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Abstract—We present a linear model with an unknown permu-

tation matrix for header-free communication in massive Internet-

of-Things (IoT) networks, thereby supporting low-latency com-

munication. Besides the header-free communication application,

the permuted linear model also has many applications in

matching and correspondence estimation problems. To solve this

permuted linear system, the key idea is to convert it into a system

of polynomial equations via power sum symmetric polynomials.

In our proposed method, specific assumptions (e.g., low-rankness

and sparsity) about the permuted linear model is not needed.

The closed form of the solution is established for a special case.

Computational results show that the proposed method achieves

good performance.

I. INTRODUCTION

The upcoming fifth-generation (5G) system brings a cen-
tral challenge that need to support short-packet transmission,
especially for the IoT applications [1]. In the scenario of
short-packet transmission, the size of the control information
(metadata) is comparable to the size of payload, which signif-
icantly affects the overall efficiency of the transmission with
respect to energy, latency, and bandwidth cost. Typically, the
metadata consists of preamble (e.g. channel signaling) and
header (e.g. the identity information about sensor node). To
address this issue, lots of research efforts have been paid
on channel signaling overhead reduction. Blind equalization
and identification [2] is a bandwidth efficient solution by
eliminating training data and maximizing channel capacity
for true information transmission. Another way to handle the
inefficiency is to remove the identity information for each
user when it transmits the true information [3] (so-called
header-free communication). Unfortunately, the absence of
identity information makes the desired true information recov-
ery problem highly intractable. Specifically, in the massive IoT
scenario, we assume that the sensors’ identity information is a
critical part and forms the bulk of the communicated data. As
mentioned in [4] and references therein, differential updates,
spatial correlation, and multi-stage collection are the cases that
sensors are used to periodically reconstruct the spatial field.
Hence, a significant gain in communication procedure can be
achieved by removing the identity information. For an linear
sensing system which senses a spatial field, let x denote the
representation of the field in the n-dimensional basis. The
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observation can be interpreted as the matrix multiplication
between x and a unique sampling matrix corresponding to the
location where the sample is taken. The absence of the identity
information can be represented as an unknown permutation
matrix ⇧. The desired true information recovery problem can
be expressed as the following permuted linear model:

y = ⇧Ax, (1)

where A 2 Rm⇥n is a known sample matrix, y 2 Rm

is an observation vector collected by the sensing system,
x 2 Rn is an unknown parameter, and ⇧ 2 Rm⇥m is
an unknown permutation matrix. It means that the system
only has incomplete information about the order of entries
in observation y. In other words, we might have access to all
the entries of y but do not know which entries correspond to
which locations within the vector y. More details about this
permuted linear model for the header-free communication will
be presented in Section II.

This permuted linear model also has other potential appli-
cations. Firstly, consider a well-known Simultaneous Location
and Mapping (SLAM) problem [5]. The SLAM problem
is a classical problem in robotics that the robot is viewed
as a mobile sensor and its main task is sampling the un-
known environment meanwhile locating each sample point.
The absence of the location information can be represented
as an unknown permutation matrix. Secondly, consider a time
domain sampling problem with presence of clock jitter [6].
We may desire the frequency domain signal from the time
domain samples, but it is difficult to associate sampled time
domain observations to the correct time indices with clock
jitter. This uncertainty of the time indices can be viewed as
an unknown permutation matrix. Thirdly, in image processing,
the pose and correspondence estimation problem [7] also have
a similar structure with formula (1). The camera capture a
3D object by a 2D image and we want to match some key
points between two spaces. The capture procedure can be
modeled as an unknown linear transformation called pose, and
the unknown permutation can be viewed as correspondence
between points of the two spaces.

