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ABSTRACT

In this paper, we investigate the pliable index coding prob-
lem, where clients are interested in receiving any messages
(instead of specific messages) that they do not have. The
motivating applications including caching networks, recom-
mendation systems and distributed computing systems, where
the clients are happy to receive any messages not available
in them. However, the pliable index coding problem turns
out to be computationally intractable, for which we propose
a novel sparse and low-rank optimization framework to assist
efficient algorithms design in real field, thereby minimizing
the number of channel uses for message delivery. To address
the nonconvex challenges in this framework, we further pro-
pose the alternating projection algorithm to solve the sparse
and low-rank optimization problem with local convergence
guarantees. Simulation results demonstrate that the number
of channel uses can be significantly reduced for message de-
livery via the sparse and low-rank optimization.

Index Terms— Pliable index coding, sparse and low-rank
optimization, alternating projection method.

1. INTRODUCTION

With the explosive growth of mobile handsets, as well as di-
versified services and data intensive intelligent applications,
enabling ultra-high data rate and ultra-low latency content
delivery is a crucial requirement for future communication
networks [1]. Meanwhile, the services of communication
networks are increasingly becoming entertainment-oriented,
moving away from satisfying a specific request towards sat-
isfying the content-type traffic (e.g., caching networks [2],
recommendation systems [3]). This content-type communi-
cation network pervades tremendous applications in smart
search engines and recommendation systems (e.g., Google
and Pandora) [4]. For example, if we search for the latest
news on the Internet, we do not care which specific news we
receive and are happy to obtain any latest news we do not
have. Furthermore, this type of communication scenario also
exists in distributed computing systems with data shuffling to
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improve the statistical performance for distributed training of
machine models [5].

However, communication networks today are mainly used
to serve for conveying specific messages to the receivers. This
is fundamentally different from the content-type traffic net-
works. Furthermore, side information also plays a vital role
for reducing the number of transmissions in communication
networks [6]. Based on these observations, we investigate a
new communication network with content-type traffic to pro-
vide high data rate and low latency communication services
by leveraging the side information at receivers. Specifically,
this communication scenario is formulated as a pliable index
coding problem [7], which consists of a server with m mes-
sages and n receivers, where each receiver has the side in-
formation with a subset of the messages. The receivers are
satisfied if they receive any new messages they do not have.
This differs from the index coding problem [6, 8], where each
receiver requests specific messages it does not have from the
server. Our goal is to find minimum number of broadcast-
ing transmissions so that all the receivers are satisfied in the
pliable index coding scenario.

However the pliable index coding problem turns out to
be computationally intractable to find the optimal solutions
[7]. Recently, a polynomial time algorithm building on an al-
gebraic decoding criterion for pliable index coding has been
proposed [9] in finite field. Instead, inspired by the recent suc-
cess of generalized low-rank models for index coding prob-
lem [10, 11] in real field for wireless communications, in this
paper, we propose a novel sparse and low rank optimization
framework for pliable index coding to minimize the number
of channel uses for message delivery. Specifically, the spar-
sity of this model represents the messages request pattern at
receivers, while the low-rankness of this model represents the
number of channel uses for messages delivery. The proposed
framework can assist efficient algorithms in real field with ap-
plications in wireless communication scenarios.

Unfortunately, the resulting sparse and low-rank opti-
mization model raises a unique challenge due to a non-convex
objective function (rank) and a non-convex constraint (`0).
One of the popular approach is convex relaxation based on
the convex surrogates `1–norm and nuclear norm, yielding
polynomial time complexity algorithms [12]. However, this
approach is inapplicable in our problem as it always returns



the full-rank identity matrix in some cases. To address this
issue, we propose an alternating projection algorithm to solve
the sparse and low-rank optimization problem, which leads
to a feasibility detection problem between two non-convex
sets. Although the convergence of alternating projection
algorithm for convex sets is well established [13], the conver-
gence results for non-convex sets are rather limited. Based
on the observations that the semi-algebraic property in the
sparse and low-rank models, we establish the local conver-
gence guarantees for our proposed algorithm. Simulation
results demonstrate that the number of channel uses for mes-
sage delivery can be significantly reduced via the sparse and
low-rank optimization.

