takes the search direction as the negative
Riemannian gradient and the step size, which is determined by backtracking the line
search method following the Armijo rule [25, 4.6.3]. The search direction for the
Riemannian conjugate gradient method at iteration i can be expressed as E; :=
—grady. f + BiTx;_;—>x;(Ei—1), where grady f € Hx is the Riemannian gradient
at point X; € M,. The parameter f8; can be chosen following the generalized version
of Hestenes-Stiefel [43], which is given by

8 (gradxi f, gradxi f=Tx,_,-x (gradx,.,l )
8y, (Bi—1,grady, f — Tx;—»x;(grady, , f))

(15.42)

i
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Consequently, the sequence of the iterates for Riemannian conjugate gradient method
is given by

Xit1 = Rx,; (i), (15.43)

where «; denotes the step size.

Riemannian Trust-Region Method

The Riemannian trust-region algorithm extends the trust-region method in Euclidean
space [44, chapter 4] to a Riemannian quotient manifold with superlinear rate conver-
gence, whose global convergence have been proved in [25, chapter 7]. It is achieved
by iteratively solving the trust-region subproblem on M/ ~ at each iteration. In the
trust-region subproblem, we shall minimize the locally quadratic approximation of the
objective function f : M — Rat X € M,

o 1
minimizeg x (< x, grad x f) + ng(éx,HeSSXf[éx])

Exerflx

subject tog x (& x, Ex) < A%, (15.44)

where A denotes the trust-region radius.

The solution &x to the trust-region sub-problem (15.44) is a direction in the
horizontal space that minimizes the quadratic approximation. By checking whether the
cost function has sufficient decrease or not, we can accept or reject a potential iterate.
The concrete matrix characterizations of projection operator (15.31), retraction (15.40),
Riemannian gradient (15.33), and Riemannian Hessian (15.39) allow to adopt an off-
the-shelf trust-region implementation on Riemannian manifolds with the Manopt [41]
or Pymanopt [42] toolbox, which implements [25, algorithm 1] for inexactly solving
the trust-region subproblem at each iteration.

Convergence and Computational Complexity

Both the first-order Riemannian conjugate gradient algorithm and the second-order Rie-
mannian trust-region algorithm are globally convergent under some mild assumptions
on the objective function [23]. Starting from an arbitrary initial point, the Riemannian
conjugate gradient algorithm converges to first-order KKT points, while the Riemannian
trust-region algorithm converges to second-order KKT points. Theoretically, their worst-
case global convergence rates —i.e., the required number of iterations given a fixed target
accuracy — are also established.

The numerical complexity of the Riemannian optimization algorithm for solving
(15.21) depends on the computational cost for (i) computing partial derivatives of the ob-
jective function f and (ii) performing manifold-related operations. The computational
cost of these operations is listed below:

1. Computing the partial derivatives of the objective function f with respect to U
and V: O((K + |S)r)
2. Computing the Riemannian gradient according to formula (15.33): O(K 2453
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3. Performing the projection operation (15.31): O(Kr? + r3)
4, Performing the retraction operation R x in (15.40): O(Kr)
5. Computing the Riemannian Hessian with the formulas (15.38): O(Kr? + r3)

It is clear that the computational complexity of manifold-related operations are linear in
K and |S], and cubic in r.

Numerical Results

In this section, we conduct numerical experiments by choosing the topological interfer-
ence management problem Prpy in partially connected K -user interference channels as
a representative example.

We compare the convergence rates of the Riemannian optimization algorithms with
other state-of-the-art methods. The Riemannian conjugate gradient algorithm and the
Riemannian trust-region algorithm are termed “CGRP” and “TRRP,” respectively, and
randomly initialized. These two algorithms are compared to the following state-of-the-
art algorithms:

. LRGeom: In this algorithm, we adopt the manifold optimization algorithm for
fixed-rank optimization developed in [22] to solve problem Prpy. This is based
on embedded manifold instead of quotient manifold and termed “LRGeom.”

