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Abstract—As the blooming development of data mining in
social computing systems (e.g., crowdsourcing system), statistical
inference from crowdsourced data severs as a powerful tool
to provide diversified services. To support critical applications
(e.g., recommendation), in this paper, we shall focus on the
collaborative ranking problems and construct a system of which
the input is crowdsourced pairwise comparisons and the output
is individual rankings. Under the Bradley-Terry-Luce (BTL)
parametric model assumption, we present a maximum likelihood
estimation (MLE) based on low-rank approach to estimate the
underlying weight/score matrix, thereby predicting the individ-
ual ranking for each user. To address the unique challenge
of the coupled non-convex low-rank constraint and the non-
smooth elementwise infinity norm constraint in the resulting
MLE problem, we propose a novel regularized formulation
with the smoothed surrogate of elementwise infinity norm. By
further exploiting the geometry of quotient manifolds of fixed-
rank matrices, we solve the resulting smoothed rank-constrained
optimization problem via developing the Riemannian trust-region
algorithm which converges to an approximate local minimum
from arbitrary initial points. Numerical results demonstrate the
extraordinary effectiveness of the proposed method compared
with the state-of-art algorithms.

I. INTRODUCTION

Crowdsourcing is one of the most ubiquitous computing

systems empowering crowded users to involve in social in-

teraction, share their creativity, devote their ingeniousness,

distribute information and collectively handle complicated

issues [1]. Over the past decade, it has emerged as a powerful

and low-cost tool to deal with large-scale data for data mining

[1]. In particular, there is rich literature on statistical inference

from crowdsourced data, such as evaluating the machine

learning models, clustering data and scening recognition [1].

In recent years, there is a growing body of works on infor-

mation recovery based on pairwise measurements which spans

various fields, such as pairwise difference for community

detection [2] and pairwise distance for localization [3]. In

particular, pairwise comparison has been exploited for rank-

ing prediction [4] with applications such as user preference

prediction in recommendation systems [5]. Compared with

the conventional numerical measurement in ranking problems,

pairwise comparison measurement has advantages in statistics

[6] and manageability. In this paper, we are particularly

interested in the problem of ranking prediction from pairwise

comparisons in crowdsourcing system. To further reduce the

overhead of data collection, only partial pairwise comparisons

are required.
After collecting pairwise measurements in crowdsourcing

system, underlying information needs to be revealed. For

ranking problem, aggregate ranking [7] and collaborative

ranking [5] are two typical problems by assuming the existence

of the underlying preference weight/score vector and matrix

respectively. A line of works focuses on estimating matrix

or vector from parametric models, such as Bradley-Terry-

Luce (BTL) model [7], [8], strong stochastic transitivity (SST)

[4] model and mixture model [4]. In this paper, to support

efficient algorithm design, to allow the heterogeneity of the

workers in social computing system, as well as to exploit

diversity of preferences among items, we assume that the

pairwise comparison measurements follow the BTL model

with weight/score matrix as the parameters. Furthermore, the

underlying preference weight matrix in the BTL model is

assumed to be low-rank based on the fact that preferences

are only affected by a few factors [9]. This property improves

the possibility of recovering the exact ranking lists only based

on partial pairwise measurements.
In this paper, we present the maximum likelihood estimation

(MLE) approach to estimate the underlying weight/ score

matrix under the BTL model, followed by the individual

rankings recovery based on the estimated weight/score matrix.