Based on this permuted linear model, there are two issues
need to be addressed. One is to recover the unknown permu-
tation matrix ⇧, the other is to recover the unknown vector
x. Pananjady at al. [3] first considered the permutation matrix
recovery problem in the linear regression model. They estab-
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lished sharp conditions on signal-to-noise ratio, sample size
m, and dimension n with respect to the exact or approximate
recoverability of permutation matrix ⇧ and showed that the
maximum likelihood estimator of ⇧ was NP-hard to compute.
A similar problem, compressed sensing with unknown sensor
permutation was researched in [8]. They studied a convex
relaxation of the problem and proposed a branch-and-bound
based algorithm to find the unknown permutation matrix ⇧
under the condition that x has sparse structure. There are
also some prior work on recovery problem for the unknown
vector x. In [9], band-limited signals reconstruction problem
with unknown sample locations was investigated. In [10], the
condition of exact recovery of x with random sample matrix A

was established, but they failed to give a practical algorithm.
[11] proposed a geometrical algorithm to recover the vector x
and studied the uniqueness of the solution with specific sample
matrix A. In [12], a characterization of the minimax error rate
for the multivariate version of this problem was provided based
on denoising aspect, and also an exact recovery algorithm
based on spectral theory was proposed for the noiseless case
under a rank condition.

In this paper, we present a signal recovery problem in a
massive IoT network that each senor node can communicate
without identity information. An unknown permutation matrix
introduced by the absence of identity information makes
the signal recovery problem become hard. Inspired by the
symmetric property of the symmetric polynomial, we use
symmetric polynomials to remove the impact of the unknown
permutation matrix which gives us a new perspective to
handle this problem. Specifically, in order to solve this signal
recovery problem more effectively, it is possible to convert
it into a system of polynomial equations via power sum
symmetric polynomials. Compared with the existing methods,
our method do not need any additional assumptions about the
permuted linear model, such as signal structure (i.e. sparsity)
and rank condition (i.e. Rank(A)  Rank(x)). Besides, our
proposed method does not need to exhaustively search all the
permutation matrix which is not practical in applications with
large m. The computational results show that the time cost of
our proposed method is not sensitive to the value m, and the
performance is efficient when m is very large. It meets the
characteristic of massive IoT network applications. We also
derive the closed form solution of x when n = 1.

II. SYSTEM MODEL AND PRELIMINARIES

A. System Model

We consider a massive IoT network with m sensor nodes si,
i 2 {1, 2, · · · ,m} and a fusion center. One typical application
of the IoT networks is to monitor the industrial environments,
e.g., temperature, humidity, and pressure. We consider the
scenarios, where each sensor node si takes the linear mea-
surement [13] yi = Aix, where yi 2 R1 is the observation
value at sensor node si, A>

i 2 Rn is a known sample vector,
and x 2 Rn is an unknown parameter vector representing
the environment. All the sensor nodes send the observations
to the fusion center for further data processing. However, in

massive IoT networks with short packet communications, it
is typically the case that the number of bits of observations
transmitted by the sensor node is exceeded by the number of
bits transmitted to identify itself at the fusion center [4]. In
order to reduce the communication overhead for identifying,
head-free communication turns out to be a promising approach
[3]. With the absence of identity information at the fusion
center, the observed vector y can be written as follows:

⇧>
y = Ax, (2)

where

⇧ =

2

6664

e⇡1

e⇡2

...
e⇡m

3

7775
2 Rm⇥m

, A =

2

6664

A1

A2
...

Am

3

7775
2 Rm⇥n

,

and y = [y⇡1 , y⇡2 , · · · , y⇡m ]> 2 Rm
.

Here, x 2 Rn is the unknown vector parameter to be recovered
at the fusion center and ⇧ is an unknown permutation matrix.
Specifically, ⇡j denote the image of an element j under the
permutation ⇧, and e

>
⇡j
2 Rm is the basis vector whose

entries are all zeros except ⇡j-th entry equals to 1. Our
goal is to efficiently recover x with the observation y and
measurement matrix A. Note that (2) can be rewritten as (1).
In this paper, we mainly consider the noiseless case and further
provide a preliminary idea to handle the noisy case.

B. Preliminaries about Symmetric Polynomial

Here, we present the basic concepts about symmetric poly-
nomials. Let N be the set of nonnegative integers. The set of
all polynomials in x1, . . . , xn with real coefficients is denoted
R[x1, . . . , xn]. A polynomial f 2 R[x1, . . . , xn] is symmet-
ric if f(x⇡1 , . . . , x⇡n) = f(x1, . . . , xn) for every possible
permutation x⇡1 , . . . , x⇡n of the variables x1, . . . , xn. Given
variables x1, . . . , xn, we define the elementary symmetric
functions �1, . . . ,�n 2 R[x1, . . . , xn] by the formulas

�0(x1, . . . , xn) = 1,

�1(x1, . . . , xn) = x1 + · · ·+ xn,

...