2. PROBLEM STATEMENT

2.1. Pliable Index Coding Problem

We consider the communication network with content-type
traffic (e.g., caching network [2] , recommendation systems
[14] and distributed computing systems [5]) and exploit the
side information to help message delivery. Specifically, the
pliable index coding problem consists of a set of K indepen-
dent messages {W1,W2, · · · ,WK} and a set of K receivers.
Let Vk denote the index set of messages at the k-th receiver.
The k-th receiver has a subset of messagesW[Vk] = {Wj , j ∈
Vk} as the side information and is satisfied to receive any
message it does not have.

Let S be the choice of a finite alphabet set. The cod-
ing function f(W1, · · · ,WK) = x maps all the messages
to the sequence of transmitted symbols, where x ∈ SN is
the sequence of symbols transmitted over N channel uses.
Here, each message Wi is a random variable uniformly dis-
tributed over the set {1, 2, · · · , |S|NRi} with |S|NRi as an
integer and Ri ∈ R+. At the k-th receiver, the decod-
ing function for some requested message Wj with j /∈ Vk
is given by gk,j(x,Vk) = Ŵj . The probability of decod-
ing error is given by pe = 1 − Pr{Ŵj = Wj ,∀j}. Let
(S, N, (R1, · · · , RK)) denote the above coding scheme. The
rate tuple (R1, · · · , RK) is said to be achievable if for every
ε, δ > 0 there exists a (S, N, (R̄1, · · · , R̄K)) coding scheme,
for some S, n, such that R̄i ≥ Ri − δ, ∀i, and the error
probability Pe ≤ ε.

2.2. Linear Coding Schemes

We focus on designing the linear encoding and decoding
schemes in real field. Specifically, let vi ∈ RN and ui ∈ RN
be the precoding vector and the decoding vector for message
Wi , respectively. Without loss of generality, we represent
each message Wi by a scalar symbol si ∈ R. The received

signal at the k-th receiver is given by

yk =

K∑
j=1

vjsj , ∀k = 1, · · · ,K. (1)

The k-th receiver is happy to receive any messages it does
not have. Therefore, the decoding operation at the k-th re-
ceiver for some requested message Wj with j /∈ Vk is given
by

ŝj = (uTk vj)
−1uTk

(
yk −

∑
i∈Vk

visi

)
, j /∈ Vk. (2)

The above decoding operation is achieved by the following
interference alignment condition

uTk vj 6= 0, for some j /∈ Vk, (3)

uTk vi = 0, ∀i 6= j, i /∈ Vk, (4)

which implies that the desired messages Wj with j /∈ Vk is
preserved and all the other messages not in Vk are eliminated.
If the interference alignment condition (3) and (4) are satis-
fied, then the data rate tuple ( 1

N , · · · ,
1
N ) for each message

can be achieved [15, 10]. Therefore, the overall achievable
data rate is given by K/N . Our goal, in this paper, is to find
a linear coding scheme to maximize the achievable data rate
1/N (normalized by K) by minimizing the channel uses N .
Note that, in the index coding scenario for topological inter-
ference alignment, condition (3) becomes uTk vk 6= 0,∀k [10].

3. PROBLEM FORMULATION

In this section, we propose a sparse and low rank optimiza-
tion approach to find the linear encoding and decoding vec-
tors, thereby minimizing the number of channel uses for mes-
sages delivery. This is achieved by rewriting the interference
alignment conditions (3) and (4) into a rank minimization
problem with sparsity constraints. Specifically, let Xij =
uTi vj ,∀i, j = 1, · · · ,K. Define the K × K matrix X =
[Xij ], we have the rank of matrix X as rank(X) = N . To
minimize the number of channel uses, we propose to solve the
following sparse and low-rank optimization problem:

minimize
X∈RK×K

rank(X)

subject to ‖xk[Vc
k]
‖0 = 1, k = 1, 2, · · · ,K,

(5)

where xk denotes the k-th row of matrix X and Vck = [K]\Vk
with [K] = {1, 2, . . . ,K}.