Therein, elementwise infinity norm constraint is introduced to

avoid the excessive “spikiness” of the score matrix. To address

this non-convex and highly intractable low-rank optimization

problem, inspired by the recent works [10], [11], we propose a

smoothed Riemannian trust-region algorithm to solve the low-

rank optimization problem. The proposed Riemannian trust-

region algorithm converges to an approximate local minimum
x∗ [10], which satisfies ‖∇f(x∗)‖ ≤ ε and ∇2f(x∗) �
−√εI with a sufficiently small ε [12], from arbitrary initial
points. The proposed algorithm enjoys the faster convergence

rate and better performance than state-of-art algorithms, such

as spectral project-gradient (SPG) algorithm [13] and Bi-factor

gradient descent (BFGD) [14].
We summarize the major contributions to the ranking prob-

lem from crowdsourced pairwise comparisons as follow:

• We present a low-rank optimization approach with pair-

wise measurements for ranking problem. To address

the unique challenge of coupled non-convex fixed-rank
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constraint and non-smooth elementwise infinity norm

constraint, we recast the original problem as a rank-

constrained smoothed regularized optimization problem

via smoothing the elementwise infinity norm function.

• To adopt the versatile framework of Riemannian opti-

mization, we generalize the classical geometric concepts

(e.g., the notion of length, set of directional derivatives,

motion along geodesics, gradient and Hessian) in the

Euclidean space to the geometric concepts (e.g., the

notion of Riemannian metric, tangent space, retraction,

Riemannian gradient and Riemannian Hessian) on the

quotient manifold of fixed-rank matrices.

• To reduce the computational cost and achieve good

performance, we develop the smoothed Riemannian trust-

region algorithm to solve the rank-constrained smoothed

optimization problem. It turns out that the proposed

smoothed Riemannian optimization algorithm converges

to an approximate local minimum from arbitrary initial
points.

Simulation results will show the proposed smoothed regular-

ized approach supported by Riemannian trust-region algorithm

outperforms the state-of-art algorithms in terms of both per-

formance and computational efficiency.

II. RELATED WORK

A growing body of works has clear and strong theoretical

guarantees on the semidefinite programming approach (SDP)

via nuclear norm relaxation for low-rank matrix optimization

[5], [8], [13]. However, the computational and memory re-

quirement for solving an SDP problem is prohibitive from

being moderated to high-dimensional data problem. This mo-

tivates the development of matrix factorization X ∈ R
m×n

as UV T where U ∈ R
m×r and V ∈ R

n×r to reduce

the computational and storage cost. Several papers e.g.,[11],

have provided various algorithms to address this non-convex

optimization problem with respect to U and V .

Specifically, a line of works on low-rank matrix optimiza-

tion (e.g., [15], [16], [17]) showed that based on a good enough

initial point, basic local search algorithms, including gradient

descent (GD), stochastic gradient descent (SGD), alternating

minimization (AltMin) and block coordinate descent (BCD)

methods, enjoy fast local convergence to global minimum.

In addition, the work [14] proposed well-initialized Bi-factor

gradient descent (BFGD) algorithm converging to the rank-r
approximation to the underlying matrix. However, works like

[10], [18], [19], [20], [21] eschew the need for careful initial-

ization procedures while still achieve theoretical guarantees.

In particular, the recent work [11] showed Riemmanian

trust-region (RTR) algorithm globally converges to an ap-
proximate local minimum x∗ on manifolds from arbitrary
initial points. In this paper, motivated by the benefits of

computational efficiency, remarkable convergence results and

initialization robustness, we thus exploit the Riemannian trust-

region algorithm in this paper.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present the data model and problem

formulation under the framework of crowdsourcing system.

A. Data model

Consider a crowdsourcing system where the organizer dis-

tributes the task of providing preferences among n items to m
crowd users. Instead of the generic numerical measurement,

we collect pairwise comparisons {Yijk ∈ {1,−1} : (i, j, k) ∈
Ω} with Ω ⊆ [m]× [n]× [n] as the observation set, where [n]
represents the set {1, 2, · · · , n}. Here, Yijk = 1 denotes that

the user i prefers item j to item k, otherwise Yijk = −1.

The main purpose for employing pairwise comparisons is

to address the inconsistencies among various users. Due to

the lack of standardization of numerical rating system, it is

arduous to normalize data provided by distinct workers, which

induces uncertainties [6].