�r(x1, . . . , xn) =
X

1i1<i2<···<irn

xi1xi2 · · ·xir ,

...
�n(x1, . . . , xn) = x1x2 · · ·xn.

That is, �r is the sum of all monomials that are products of
r distinct variables. The power sum symmetric polynomial of
degree k in n variables x1, . . . , xn, written as pk, is the sum
of all k-th powers of the variables, i.e.,

pk(x1, . . . , xn) =
nX

i=1

x

k
i .
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It is well known that every symmetric polynomial in
R[x1, . . . , xn] can be written as a polynomial in the power
sums p1, . . . , pn [14]. So, every elementary symmetric func-
tion can be written in terms of power sums, and vice versa.

Newton’s identities, also known as the Newton-Girard for-
mulae provide relations between power sums and elementary
symmetric polynomials as follows:

�1 = p1

2�2 = �1p1 � p2

...

k�k =
kX

i=1

(�1)i�1
�k�ipi

for all nonzero k 2 N. These equations allow to recursively
express the �k in terms of the p1, . . . , pk. Conversely, pk

can be recursively expressed in term of the �1, . . . ,�k. For
more information, please refer to [15], [16]. These identities
relate to sums of powers of roots of a polynomial with the
coefficients of the polynomial. An explicit expression for
elementary symmetric functions �1, . . . ,�n in terms of sums
p1, . . . , pn and, vise versa, are given by well-known Waring
formulas [17].

III. MAIN RESULTS

In this section, we first show how to convert the permuted
linear model (1) into a system of polynomial equations. Based
on this transformation, a closed form for n = 1 is derived. We
also give a preliminary idea that how to handle the noisy case.

Denote the set of all m ⇥m permutation matrices as Pm.
Let x denote the column vector of the variables x1, . . . , xn,
i.e.,

x =
⇥
x1, · · · , xn

⇤>
.

Lemma 1. If x 2 Rn is a solution to y = ⇧Ax for given A 2
Rm⇥n and ⇧ 2 Pm, then x is a solution to the polynomial
equations,

pk(Ax) = pk(y) for each k 2 N, (3)

where pk is the power sum symmetric polynomial of degree k.

Proof. Suppose that x is a solution to y = ⇧Ax for some
⇧ 2 Pm. Since the power sum pk is a symmetric function,
the function value is independent of the arrangement of entries
of y. Thus, pk(Ax) = pk(⇧Ax) = pk(y) for all k 2 N.

That is to say, the set of all solutions to the system
of polynomials equations (3) includes all solutions to the
permuted linear system y = ⇧Ax for any permutation matrix
⇧ 2 Pm.

Lemma 2. If column vectors y = [y1, . . . , ym]>, ŷ =
[ŷ1, . . . , ŷm]> 2 Rm satisfy that

pk(ŷ) = pk(y) for all k = 1, . . . ,m, (4)

then there exists a permutation matrix ⇧ 2 Pm such that
ŷ = ⇧y.

Proof. Recall that a monic polynomial is a univariate polyno-
mial in which the leading coefficient (the nonzero coefficient
of highest degree) is equal to 1. Let f and f̂ be degree m

monic polynomial functions whose roots consist of entries of
y and ŷ, respectively. Since pk(ŷ) = pk(y), k = 1, . . . ,m,
by Newton’s identities it follows that �k(ŷ) = �k(y), k =
1, . . . ,m. So, the coefficients of two polynomials f and f̂

are identical. Thus, the roots of f and f̂ are identical, i.e.,
{ŷ1, . . . , ŷm} = {y1, . . . , ym}. Therefore, ŷ = ⇧y for some
⇧ 2 Pm.

Denote the set of solutions of (1) as

S =
[

⇧2Pm

{x 2 Rn |y = ⇧Ax}.

