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ABSTRACT

In this article the randomized algorithm for estimating the
von Neumann entropy of large-scale density matrices is con-
sidered. By capturing the dominant eigenspace via a k-rank
approximation of the density matrix we estimate the en-
tropy. We analyze the error bound with the eigenvalues of
density matrix. Numerical experiments show that the pro-
posed method is extensively efficient for large-scale density
matrices.

1. INTRODUCTION

Entropy is a fundamental quantity in many areas of science
and engineering. The von Neumann entropy, which was in-
troduced by John von Neumann, is the extension of classical
entropy concepts to the field of quantum mechanics [1]. He
introduced the notion of the density matrix, which facilitated
the extension of the tools of classical statistical mechanics to
the quantum domain in order to develop a theory of quantum
measurements. The density matrix ρ is a symmetric positive
semidefinite in Rn×n with unit trace. Then the von Neumann
entropy, denoted by S(ρ), is defined as

S(ρ) = − tr(ρ logρ).

The above definition is a proper extension of both the
Gibbs entropy and the Shannon entropy to the quantum case.
It is obvious that the entropy can be computed by the eigende-
composition of ρ which has time complexity O(n3). Clearly,
for large-scale density matrices, the algorithm is impractical.
Recently, how to solve the large-scale problem efficiently has
been taken more and more attentions [2, 3]. For this prob-
lem, it is also required to improve numerical algorithms that
approximate the von Neumann entropy of large-scale density
matrices faster than the trivial O(n3) approach [4].

1.1. Background

The Frobenius norm is denoted by ‖A‖2 := [tr(A∗A)]1/2.
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In quantum theory, the density matrix ρ represents the sta-
tistical mixture of pure states and has the form

ρ =

k∑
i=1

piψiψ
>
i , (1)

where the vectors ψi ∈ Rn for all i = 1, . . . , k represent the
k ≤ n pure states and can be assumed that 〈ψi,ψj〉 = δij for
i, j while the pi’s correspond to the probability of each state
and satisfy pi > 0 and

∑k
i=1 pi = 1. Equivalently, (1) can

expressed as
ρ = ΨΛΨ> ∈ Rn×n, (2)

where Ψ ∈ Rn×n is the orthogonal matrix (i.e., Ψ>Ψ = In)
whose first k columns are the vectors ψi and Λ ∈ Rn×n
is a diagonal matrix whose top diagonal entries are pi’s and
bottom n − k diagonal entries are zeros. Note that (2) is the
(thin) singular value decomposition of ρ.

1.2. Prior work

We present and analyze randomized algorithms to approx-
imate the von Neumann entropy of density matrices. Re-
cently Taylor series expansion and Chebyschev polynomials
are used to approximate of the matrix function −A logA for
a large-scale matrix A [5]. Our work is motivated by [4, 6].
We show that most eigenvalues of the large-scale density ma-
trix are close to zero, and then k-rank approximation of the
density matrix can be used to approximate of the matrix func-
tion −A logA. In [6] error bounds of k-rank approximations
for trace and log determinant are considered. We generalize
it for matrix functions of large-scale matrices, especially von
Neumann entropy of large-scale density matrices, which was
not considered in these earlier studies.

2. RANDOMIZED ESTIMATORS

2.1. Preliminary and algorithm

Let A ∈ Cn×n be a Hermitian positive semi-definite matrix
with eigenvalue decomposition

A = UΛU∗, Λ = diag(λ1 · · ·λn) ∈ Rn×n,

where the eigenvector matrix U ∈ Cn×n is unitary, and the
eigenvalues are denoted as 0 ≤ λn ≤ λn−1 ≤ · · · ≤ λ1. We



assume thatA ∈ Cn×n has k dominant eigenvalues separated
by a gap from the remaining n−k sub-dominant eigenvalues,
λn ≤ · · · ≤ λk+1 � λk ≤ · · · ≤ λ1.

To distinguish the dominant eigenvalues from the sub-
dominant ones, we consider the following submatrices.

Λ =

(
Λ1

Λ2

)
, U =

(
U1 U2

)
,

where Λ1 = diag(λ1 · · ·λk) ∈ Rk×k, and U1 ∈ Cn×k. We
denote the gap as

γ ≡ λk+1

λk
= ‖Λ2‖2‖Λ−11 ‖2 � 1.