Unfortunately, problem (5) turns out to be a non-convex
and highly intractable problem. One of the popular methods
to solve the sparse and low rank optimization problems is us-
ing the convex surrogates `1 norm and nuclear norm [12]:

minimize
X∈RK×K

‖X‖∗ + λ

K∑
k=1

‖xk[Vc
k]
‖1, (6)



where λ > 0 is a regularized parameter, ‖x‖1 =
∑
i |xi|

and ‖X‖∗ is the nuclear norm of X , i.e., the summation of
the singular values of X . However, based on the fact that
‖X‖∗ ≥ Tr(X), problem (6) will always return the full-rank
solution X = IK for some cases, e.g., Vk = [K] \ {k} for
k = 1, · · · ,K. We thus propose to solve the nonconvex opti-
mization problem (5) directly.

Specifically, to find the minimal rank, we propose to solve
a sequence of fixed rank optimization problems as follows:

find X

subject to rank(X) ≤ r,
‖xk[Vc

k]
‖0 = 1, k = 1, 2, · · · ,K.

(7)

By increasing r, we shall find the linear coding matrix with
the smallest channel uses r to satisfy the sparsity constraints,
e.g., users are satisfied to receive any messages that they do
not have.

4. ALTERNATING PROJECTION ALGORITHM

In this section, we propose the alternating projection algo-
rithm to solve problem (7) with local convergence guarantees.
This is based on the observation that projecting any given ma-
trix onto the low-rank constraint set or the `0-ball constrain
set can be achieved using simple analytical expressions.

4.1. Alternating Projection Algorithm

Define the rank constraint set Sr = {X : rank(X) ≤ r} and
the `0-ball constraint set Sp = {X : ‖xk[Vc

k]
‖0 ≤ 1, k =

1, 2, · · · ,K}. Problem (7) can be reformulated as finding a
common point of the following two sets, i.e.,

find X ∈ Sr ∩ Sp, (8)

where we relaxed the fixed-sparsity constrain in problem (7)
into a `0-ball constrain.

Define the projection of a point X /∈ S onto a given set S
as

ΠS(Z) := arg min
X∈S

‖X −Z‖2F . (9)

We adopt the strategy of alternating projection onto Sr and
Sp to find a common point in the intersection of the two sets,
which is presented in Algorithm 1.

By Eckart-Young theorem [16], the projection of X /∈ Sr
onto Sr can be computed via truncated SVD of X

ΠSr (X) =

r∑
i=1

σiuiv
T
i , (10)

where {σi}ri=1, {ui}ri=1 and {vi}ri=1 are the r largest singu-
lar values and the corresponding left and right singular vectors
of X . The projection of Y /∈ Sp onto Sp can be computed by

xk[Vc
k]

= Π`0≤1(yk[Vc
k]

), k = 1, 2, · · · ,K, (11)

Algorithm 1: Alternating Projection for Problem
(8)

Input : Side information Vk, k = 1, · · ·K, rank r.
1 Initialization: Let X0 be a random matrix with

rank(X0) = r.
2 for i = 0, 1, 2, · · · do
3 Yi = ΠSr (Xi)
4 Xi+1 = ΠSp(Yi)

5 end

where the projection of a vector y onto the set `0 ≤ 1 :=
{x : ‖x‖0 ≤ 1} is the hard thresholding operator. That
is, we sort the coefficients of y in decreasing magnitude and
keep the largest one and set the remaining entries to be zeros.

4.2. Convergence Guarantees

The fact that alternating projection onto two convex sets con-
verges to a point in the intersection of these two sets (if their
intersection is non-empty) was previously established in [13].
Recently, the local convergence results of the alternating pro-
jection for semi-algebraic sets have be established in [17], and
the convergence rate results under a further regularity condi-
tion are provided in [18]. Please refer to [19] for a compre-
hensive review. Exploiting the fact that the rank constraint set
Sr satisfies the prox regularity and both Sr and Sp are semi-
algebraic sets, we shall establish local convergence of the al-
ternating projection algorithm in Algorithm 1, as presented in
the following theorem.

Theorem 1. Let S∗ ∈ Sr ∩ Sp, then there exists a neigh-
borhood U of S∗ such that every sequence of alternating
projections Xi,Yi which enters U converges to some X∗ ∈
Sr ∩ Sp. Furthermore, suppose rank(S∗) = r, then ‖Xi −
X∗‖F = O(i−ρ) for some ρ ∈ (0,∞).