We analyze the observation variables under the well-known

BTL model associated with the logistic distribution [22]. The

logistic function is given by f(z) = 1
1+exp(−z

σ )
, where

the parameter σ > 0. Specifically, let X ∈ R
m×n be the

underlying preference score/weight matrix, then the pairwise

comparison outcome between item j and k provided by user

i is given by [13]

Yijk =

{
+1 w.p. f(Δijk)

−1 w.p. 1− f(Δijk)
∀ (i, j, k) ∈ Ω, (1)

where Δijk = Xij−Xik; “w.p.” is short for “with probability”

and Ω is the index set of the obtained pairwise comparison

measurements. Note that the observations are assumed to be

independent with each other.

In this paper, we are interested in the individual rankings

recovery problem, for which, we introduce an associated score

τ
(i)
j for each user i ∈ [m] over the item j ∈ [n], which is

defined as [4]

τ
(i)
j :=

1

n

n∑
k=1

f(Δijk). (2)

That is to say, the score τ
(i)
j associated with user i represents

the probability that item j is preferred to an item chosen

uniformly at random among all n items. Assume that the

scores τ
(i)
j are strictly distinct from each other for each user

with high probability. Then a ranking list for user i over a set

of n items is given by a mapping π : [n]→ [n] such that

τ
(i)
π(1) > τ

(i)
π(2) > · · · > τ

(i)
π(n), (3)

where π(k) denotes the k-th ranked item according to the

scores derived from (2).

Our goal is to recover the individual rankings (3) for all

users. This is achieved by estimating the weight matrix X
from pairwise comparisons [5]. The weight matrix is further

assumed to be low-rank, which is based on the fact that only

a small number of factors affect the preference [23].
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B. Maximum-Likelihood Estimation of Weight Matrix

We adopt the maximum-likelihood estimation (MLE)

method to estimate the weight matrix X with partial pairwise

measurements. Based on the BTL model for the pairwise

comparisons (1), the negative log-likelihood function is given

by [13]

LΩ,Y (X) = −
∑

(i,j,k)∈Ω

{
I(Yijk=1)log(f(Δijk))

+I(Yijk=−1)log(1− f(Δijk))
}
, (4)

where Y ∈ {1,−1}m×n×n represents observed pairwise

comparisons and Iμ denotes the indicator function, i.e., Iμ = 1
when the event μ is true, otherwise, Iμ = 0. To recover the

low-rank weight matrix X , we minimize the negative log-

likelihood function under the exact rank constraint as follows:

minimize
X∈Rm×n

LΩ,Y (X)

subject to rank(X) = r, (5)

where r�min{m,n} is the prior information denoting the

rank of weight matrix. Note that LΩ,Y (X) can be further

written as LΩ,Y (X) = −∑
(i,j,k)∈Ω log(f(Yijk(Xij−Xik))).

Furthermore, to avoid the excessive “spikiness” of the

matrix and ill-posedness of problem (5), we impose the

elementwise infinity norm constraint to bound the magnitude

of each element in matrix X [8]. The estimation problem (5)

thus can be rewritten as

minimize
X∈Rm×n

LΩ,Y (X)

subject to rank(X) = r, ‖X‖∞ ≤ α, (6)

where α > 0 is an arbitrary reasonable parameter and

‖X‖∞ = maxi,j |Xij | is the elementwise infinity norm.

However, problem (6) is non-convex due to the fixed-rank con-

straint. In this paper, we aim at providing efficient algorithms

to solve this non-convex estimation problem with near-optimal

performance.

C. Problem Analysis

The original problem (6) is NP-hard due to the fixed-rank

constraint. In this subsection, we present the existing methods

for solving the low-rank optimization problems and analyze

their limitations.