Given a number of power iterations q ≥ 1, and a starting
guess Ω ∈ Cn×` with k ≤ ` ≤ n columns, we assume that
the product has full column rank,

rank(AqΩ) = `.

Extract an orthonormal basis for range(AqΩ) with a thin QR
decomposition AqΩ = QR, where Q ∈ Cn×` with Q∗Q =
I`, and the matrix R ∈ C`×` is nonsingular. To distinguish
of the effect of the dominant subspace on the starting guess
from that of the sub-dominant space, partition

U∗Ω =

(
U∗1Ω
U∗2Ω

)
=

(
Ω1

Ω2

)
,

where Ω1 = U∗1Ω ∈ Ck×` and Ω2 = U∗2Ω ∈ C(n−k)×`.
We assume that Ω has a sufficient contribution in the domi-
nant subspace ofA,

rank(Ω1) = k.

Algorithm 1 is the procedure for computing a rank-k
approximation of A. The algorithm includes the following
steps.
Step 1. The algorithm first generates a random matrix
Ω ∈ Cn×`.
Step 2. The random matrix Ω is used to map the matrix A to
a low-dimensional subspace by Y = AqΩ. The q-th power
of the matrix A is applied here to improve the accuracy for
the slow decay eigenvalues.
Step 3. Compute Thin QR factorization Y = QR. Here
columns ofQ are an orthonormal basis of Y .
Step 4. ComputeQ∗AQ, denoted byAapp.

Algorithm 1 Randomized method with a single sketch
Require: A ∈ Cn×n (Hertimian positive semi-definite
matrix), k (target rank), q ≥ 1 (number of subspace itera-
tions), p (oversampling parameter), ` = k+p (dimension
of the sketched column space).
Ensure: Find rank-k approximationAapp ∈ C`×` ofA.
1: Generate an n× ` random matrixOmega ∈ Cn×`.
2: Compute Y = AqΩ.
3: FindQ with Thin QR factorization Y = QR.
4: ComputeAapp = Q

∗AQ.

The idea is to capture the dominant eigenspace associated
with λ1, . . . , λk via a k-rank approximation Aapp of A. The
matrix Q approximates the dominant eigenspace of A, and
is computed from q iterations of subspace iteration applied to
a starting guess Ω, followed by the thin QR factorization of
AqΩ. Mathematical and statistical analysis for tr(Aapp) ≈
tr(A) are studied [6]. It shows that the following absolute
error bounds for Hermitian positive semi-definite matrices.

Theorem 1. (Deterministic Bound) With the assumptions in
Sec. 2.1, let Aapp = Q∗AQ be computed by Algorithm 1.
Then

0 ≤ tr(A)− tr(Aapp) ≤ (1 + θ1) tr(Λ2),

where θ1 ≡ min{γq−1‖Ω2Ω
†
1‖2, γ2q−1‖Ω2Ω

†
1‖22}.

Here, the superscript † denotes the Moore-Penrose in-
verse.

Theorem 2. (Expectation) With the assumptions in Sect. 2.1,
letAapp = Q

∗AQ be computed by Algorithm 1 with a Gaus-
sian starting guess Ωn×(k+p) and let p ≥ 2. Then

0 ≤ E[tr(A)− tr(Aapp)] ≤ (1 + γ2q−1Cge) tr(Λ2),

where

Cge ≡
e2(k + p)

(p+ 1)2

(
1

2π(p+ 1)

) 2
p+1

(µ+
√
2)2
(
p+ 1

p− 1

)
.

Here, µ ≡
√
n− k +

√
k + p.