Proof. Please refer to Section 7 for the details.

5. NUMERICAL RESULTS

In this section, we simulate the proposed sparse and low-rank
optimization approach for the pliable index coding problem.
This needs to solve a sequence of problem (8) via increasing
rank r to find the minimal channel uses based on the proposed
alternating projection algorithm.

For problem (8) with K = 15, the side information at
each receiver is generated uniformly at random with the same
size. The maximum number of iterations of the proposed al-
ternating projection algorithm is set to be 104 and we termi-
nate the algorithm when the error ‖Xi − Yi‖F ≤ 10−12. We
compare the pliable index coding based transmission scheme
with the index coding based transmission scheme [20]. We
plot the channel uses versus the size of side information in
Fig.1 (a) and each point is averaged for 200 realizations.
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Fig. 1. Numerical Results

Fig.1 (a) demonstrates that the pliable index coding based
transmission scheme needs fewer channel uses compared to
the index coding based scheme for message delivery, espe-
cially when the size of side information at each receiver is
small. Fig.1 (b) illustrates the convergence behavior of the
alternating projection algorithm for problem (8) with K =
17, r = 12 and the size of the side information is set to be 8.
For all the realization with different random initial points, we
can see that the algorithm converges to the intersection of the
two sets rapidly and linearly.

6. CONCLUSIONS

In this paper, we propose a novel sparse and low rank opti-
mization framework to solve the pliable index coding problem
in real field. To address the non-convex challenges, we pro-
pose the alternating projection algorithm to solve the sparse
and low-rank optimization problem with local convergence

guarantees. Simulation results demonstrated that he number
of channel uses can be significantly reduced for message de-
livering using pliable index coding.

7. PROOF OF THEOREM 1

To prove theorem 1, we first provide the following lemma.

Lemma 1 (Semi-algebraic intersections [17]). Consider two
nonempty closed semi-algebraic sets X,Y in a Euclidean
space with X bounded. If the method of alternating projec-
tions starts in Y and near X , then the distance of the iterates
to the intersection X ∩ Y converges to zero, and hence every
limit point lies in X ∩ Y .

We will first give the definition of the semi-algebraic sets,
followed by the proof that the sets Sp and Sr are both semi-
algebraic sets.

Definition 1 (Semi-algebraic set). A subset S of Rn is called
the semi-algebraic set if there exists a finite number of real
polynomial functions gij and hij such that

S =
⋃
j

⋂
i

{u ∈ Rn : gij(u) = 0, hij(u) < 0}.

The next lemma establishes that the set Sp and Sr are both
semi-algebraic sets.

Lemma 2. The sets Sp = {X : ‖xk[Vc
k]
‖0 ≤ 1, k =

1, 2, · · · ,K} and Sr = {X : rank(X) ≤ r} are both semi-
algebraic.

Proof. For the set Sp, we can represent it as

Sp =

K⋂
k=1

⋃
j=0,1

Lk ,
{
X : ‖xk[Vc

k]
‖0 = j

}
. (12)

Let I = {I : I ⊂ {1, · · · , |Vck|}, |I| = 1}, then

Lk =
⋃
I∈I

{
X : (xk[Vc

k]
)Ic = 0

}
,

which is a semi-algebraic set. Therefore, Sp is a semi-
algebraic set.

For the set Sr, we define the polynomial map ψr : (RN ×
RN )r → RN×N of the form

ψr(u1,v1; . . . ;ur,vr) =

r∑
i=1

ui × vTi . (13)

It is clear that the image of ψr is exactly Sr = {X :
rank(X) ≤ r}. Thus Sr is semi-algebraic according to
the Tarski—Seidenberg Theorem [21], which states that the
image of the polynomial map from semi-algebraic set is also
a semi-algebraic set.

It has been show that the rank constraint set Sr is prox-
regular at all points X∗ with rank(X∗) = r [22, Proposition
3.8]. This together with [18, Proposition 4] and [18, Corollary
9] gives the convergence rates results stated in theorem 1.
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