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Abstract—Relaying is a promising technique to extend cov-
erage and improve throughput in wireless networks, but its
performance is degraded in the presence of co-channel interfer-
ence. In this paper, we consider coordinated relay beamforming
to suppress interference and improve the date rates of two-
hop interference networks. We first propose optimal coordinated
relay beamforming algorithms to characterize the achievable rate
region and maximize the sum-rate. By imposing a constraint
on the desired signals, a low-complexity iterative algorithm is
then proposed to maximize the sum-rate. Through performance
comparison, we show that the proposed relaying strategy provides
a promising tradeoff between complexity and performance. To
further reduce design complexity, we propose a new interference
management scheme, interference neutralization, to cancel the
interferences over the air at the second hop. We show that this
scheme yields a closed-form solution for the beamforming design
and provides good performance especially at high signal-to-noise
ratio (SNR).

I. INTRODUCTION

Relaying is considered as an efficient way to enlarge the
coverage and increase the system capacity in wireless net-
works. Recently, various relaying protocols have been included
in major future cellular communication systems, such as
3GPP LTE-Advanced and WiMAX [1]. Among the different
relaying protocols, the amplify-and-forward (AF) scheme is
popular for its low complexity and implementation cost [2].
In this paper, we consider two-hop relaying networks with
multiple signal-antenna source-destination pairs communicat-
ing through multiple multi-antenna AF relays. This setting
can arise in many systems, e.g., in the LTE-Advanced cel-
lular system, where multi-antenna relays will be employed
to improve the throughput and extend the coverage of the
network. However, the added relays in these systems make
the interference problem more complicated. In this paper, we
will focus on interference mitigation via coordinated relay
beamforming, since interference will be a limiting factor in
future wireless networks.

Recently, there have been significant progresses on coordi-
nated beamforming for single-hop MISO interference channels
to mitigate inter-cell interferences [3], [4]. However, the under-
standing of relay beamforming for two-hop interference net-
works is very limited. The existing works are mainly focused
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on the total relay power minimization problem subject to QoS
constraints at each destination node [5], or the total leakage
(i.e., total interference power plus total forwarded noise power
from the first hop) minimization algorithm subject to signal p-
reservation constraints [6] or a sum relay power constraint [7].
In this paper, we will propose efficient techniques to maximize
the sum-rate and characterize the achievable rate region with
coordinated relay beamforming. Our results on the optimal
relay beamforming will provide performance benchmarks for
designing practical low-complexity algorithms.

Motivated by the high complexity of the optimal beam-
forming, our second objective is to find an efficient approach
to maximize the sum-rate. We shall propose a novel method,
which aligns the desired signals at different destinations at the
same level, instead of canceling the interference. The proposed
iterative algorithm based on this strategy will be shown
to provide better performance compared with the existing
suboptimal relay beamforming schemes. This provides a new
approach to manage the interference for two-hop networks in
a more tractable way.

Traditionally, zero-forcing (ZF) beamforming is well known
to reduce the design complexity. Due to its simplicty, ZF
beamforming is a promising transmission technique in the
single-hop MISO interference channel [8]. In [9], Zhang and
Letaief proposed ZF-based approaches for two-hop decode-
and-forward (DF) relay networks, which provide a promising
tradeoff between the complexity and the achievable perfor-
mance. Unfortunately, such complexity advantage of the ZF
approach cannot be carried over to two-hop AF relay networks.
Actually, for AF relay networks, we need to deal with not only
interferences but also the forwarded noises from the first hop.
Moreover, it is impossible to cancel the forwarded noise via
the ZF approach. Liu and Petropulu [10] considered the sum-
rate maximization problem using ZF beamforming in the relay
interference network with a single multi-antenna AF relay, but
the proposed algorithm can not be extended to the multiple
relay case.

Interference neutralization, a close idea to ZF beamforming,
was recently shown to be a powerful scheme to optimize the
degrees of freedom (DoF) for the two-hop interference relay
networks [11]. This scheme allows interference to be canceled
over the air at the destinations. However, its performance
has not yet been investigated in the finite SNR region via
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Fig. 1. A two-hop interference channel with K single-antenna source-
destination pairs and L AF relays.

the coordinated relay beamforming design. In this paper,
from the achievable rate region comparison, we will show
that this scheme provides good performance with a relatively
low complexity. Furthermore, we will derive a closed-form
solution to the interference neutralization beamforming, which
is shown to provide good performance at high SNR values.

Notations: Boldface lower case and upper case letters repre-
sent vectors and matrices, respectively. The superscripts (·)T ,
(·)∗, (·)H , (·)−1 denote the transpose, the complex conjugate,
the Hermitian, the matrix inverse operators. 1n, 0n, I, and
0 denote the n-dimensional column vectors with ones, zeros,
the identity matrix and the all-zero matrix, respectively. Tr{·},
R{·}, | · | and || · || denote the trace operator, the real part, the
absolute value and the standard Euclidean norm. E{·} denotes
the statistical expectation. Finally, S ≽ 0 means that S is a
positive semi-definite matrix.