2.2. Main results

Our goal is to efficiently compute

tr(f(A)) =

n∑
i=1

f(λi), (3)

where λ1, . . . , λn are eigenvalues ofA ∈ Cn×n and f : R→
R is a given function. For example, if f(x) = log (1 + x),
then we have tr(f(A)) = tr(log (In +A)) = log det (A).
For more information, see [7–9]. If f(x) = −x log x, then it
follows that

tr(f(A)) = − tr(A log (A)). (4)

For a given matrixA ∈ Cn×n, if f(A) is computed, then
we can find low rank approximation of f(A) with Algorithm
1. By Theorem 1, it holds that tr((f(A))app) ≈ tr(f(A)).
However, if the size of A is very large, to compute f(A) is
practically impossible, implying that that f(A)app cannot be
computed with Algorithm 1. One possible approach is to find
pm, a polynomial approximation with degree m, such that
pm ≈ f using Taylor series or Chebyschev polynomials [10].
Then tr(pm(A)) can be approximated for tr(f(A)) [8]. In
this article, we focus on a rank-k approximationAapp ≈ A to



approximate tr(f(A)). Since Aapp = Q∗AQ and QQ∗ =
I`, it is easy to check that

f(Aapp) = Q
∗f(A)Q = (f(A))app.

So,

tr(f(A)) ≈ tr((f(A))app) = tr(Q∗f(A)Q) = tr(f(Aapp)).

After finding approximationAapp with Algorithm 1, we need
to perform two additional steps as follows:
Step 5. Since the size of Aapp is sufficiently small, it is pos-
sible to find eigenvalues ofAapp with any existing algorithm.
Step 6. We calculate tr(f(Aapp)).

Additional Algorithm
Require: Aapp ∈ C`×` (the approximation matrix ofA).
Ensure: Approximate tr(f(Aapp)).
5: Compute the eigenvalues ofAapp, denoted by
λ̃` ≤ . . . ≤ λ̃1.
6: Compute tr(f(A)app) =

∑`
j=1 f(λ̃j).

We have the similar error bound as Theorem 1 for

tr(f(A)) ≈ tr(f(A)app) = tr(f(Aapp)).

Theorem 1 shows that the error bound depends on the
eigenvalue ofA and Ω. Note that

f(A) = Uf(Λ)U∗,

where A = UΛU∗ is Hermitian positive semi-definite ma-
trix with eigenvalue decomposition. Thus, the error bound
for f(A) depends on the eigenvalue of f(A), which is f(λi)
where λi are the eigenvalues of A. In other words, the er-
ror bound for f(A) depends on the eigenvalues of A and the
function f . Specifically, if f(A)app = Q∗f(A)Q is com-
puted by Algorithm 1, then by Theorem 1, it follows that

0 ≤ tr(f(A))− tr(f(Aapp)) ≤ (1 + θ1) tr(f(Λ2)),

where θ1 ≡ min{γ̂q−1‖Ω2Ω
†
1‖2, γ̂2q−1‖Ω2Ω

†
1‖22}. Here

γ̂ := f(λk+1)
f(λk)

, since the eigenvalues of f are f(λi), where
λi are the eigenvalues ofA.

2.3. Von Neumann entropy

Now we consider the following function for von Neumann
entropy. Define a function f : [0, 1] −→ R by

f(x) =

{
−x log x if x 6= 0

0 if x = 0.
(5)

Then the Von Neumann entropy of ρ can be written as

S(ρ) = − tr (f(ρ)),

where f(ρ) = Ψf(Λ)Ψ>.
Denote the number of all elements of a setA as #(A).
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Fig. 1. f(x) = −x log(x) on [0, 1]

Lemma 1. Let ρ ∈ Rn×n be a density matrix with the eigen-
values 0 ≤ λn ≤ λn−1 ≤ · · · ≤ λ1 ≤ 1. Then it holds that
for each k = 1, 2, . . . , n

#

{
j :

1

k
< λj ≤ 1

}
< k. (6)

Furthermore, for each k = 1, 2, . . . , n it holds that λk ≤ 1
k .

Proof. Note that λ1 + · · · + λn = 1, and 0 ≤ λi ≤ 1 for all
1 ≤ i ≤ n. If λk > 1

k , then
∑k
j=1 λj ≥ kλk > 1, which is

contradiction to tr(ρ) = 1.

Equivalently, it holds that for ε > 0

#

{
j : 0 ≤ λj < ε

}
≥ n− 1

ε
.

Thus, for a sufficiently large n×n density matrix, if there
are distinct eigenvalues, then many of them are close to 0.