Convex relaxation approach. Nuclear norm was adopted

in [5], [8], [13] to serve as a convex relaxation for both rank

constraint and elementwise infinity norm constraint, yielding

the following formulation:

minimize
X∈Rm×n

LΩ,Y (X)

subject to ‖X‖∗ ≤ α
√
rmn, (7)

where ‖X‖∗ denotes the nuclear norm of X . Note that the

estimated matrix X is required to be scaled to ‖X‖∞ = α
to ensure the elementwise infinity norm constraint in (6).

Though problem (7) can be formulated as a semidefinite

programming (SDP), the computational cost of solving SDP

often limits applicability to large-dimensional data set. This

challenge motivates the development of scalable computational

methods, such as non-monotone spectral projected-gradient

(SPG) method [13] based on the projected gradient descent

method, Newton-ADMM method [24] and splitting conic

solver (SCS) [25], both of which is based on projections

onto positive semidefinite cone with respect to problem (7).

However, calculating projections via singular value decompo-

sition is too computationally expensive at each iteration. The

extension of such convex paradigms to large-dimensional data

is still inapplicable.

Non-convex Optimization Paradigms. Non-convex opti-

mization algorithms are ubiquitous in a line of recent works

[14], [11] for practical applications due to the low computa-

tional complexity via matrix factorization (i.e., factoring X
as UV T , where U ∈ R

m×r and V ∈ R
n×r). The common

method guaranteeing the elementwise infinity norm constraint

is to utilize log-barrier penalty function [26], [27, Section

11.2]. Thus, the original problem (6) can be reformulated to

the following non-convex optimization problem [28]:

minimize
U∈Rm×r,V ∈Rn×r

LΩ,Y (UV T )− 1

τ
R(U ,V ), (8)

where R(U ,V ) =
∑

a,b log(1 − (Ua,.Vb,./α)
2) and Ua,.

denotes the a-th row of U and Vb,. denotes the b-th row of

V . The parameter τ determines the tightness of approximation

of elementwise infinity norm constraint via the log-barrier

function. This problem can be resolved by the log-barrier

method [27] via solving a sequence of convex problems with

the gradient descent algorithm [28]. This can be achieved by

the Bi-factor gradient descent algorithm (BFGD) via updating

factorizations simultaneously [14]. Note that the estimated

matrix X is required to scale to ‖X‖ = α. However, the outer

iteration of log-barrier method increases the computational

complexity. The first-order method, BFGD, also yields slow

convergence rate.

In this paper, we exploit the quotient manifold of fixed-rank

matrices to remove the indeterminacy for matrix factorization.

Then we shall develop the Riemannian trust-region algorithm

under the Riemannian optimization framework satisfying the

Lipschitz-type assumptions. The algorithm guarantees to glob-

ally return an approximate local minimum [12]. However,

challenge arises due to the additional non-smooth elementwise

infinity norm constraint when pursuing to satisfy Lipschitz-

type assumptions provided in [10]. The procedure of address-

ing this issue will be discussed in next section.

IV. REGULARIZED SMOOTHED MLE FOR SCORE MATRIX

ESTIMATION VIA RIEMANNIAN OPTIMIZATION

The commonly used log-barrier penalty regularization

method [27], [28] fails to satisfy the requirement for imple-

menting Riemannian trust-region algorithms (i.e., Lipschitz

gradient and Lipschitz Hessian) due to infiniteness near the

boundary of feasible set. Thus, we recast the low-rank MLE

problem (6) to the smoothed regularized version in order to

develop matrix manifold optimization [29] in this section.
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A. Computational Opportunities via Smoothing Methods

Based on Theorem 4.2 in [30], we choose log
∑

ij e
X2

ij as

the smoothed surrogate of ‖X‖2∞ to assure the constraint

‖X‖2∞ ≤ α2 in problem (6). As a result, the regularized

smoothed version of problem (6) can be written as

P : minimize
X∈M

F (X) := LΩ,Y (X) + λ logN(X), (9)

where N(X) =
∑

i,j e
X2

ij and λ = r2
√
K logK is a

constant regularized parameter to well approximate problem

(6) [31]. Note that the estimated matrix X needs to be scaled

to ‖X‖∞ = α. The complicated structure of the objective

function (9) yields unique challenges in generalizing geometric

concepts in the Euclidean space to the geometric concepts

on the quotient manifold of fixed-rank matrices. The effort

that we make to compute matrix manifold optimization related

ingredients will be presented in Section V-B.