Theorem 1. For each j 2 N, let Sj := {x 2 Rn : pk(Ax) =
pk(y), k = 1, . . . , j}. Then, for any given A 2 Rm⇥n and
y 2 Rm, it holds that

S1 ◆ · · · ◆ Sm = Sm+1 = · · · = S.

That is, solving the permuted linear model (1) is equivalent
to solving the following system of polynomial equations

pk(Ax) = pk(y), k = 1, . . . ,m. (5)

Proof. Clearly, Si ✓ Sj for i � j. If x is a solution of y =
⇧Ax for some ⇧ 2 Pm, then by Lemma 1 it follows that
x 2 Sj for all j 2 N. Thus S ✓ Sj for all j 2 N. If x 2 Sm,
then by Lemma 2 it follows that ⇧Ax = y for some ⇧ 2
Pm.

Note that there are possibly more than one solution with the
corresponding permutation matrix. Even though x is unique,
the corresponding permutation matrices may possibly not be
unique. The unique recoverability of x for the permuted linear
model (1) was studied in [10]. Let A 2 Rm⇥n be a given
matrix with i.i.d. random entries drawn from an arbitrary
continuous probability distribution f over R. If m � 2n, then
with probability 1, x can be uniquely recovered. Hence, if m is
sufficiently larger than n, by Theorem 1, so the system of the
polynomial equations (5) has a unique solution. Computational
results show that the number of polynomial equations which is
required to get the unique solution may be much smaller then
m, which is in fact n+1 (see Fig. 2). Since dim(S1) = n�1,
we guess that it holds dim(Sj) � 1 = dim(Sj+1) for
j = 1, . . . , n�1, implying dim(Sn) = 0, which means Sn has
finitely many points. Then an additional polynomial equation
possibly makes Sn+1 have the unique solution. However, the
mathematical proof is still open. Here, dim(Sj) is the degree
of the affine Hilbert polynomial of the corresponding ideal.
For more information, please refer to [14].

Example 1. Consider the problem
2

66664

�3
41
�18
29
20

3

77775
=

Y

2

66664

�5 2
7 1
�2 5
6 �4
10 1

3

77775


x1

x2

�
. (6)
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Taking p1 on the both side of the equation, we have

p1(y) = p1(⇧Ax) = p1(Ax)

) 69 = 16x1 + 5x2, (7)

which has infinitely many solutions. So, we take p2 on the both
side to have the following polynomial equation.

p2(y) = p2(⇧Ax) = p2(Ax)

) 3255 = 214x2
1 � 54x1x2 + 47x2

2. (8)

The system of two polynomial equations have two distinct
solutions, which is still not unique (see Fig. 1(a)). One more
power sum polynomial, p3, provides the following equation

p3(y) = p3(⇧Ax) = p3(Ax)

95451 = 1426x3
1 + 225x2

1x2 + 129x1x
2
2 + 71x3

2. (9)

Using simple algebra one can find the unique solution to the
system of three polynomial equations, which is x1 = 4, x2 = 1
(see Fig. 1(b)).

-10 -5 0 5 10
x

1

-10

-5

0

5

10

x 2

(a) S2

-10 -5 0 5 10
x

1

-10

-5

0

5

10

x 2

(b) S3

Fig. 1. There are two distinct intersections for two curves (7) and (8), but
only one intersection for three curves (7), (8), (9).

Now we find the explicit form of the system of polynomial
equations. For ↵ := (↵1, . . . ,↵n) 2 Nn, denote |↵| := ↵1 +
. . .+ ↵n. Consider y = ⇧Ax, where

A =

2

6664

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

3

7775
, x =

2

6664

x1

x2
...
xn

3

7775
, y =

2

6664

y1

y2
...
ym

3

7775
.

Taking pk on the both sides of the equation y = ⇧Ax, we
have the system of polynomial equations is of the form

bk =
X

|↵|=k

c

↵

x

↵1
1 · · ·x↵n

n for k 2 N,

where

bk =
mX

j=1

y

k
j , c

↵

=
mX

j=1

k!
a

↵1
j1 a

↵2
j2 · · · a↵n

jn

↵1!↵2! · · ·↵n!
.