II. SYSTEM MODEL AND PROBLEM FORMULATIONS

We consider a system consisting of K single-antenna
source-destination pairs communicating through L AF relays
as shown in Fig. 1. The lth relay is equipped with Ml antennas
that are used for receiving signals from the sources and trans-
mitting signals to the destination terminals. The relays operate
in the half-duplex mode, i.e., the signals are transmitted from
the sources to the destinations through two phases. In the first
phase, the sources transmit signals to the relays, and in the
second phase, the relays transmit the processed signals to the
destination terminals. The Ml×1 received signal vector rl at
the lth relay can be written as

rl = HlP
1/2s+ zl, (1)

where zl
∆
= [zl,1, ..., zl,Ml ]

T is the Ml×1 vector of white Gaus-
sian noise with distribution CN (0,σ2

rI) , s ∆
= [s1, ..., sK ]T ∈

CK×1 with sk as the transmitted symbol from the kth source
with E{|sk|2} = 1, P ∆

= diag{p1, ..., pK} ∈ RK×K with pk
as the transmit power of the kth source (we assume that the
sources use full power transmission as we restrict our interest
to relay beamforming), Hl

∆
= [hl,1, ...,hl,K ] ∈ CMl×K , where

hl,k is the Ml × 1 vector containing the channel coefficients
from the kth source to the lth relay. In the second phase, the
lth relay retransmits the received signal in (1) after multiplying
the beamforming matrix Wl. As a result, the signal transmitted

from the lth relay can be written as

tl = WlHlP
1/2s+Wlzl. (2)

Using (1) and (2), we can write the signal received at the kth
destination as

yk=
L∑

l=1

√
pkg

T
k,lWlhl,ksk

︸ ︷︷ ︸
yS,k

+
L∑

l=1

gT
k,lWlH̃l,kP̃

1/2
k s̃k

︸ ︷︷ ︸
yI,k

+
L∑

l=1

gT
k,lWlzl

︸ ︷︷ ︸
yN,k

+nk, (3)

where nk is the additive noise at the kth destination with
distribution CN (0,σ2

d), gk,l is the Ml × 1 vector consist-
ing of the channel coefficients between the lth relay and
the kth destination, s̃k

∆
= [s1, ..., sk−1, sk+1, ..., sK ]T is

the (K − 1) × 1 vector consisting of the signals transmit-
ted by the sources that are not targeting the kth destina-
tion, P̃k

∆
= diag{p1,...,pk−1,pk+1,...,pK} consists of the

transmit powers of the corresponding sources, and H̃l,k
∆
=

[hl,1, ...,hl,k−1,hl,k+1, ...,hl,K ] consists of the correspond-
ing source-relay channels. Therefore, yS,k, yI,k, yN,k are
the desired signal, interference signals and forwarded noise
components at the kth receiver, respectively. Throughout the
paper, we will assume that each relay has the perfect global
channel state information (CSI) from all the sources to relays
and all relays to destinations. Furthermore, we assume that
transmission symbols, relay noises and destination noises are
mutually statistically independent.

Using the identity vec(ABC) = (CT ⊗A)vec(B), where
vec{·} is the vectorization operator that stacks the columns
of a matrix on the top of each other and ⊗ denotes the
Kronecker product operator, the transmit power at the lth
relay is given by PRl = E{||tl||2} = wH

l Dlwl, where
wl = vec(Wl) is the M2

l × 1 beamforming vector and
Dl

∆
= (HlP1/2)∗(HlP1/2)T ⊗ IMl +σ2

rIM2
l

is the M2
l ×M2

l
matrix. As a result, the sum-power at all relays can be written

as PR =
L∑

l=1
PRl = wHDw, where w

∆
= [wT

1 ,...,w
T
L ]

T

is the
∑L

l=1 M
2
l × 1 stacked relay beamforming vector and

D
∆
= diag{D1,...,DL} is an

∑L
l=1 M

2
l ×

∑L
l=1 M

2
l diagonal

matrix. Throughout this paper, we will assume that the coop-
erative relay beamforming matrices are designed subject to a
sum-power constraint [7] for all relays

wHDw ≤ P, (4)

where P is the maximum total transmit power at all relays.
From (3), we can derive expressions for the desired sig-

nal power PS,k, interference signal power PI,k, and for-
warded noise power PN,k at the kth destination as follows.
PS,k = E{|yS,k|2} = pk|bH

k w|2, where bk
∆
= [(hT

1,k
⊗

gT
k,1), ..., (h

T
L,k

⊗ gT
k,L)]