Moreover, the objective function F (X) is smooth and

convex over the compact convex set in the Euclidean space

R
m×n, inducing the Lipschitz continuous gradient and Lip-

schitz continuous Hessian in manifold M [10]. The smooth

convex structure of problem (9) lays the foundation to develop

sophisticated algorithms on the manifold M which will be

explained in the next section.

B. Quotient Manifold Space

The main idea of Riemannian optimization for rank-

constrained optimization is based on matrix factorization.

Specifically, the balanced factorization, i.e.,

X = (UΣ
1
2 )(Σ

1
2V T ) = LRT , (10)

takes advantages of lower-dimensional search space [32]

over the other general forms of matrix factorization (e.g.,the

subspace-projection factorization and the polar factorization).

However, the balanced factorization is not unique as the

transport operation (L,R) �→ (LM−1,RMT ) makes the

original matrix X = LM−1(RMT )T = LRT unchanged,

where M ∈ GL(r) = {M ∈ R
r×r : det(M) 
= 0} is

the Lie group containing all r × r invertible matrices [33],

[34]. Therefore, to address this issue, the search space for

problem P should be identified with the quotient space
M/ ∼:= (Rm×r

∗ ×Rn×r
∗ )/GL(r), whereM := R

m×r
∗ ×Rn×r

∗
is the computational space, GL(r) is the fiber space and ∼
represents the equivalence relation. The dimension of M/ ∼
is (m + n − r)r and this quotient space describes the set of

equivalence classes

[(L,R)] = {(LM−1,RMT ) : M ∈ GL(r)}. (11)

Since the quotient manifold M/ ∼ is an abstract space, to

design algorithms, the corresponding matrix representations of

geometric objects in M/ ∼ are needed. Based on the theory

of Riemannian submersion [33, Section 3.6.2], the matrix

representations can be obtained in the computational space.

Xk

Xk+1

RXk

M

TXk
M αξXk

∇F (Xk)

ΠTXk
M

Fig. 1. Graphical representation of the concept of matrix manifold optimiza-
tion.

V. MATRIX OPTIMIZATION OVER QUOTIENT MANIFOLDS

In this section, we develop the matrix optimization algo-

rithm over the quotient manifold space endowed with fixed-

rank matrices.

A. The Framework of Riemannian Optimization

A Riemannian metric in the computational space is required

to assure the structure of quotient space on which optimization

algorithms are developed. In particular, the Riemannian metric

gX : TXM× TXM → R is an inner product between the

tangent vectors on the tangent space TXM, which is invariable

along the set of equivalence classes (11). According to [33,

Example 3.6.4], we choose the natural metric for the space

Rm×r
∗ ×Rn×r

∗ , given by [29]

gX(ζX , ξX) = Tr((LTL)−1ζT
LξL) + Tr((RTR)−1ζT

RξR),
(12)

where ζX = (ζL, ζR), ξX = (ξL, ξR) and X = (L,R).

With respect to the metric, the tangent space TXM at the

point X can be represented as the sum of two complementary

spaces:

TXM = VXM⊕HXM, (13)

where VXM is the vertical space and HXM is the horizontal
space. Specifically, directions of vectors in the vertical space

VXM are tangent to the set of equivalence classes (11)

and directions of vectors in the horizontal space HXM are

orthogonal to the set of equivalence classes [X] (11). Thus,

vectors ξX ∈ HXM are invariant along the equivalence

class [X] (11). Let T[X](M/ ∼) denote the tangent space

at point [X] on the quotient space M/ ∼, then there exists

unique element ξX ∈ HXM being the matrix representation

of ξ[X] ∈ T[X](M/ ∼), called the horizontal lift of ξ[X] at

X [33, Section 3.5.8].