Lemma 2. With the assumptions in Sec. 2.1, let Aapp =
Q∗AQ be computed by Algorithm 1. If f is a function de-
fined as (5), then the eigenvalues of f(A) are

0 ≤ f(λn) ≤ · · · ≤ f(λk+1) ≤ f(λk) ≤ · · · ≤ f(λ3).

And it holds that

γ < γ̂ ≤ γ +
1

e log k
.

Proof. By Lemma 1, 0 ≤ λj ≤ 1
e for 3 ≤ j ≤ n. Since

f is increasing on [0, 1e ], we have f(λj+1) ≤ f(λj) for all
3 ≤ j ≤ n − 1. Note that f(λ1) and f(λ2) can possibly be
small numbers, depending on f . By the definition of f and γ,
it follows that

γ̂ =
λk+1 log λk+1

λk log λk
=
γ log λk+1

log λk
=
γ log γ

log λk
+ γ



Since 0 < f(x) ≤ e−1 for all 0 ≤ x < 1,

0 ≤ γ log γ

log λk
<

−1
e log λk

.

By Lemma 1, it holds that

γ ≤ γ̂ < γ − 1

e log λk
≤ γ +

1

e log k
.

Theorem 3. Let ρ ∈ Rn×n be a density matrix. With the
assumptions in Sec. 2.1, let ρapp = Q∗ρQ ∈ R`×` be the
approximation of ρ, which is computed by Algorithm 1.

0 ≤ S(ρ)− S(ρapp) ≤ (1 + θ) tr
(
Λ2 log(Λ2)

)
,

where θ ≡ min
{
ηq−1‖Ω2Ω

†
1‖2, η2q−1‖Ω2Ω

†
1‖22
}

and η =

γ − 1
e log λk

.

Remark that if rank(ρ) = k, then λj = 0 for k+1 ≤ j ≤
n, implying S(ρ) = S(ρapp).

3. NUMERICAL RESULTS

In this section we show numerical results in order to prove the
practical efficiency of our proposed method. The proposed
method were implemented in Matlab. We generated random
density matrices using the QETLAB Matlab toolbox [11] to
derive (real-valued) density matrices of size 4096×4096 with
different rank. We used the function RandomDensityMatrix
of QETLAB and the Haar measure.

We first compared the accuracy of our method with Monte
Carlo (MC) method [5]. The accuracy was evaluated by mea-
suring the relative error |S(ρ)−Ŝ(ρ)|S(ρ) . Consider density matri-
ces with different rank (i.e., 4096, 2048, and 1024), q = 1 in
our proposed sketch method and let the number of terms re-
tained in the Taylor series approximation m = 10 or m = 20.
The relative error with increasing sample size ` (i.e., increas-
ing the oversampling parameter p) is shown in Fig. 2 and
3, respectively. From these two figures, initially the Taylor
MC method seems to outperform our method for small sam-
ple sizes, however the error in our proposed method decays
sharply. Also the overhead brings by increasing the sam-
ple size to achieve better performance than the Taylor MC
method is negligible. Besides, if the density matrices have
low rank, we can get superior performance with small sam-
ple size. Increasing m in the Taylor MC method can slightly
improve the accuracy, but it will suffer from expensive com-
putational time cost. We also compared the time cost of with
the Taylor series approach Monte Carlo method for the full
rank case in Table 1. Our proposed method is extremely time
effective.
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Fig. 2. Relative error with different sample size and fixed
Taylor item m = 10.
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Fig. 3. Relative error with different sample size and fixed
Taylor item m = 20.

` T-MC m = 10 T-MC m = 20 Sketch

600 1.941× 103 6.202× 103 1.342× 10
1600 5.287× 103 1.673× 104 3.028× 10
2600 8.442× 103 2.657× 104 4.059× 10
3600 9.449× 103 2.900× 104 4.594× 10

Table 1. Time cost (seconds) for different case.

4. CONCLUSION

We used the randomized low-rank approximation algorithm
for estimating the von Neumann entropy of large-scale den-
sity matrices. Numerical simulations demonstrated that the
proposed method outperforms state-of-art method for large-
scale density matrices and its computational cost is extremely
cheap.
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