For instance, assume that y = ⇧Ax has a solution, x 2
R1, for given A 2 Rm⇥1 and y 2 Rm, and an unknown
permutation matrix ⇧ 2 Pm. Then the explicit form of the
solution is

x =

Pm
i=1 yiPm
i=1 ai1

,

provided that
Pm

i=1 ai1 6= 0. However, it is possible that
the denominator is zero. Since

Pm
i=1 a

2
i1 6= 0 for A 6= 0,

alternatively, one can have

|x| =
✓ Pm

i=1 y
2
iPm

i=1 a
2
i1

◆ 1
2

.

Moreover, it is possible to find closed forms of the system
of polynomials for n = 2, 3, 4. However, by Abel-Ruffini
Theorem there are no closed forms for n � 5.

For the noisy case y = ⇧Ax + w, if the noise w

is i.i.d. Gaussian, we can find the Maximum Likelihood
Estimator (MLE) using least squares method by minimizing
ky �⇧Axk2 as follows:

( b⇧, x̂) = argmin
⇧2Pm, x2Rm⇥n

ky �⇧Axk22. (10)

Taking pk on the both sides of the equation y �w = ⇧Ax:
mX

j=1

(yj � wj)
k =

mX

j=1

(aj1x1 + aj2x2 + · · ·+ ajnxn)
k
.

So the system of polynomial equations has the form

bk + hk(w) =
X

|↵|=k

c

↵

x

↵1
1 · · ·x↵n

n for k 2 N, (11)

where

hk(w) := hk(w1, . . . , wm) =
mX

j=1

kX

`=1

(�1)k
✓
k

`

◆
y

k�`
j w

k
j ,

which is a polynomial in R[w1, . . . , wm]. Then the least
squares optimization problem (10) can be converted into the
polynomial optimization problem as follows:

x̂ = argmin
x2Rn, w2Rm

kwk2

s.t.
X

|↵|=k

c

↵

x

↵1
1 · · ·x↵n

n � hk(w) = bk for k 2 N. (12)

The polynomial optimization problem and its computational
algorithms have been extensively studied in [18] and refer-
ences therein.

IV. COMPUTATIONAL RESULTS

Although the brute force algorithm in [10] can be used to
solve the permuted linear system [10], it is impractical when
m is very large. We have already shown that a permuted linear
model can be converted into a system of polynomial equations.
Assume that the permuted linear system (1) has a unique
solution. Our proposed algorithm is presented as follows.
(i) Construct polynomial equations: pk(y) = pk(Ax) for

k  1, 2, . . . , n.
(ii) Solve this system of polynomial equations.

(iii) If the solution is unique, stop.
(iv) Otherwise, k  k + 1, check if solutions satisfies one

additional equation pk(Ax) = pk(y). Then perform (iii).
Although there are various methods for solving a system

of polynomial equations, only homotopy continuation method
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is used in this paper. There are several numerical tools for
homotopy continuation method, such as PHCpack, Hom4PS
and Bertini. In this paper, a MATLAB interface to the nu-
merical homotopy continuation tool, called Bertini, is used to
solve the system of polynomial equations numerically [19]. In
Fig. 2, it shows that n+1 number of the equations is enough
to get the unique solution for n = 2, 3, . . . , 6 and m = 3n,
respectively. In Fig. 3, the time cost is calculated with respect
to m when n = 3. For lager m, the brute force approach is
impractical. So, we only compare our proposed approach with
the brute force approach when m = 6, 7, . . . , 11. We also do
simulations for very large m, and it shows that our proposed
approach performs well and the time cost is linear increase
with respect to m.

2 3 4 5 6
n

2

3

4

5

6

7

8

N
um

be
r o

f E
qu

at
io

ns

Fig. 2. The number of equations needed to get the unique solution.
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Fig. 3. The computational time cost with respect to m.

V. CONCLUSION

In this paper, we presented a permuted linear model for
header-free communication in massive IoT networks. We con-
verted the permuted linear model into a system of polynomial
equations for efficiently solving it. This transformation also
brings new perspective and potential opportunities to handle
the permuted linear model. Our proposed method does not
need specific assumptions about the permuted linear model and
can be widely extended to other applications. The empirical
results showed that our method also works efficiently when m

is large compared with the brute force algorithm.
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