Based on the above discussion, the general process of Rie-

mannian optimization framework in the computational space

M can be briefly described as searching the descent direction

ξX with steepest decrease in F (X) on the horizontal space

HXM. Then retract the vector ξX onto the manifold via the

operation RX : HXM → M called retraction. Based on

notions above, a generic matrix manifold optimization algo-

rithm is presented in Algorithm 1. In addition, the graphical

representation of Algorithm 1 is illustrated in Fig.1.
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Algorithm 1: Matrix Manifold Optimization

Given: Riemannian manifold M with Riemannian metric g;

retraction mapping R; objective function F and the

stepsize α.

Output: Xk

1: Initialize: initial point X0, k = 0
2: while not converged do
3: Compute a descent direction ξk. (e.g., via

implementing trust-region method)

4: Update Xk+1 = RXk
(αξk)

5: k = k + 1.

6: end while

B. Optimization Related Ingredients

In this subsection, we present the matrix representations of

abstract geometrics objects on the quotient manifold in detail

to develop Riemannian optimization algorithms.

Riemannian gradient. The Riemannian gradient gradXf ∈
TXM satisfies [33]

gX(ξX , gradXf) = Df(X)[ξX ] (14)

where Df(X)[ξX ] denotes the Euclidean directional deriva-

tive of the objective function f(X) in the direction of ξX ∈
TXM. Thus, the Riemannian gradient is deduced from the

Euclidean derivative of f(X) computed in the sequel.

Let Mijk(X) denote Yijk(Xij − Xik), which is a linear

function of which the derivative with respect to the matrix X
is

M ′
ijk(X) = Yijkδij − Yijkδik, (15)

where δij is a m × n matrix with [δij ]ij = 1 and the rest

being zeros. Let Lijk(X) denote log(f(Yijk(Xij − Xik)))
which is the separated element of the summation LΩ,Y (X).
Additionally, the derivative of N(X) is derived as N ′(X) =
2X ◦ exp(X◦2), where ’◦’ denotes the Hadamard product op-

eration, i.e., elementwise product/power. Hence, the Euclidean

derivative of f(X) is given as

grad(X) = ∇LΩ,Y (X) + λ Q(X), (16)

where ∇LΩ,Y (X) =
∑

(i,j,k)∈Ω L′ijk(X)M ′
ijk(X) and

Q(X) = N ′(X)
N(X) .

The Riemannian Hessian is given by [29]

HessXf [ξX ] = ΠHXM(∇ξX
gradXf), (17)

where gradXf denotes the Riemannian gradient; ΠHXM is a

projection operator mapping a tangent vector ηX ∈ TXM
onto the horizontal space HXM [33] given in [29] and

∇ξX
gradXf is the Riemannian connection revealed in the

following.

Riemannian Hessian. The Riemannian connection of ηX ∈
TXM in the direction of ξX ∈ TXM is defined as

∇ξX
ηX = DηX [ξX ] + (AL,AR), (18)

where (AL,AR) is given in [29]. Thus, the Riemannian

connection ∇ξX
gradXf can be deduced from the second-

order partial derivatives of f(X). Therein, the partial di-

rectional derivative with respect to L in the direction of

ξX := (ξL, ξR) ∈ TXM is written as

∇2
Lf(X)[ξX ] = ∇grad(X)[ξX ] ·R+ grad(X) · ξR (19)

where grad(X) is the Euclidean derivative of the objective

function f(X). While the second-order partial derivative with

respect to R is similar as that in (19). Furthermore, the

directional derivative of Euclidean gradient in (19) in the

direction of ξX is derived as

∇grad(X)[ξX ] = ∇2LΩ,Y (X) + λ DQ(X)[ξX ], (20)

where

∇2LΩ,Y (X) =
∑

(i,j,k)∈Ω

[
Mijk(ξLR

T +LξTR
)
] · L′′ijk(X)M ′

ijk(X)