. LMaFit: This algorithm adopts the alternating minimization scheme with rank
adaptivity to solve problem Ptnv [45].

Consider a partially connected 100-user interference channel, and we generate 400
interference links uniformly at random. The convergence rates of different algorithms
are shown in Figure 15.4(a) and Figure 15.4(b) for fixed-rank optimization problem P,
(15.21) with r = 4 and r = 5, respectively. We define the metric as the normalized
residual —i.e., € = [|[Po(X) —Ikl|lF/ VK. Numerical results in both figures demon-
strate that the Riemannian trust-region algorithm TRRP has the fastest convergence
rate and the highest precision solutions in only a few iterations among other three
algorithms. The Riemannian conjugate gradient CGRP achieves a faster convergence
rate than LRGeom [22], benefiting from exploiting the invariance on quotient manifold.
The convergence rate of alternating minimization approach LMaFit [45] is the lowest
among all algorithms. We also find that the TRRP algorithm returns a solution with rank
four under the stopping criterion € < 10~ according to the two figures. Although both
CGRP and LRGeom yield rank five solutions, the LRGeom algorithm achieves a slower
convergence rate. In contrast, we can only obtain a solution with rank larger than five
via the LMaFit algorithm under the stopping criterion € < 107°.

In this experiment, we show the achievable symmetric DoF of the Riemannian trust-
region algorithm. Consider a partially connected 30-user interference channel. We gen-
erate the sets of connected interference links uniformly at random with probability of
each pair (i,j) € Sas p fori # j. Given p and rank parameter r, we simulate and
average over 100 realizations of network topology. The phase transition behavior of
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Figure 15.4 Convergence rate with the rank of matrix X as four and five, respectively
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Figure 15.5 Phase transitions for the topological interference management problem for a partially
connected K -user interference channel (K = 30). The heat map indicates the empirical
probability of success (dark color = 0 percent; light color = 100 percent).

the generalized low-rank optimization in topological interference management is shown
in Figure 15.5. It characterizes the relationship between the achievable DoF and the
number of connected interference links on average. It is observed that increasing the
number of connected interference links leads to a decreasing success probability of
recovering the incomplete side information modeling matrix given rank r. This result
thus provides a guideline for the content placement in cache-aided interference channels
and network deployment in dense wireless networks.
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In summary, the presented Riemannian optimization algorithms have demonstrated
their effectiveness by exploiting the quotient geometry of the fixed-rank manifold, as
well as utilizing the second-order optimization method. Particularly, there exists a trade-
off between the achievable symmetric DoF and the computational complexity using
first-order CGRP algorithm (applicable in large-sized networks) and the second-order
TRRP algorithm (applicable in small-sized and medium-sized networks).

Summary and Discussion

This chapter presented the generalized low-rank optimization approach for optimizing
across communication, storage, and computation resources in ultra-dense Fog-RANs
by exploiting side information and network structures. Illustrative application examples
presented the incomplete matrix representations of modeling various types of network
side information. The frameworks of developing both the first-order Riemannian conju-
gate gradient algorithm and second-order Riemannian trust-region algorithm on fixed-
rank quotient manifold was provided. Their effectiveness for designing ultra-dense Fog-
RANSs has been demonstrated from the presented methodologies and numerical results.

There remain a number of interesting questions despite the encouraging progress.
Heretofore, the main applications of the generalized low-rank optimization techniques
are concentrated upon improving the network spectral efficiency and energy efficiency
in ultra-dense Fog-RANSs. The theoretical analysis for the generalized low-rank opti-
mization models-and algorithms is also an interesting topic. Significant progress has
been made in the theoretical analysis of convex relaxation approaches [46] and non-
convex procedures for low-rank optimization problems. But it is still difficult to extend
current theoretical consequences to the generalized low-rank optimization problems P
and P because of the complex architectures. In the end, there are various interesting
research directions for improving the computational scalability of kinds of algorithms —
e.g., using randomized algorithms based on sketching.
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