(21)

and the directional derivative of Q(X) in the direction of ξX
is written as

DQ(X)[ξX ] = 1
N2(X)

[
N(X)(2eX

◦2
+ 2X ◦N ′(X)) ◦K

−N ′(X) ·∑ij(N
′(X) ◦K)ij

]
(22)

where K = ξLR
T+LξTR. To sum up, the optimization-related

ingredients for problem P are presented in Table I. More

details about fixed-rank Rimannian optimization can be further

referred to [29].

C. Trust Region Algorithm

Based on the aforementioned matrix manifold optimization

framework and the matrix representations, we present the trust-

region algorithm. Consider a sequence of iterates X0,X1, · · ·
and assume the current iterate Xt ∈ M . The trust-region

subproblem is formulated as

minimize
ξXt∈HXtM

m(ξXt)

subject to gXt(ξXt , ξXt) ≤ δ2t , (23)

where δt is the trust-region radius in t-th iteration and the cost

function in the problem (23) is written as

m(ξXt) = F (Xt)+gXt(ξXt , gradXt
f)

+
1

2
gXt(ξXt ,HessXtf [ξXt ]), (24)

where gradXt
f and HessXt

f [ξXt
] are the matrix representa-

tion of the Riemannian gradient and Riemannian Hessian on

the quotient manifold, respectively.

The trust-region radius δt is adjusted according to current

iterate. The new iterate is updated according to

Xt+1 = RXt(ξXt), (25)

where the retraction mapping operator RXt : HXM → M
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TABLE I
OPTIMIZATION-RELATED INGREDIENTS FOR PROBLEM P

P : minimize LΩ,Y (LRT ) + λ logN(LRT )
Matrix representation of an element X ∈ M X = (L,R)
Computational space M R

m×r
∗ × R

n×r
∗

Quotient space M/ ∼:= (Rm×r
∗ × R

n×r
∗ )/GL(r)

Metric gX(ζX , ξX) for ζX , ξX ∈ TXM gX(ζX , ξX) = Tr((LTL)−1ζT
LξL) + Tr((RTR)−1ζT

RξR)
Riemannian gradient gradXf gradXf = (gradLf, gradRf) = (∇LF (X)LTL,∇RF (X)RTR)
Riemannian Hessian HessXf [ξX ] HessXf [ξX ] = ΠHXM(∇ξX gradXf)
Retraction RX : TXM → M RX(ξX) = (L+ ξL,R+ ξR)

in each iteration is given by

RX(ξX) = (L+ ξL,R+ ξR), (26)

where ξX := (ξL, ξR) ∈ HXM [29]. More details on the

trust region method can be found in [33].

VI. EXPERIMENTS

In this section, we conduct experiments on synthetic data

to validate the effectiveness of the proposed smoothed ma-

trix manifold optimization algorithm for individual rankings

recovery from pairwise comparisons.

A. Synthetic Data and Performance Metric

We run our simulations with synthetic data and results are

evaluated with well-defined performance metric. The simula-

tion settings are given as follows:

1) Weight matrix X∗: We generate the weight/score matrix

X∗ = UV T , where U ,V ∈ R
K×r have i.i.d. entries

uniformly chosen from [−0.5, 0.5]. Matrix X∗ are then

scaled so that ‖X∗‖∞ = 1.

2) Pairwise comparisons Yijk: The pairwise comparisons

are derived from the BTL model with the underlying

weight matrix X∗ and σ = 0.18 [13].

3) Observation/sampling set Ω: Given the sample size

of Ω as |Ω|, we choose |Ω| independent observations

uniformly at random.

4) Performance metric: After scaling X such that

‖X‖∞ = 1, we adopt the relative mean square error

(MSE) to evaluate the performance of weight matrix

estimation [5]

err(X) = ‖X −X∗‖2F /‖X∗‖2F . (27)

In particular, we compare three algorithms described as:

• Proposed Riemannian trust-region algorithm solving
log-sum-exp regularized problem ( PRTRS): The al-

gorithm uses Manopt [36] to solve the problem (9).

• Bi-factor gradient descent solving log-barrier regu-
larized problem (BFGDB): This algorithm [14] solves

the problem (8). The regularization term coefficient τt is

set to μ · τt−1 during t-th outer iteration of the algorithm

[27], [28]. Meanwhile, Bi-factor gradient descent with the

constant stepsize being s := 2
187{ 1

‖U0‖2F
, 1
‖V0‖2F

} [14] is

implemented in the inner iteration.
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Fig. 2. Rate of convergence of different algorithms.

• Spectral projected-gradient (SPG): In this algorithm

[13], we adopt codes provided in [13] to solve the

problem (7) with setting the elementwise infinity norm

constraint coefficient α equal to ‖X∗‖∞ [5].

We set K = m = n for all experiments. All algorithms

are initialized with U0,V0 whose entries are i.i.d. and drawn

form the standard normal distribution, which are scaled to

‖X0‖∞ = 0.95 with X0 = U0V
T
0 . In PRTRS algorithm,

it is terminated either the norm of Riemannian gradient

‖gradXt
f‖ < 10−6 or the number of iterations exceeding

500. The stopping criterion for inner iteration of BFGDB is the

same as [14] and it is also ended when ‖X‖∞ ≥ 1. As for the

outer iteration of BFGDB, the regularization term coefficient

τ1 is set to mn/LΩ,Y (X0) and the number of outer iterations

is

⌈
logmn− log η − log τ1

logμ

⌉
(28)

where η = 10−3 and μ = 2 [27], [28]. The setting for SPG

algorithm is the same as [13].

B. Evaluation

Convergence Rate Consider the circumstance with K =
200 and the sampling size being (drKlogK), where d = 15
and r = 15 denote the rescaled sample size and the rank

of weight matrix respectively [8], Fig. 2 demonstrates the

convergence rate of different algorithms.
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Relative MSE with Different Sample Sizes Under the

circumstance of K = 200 and r = 10, we simulate with

different sample sizes (drK logK) [8]. We conduct numer-

ical experiments averaged over 100 realizations to compare

these three algorithms. Fig. 3 demonstrates the Relative MSE

corresponding to different rescaled sample sizes d.

Computation Time with Different Problem Sizes With

fixed parameters as r = 10 and d = 5, we conduct the numer-

ical experiments averaged over 100 realizations to simulate

three algorithms with different sizes K. Fig. 4 demonstrates

the computational time with different sizes K.

In summary, simulations demonstrate that the proposed

Riemannian trust-region algorithm significantly outperforms

the BFGD and SPG algorithm in terms of speedups (i.e.,

rate of convergence and computational time) and performance

(i.e., MSE). In particular, the effectiveness of the proposed

Riemannian trust-region algorithm is achieved by exploiting

the structures of fixed-rank matrices and smoothed objective

function.

VII. CONCLUSIONS

In this paper, we develop a low-rank approach based on

maximum likelihood estimation (MLE) with coupled rank

constraint and elementwise infinity norm constraint to recover

individual rankings from pairwise comparisons in social com-

puting system. We further proposed a smoothed surrogate of

elementwise infinity norm in the adopted objective function.

In addition, a versatile framework of Riemannian optimization

is represented by generalizing the classical geometric concepts

[33] to geometric concepts on the quotient manifolds of

fixed-rank matrices. Under the framework, the Rimannian

trust-region algorithm is developed to return an approximate
local minimum from arbitrary initial points. Simulation re-

sults demonstrate that the proposed regularized smoothed

approach supported by the Riemannian trust-region algorithm

significantly outperforms the state-of-art algorithms in terms

of performance (i.e., relative MSE), computational cost and

convergence rate.
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