H is the
∑L

l=1 M
2
l × 1 vector. PI,k =
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E{|yI,k|2} = ||Akw||2 = wHQkw, where Qk
∆
= AH

k Ak is
the

∑L
l=1 M

2
l ×

∑L
l=1 M

2
l matrix with the (K−1)×

∑L
l=1 M

2
l

matrix Ak
∆
= [(H̃1,kP̃

1/2
k )T ⊗ gT

k,1, ..., (H̃L,kP̃
1/2
k )T ⊗ gT

k,L].
PN,k = E{|yN,k|2} = ||Bkw||2 = wHGkw, where Bk =
diag{B1,k, ...,BL,k} is the

∑L
l=1 Ml ×

∑L
l=1 M

2
l diagonal

matrix with the Ml ×M2
l matrix Bl,k

∆
= (σrIMl)⊗ gT

k,l and
Gk

∆
= BH

k Bk is the
∑L

l=1 M
2
l ×

∑L
l=1 M

2
l matrix.

In this paper, we consider the single-user detection (SUD)
where each destination treats the interferences as Gaussian
noise. Therefore, the signal-to-interference-plus-noise ratio
(SINR) at the kth destination is given by

SINRk =
pk|bH

k w|2

||Akw||2 + ||Bkw||2 + σ2
d

(5)

and the achievable rate of the kth destination is given by
Rk(w) = 1

2 log2(1 + SINRk).
Depending on the application, different design criteria will

be considered. In this paper, we consider two typical perfor-
mance measures:
• Achievable rate region;
• Sum-rate: 1

2

∑K
k=1 log2(1 + SINRk).

We define the achievable rate region for two-hop networks
as the set of rate-tuples for all destinations that can be
simultaneously achievable under the given relay beamfroming
vector w that satisfies the relay sum-power constraint (4):

R ∆
=

⋃

{w: wHDw≤P}

{(r1, ..., rK) : 0 ≤ rk ≤ Rk(w)}. (6)

The outer boundary of this region is called the Pareto bound-
ary, because it consists of operating points (R1, ..., RK) for
which it is impossible to improve one of the rates, without
simultaneously decreasing at least one of the other rates [3].

III. OPTIMAL COORDINATED BEAMFORMING

In this section, we design the optimal beamforming matrices
for cooperative relays to characterize the achievable rate region
and maximize the sum-rate. We also propose a low-complexity
iterative suboptimal algorithm to maximize the sum-rate.

A. Optimal Achievable Rate Region Characterization
The rate-profile method [3] is a well known technique

to characterize the achievable rate region. Specifically, for a
given rate-profile vector, ν = (ν1, ..., νK), we can solve the
following optimization problem to obtain the corresponding
rate-tuple on the Pareto boundary of the achievable rate region:

max
Rsum,w

Rsum

s. t.
1

2
log2(1 + SINRk) ≥ νkRsum, k = 1, ...,K

wHDw ≤ P. (7)

where ν satisfies that νi ≥ 0, 1 ≤ i ≤ K, and ΣK
i=1νi = 1.

We denote the optimal solution of Problem (7) as R∗
sum, and

then R∗
sum · ν is the corresponding Pareto optimal rate-tuple,

as shown in [3]. Although the Problem (7) is nonconvex, we

can use the bisection search algorithm to find R∗
sum as shown

in [3]. Specifically, we could solve a sequence of relay sum-
power minimization problems for a given rate-profile vector
ν and Rsum = rsum:

min
w

wHDw

s. t.
pk|bH

k w|2

||Akw||2 + ||Bkw||2 + σ2
d

≥ γk, k = 1, ...,K, (8)

where γk
∆
= 22νkrsum − 1. Denote the optimal value of the

above problem as p∗, which is the minimum sum-power
required by the relays to support the target SINRs {γk}Kk=1.
Therefore, if p∗ ≤ P , it follows that {γk}Kk=1 are achievable
and R∗

sum ≥ rsum; otherwise, {γk}Kk=1 are not achievable and
R∗

sum < rsum. However, Problem (8) is still nonconvex.
Although Fadel et al. [5] proposed an algorithm to find the

global optimal solution to Problem (8), it still has high com-
plexity since it needs to solve a group of second-order cone
programing (SOCP) problems. In order to increase the speed
of testing if a specified set of SINR values are achievable, we
propose to first bound the optimal value p∗ as pL ≤ p∗ ≤ pU ,
where pL is the optimal value of the following semi-definite
programming (SDP) problem:

min
X

tr(DX)

s. t. tr(JkX) ≥ γkσ
2
d, X ≽ 0, k = 1, ...,K, (9)

where X = wwH and Jk = pkbkbH
k − γk(Qk + Gk) and

pU is the optimal value of the following SOCP problem:

min
w

wHDw

s. t. ||Ukw + vk|| ≤ ℜ{bH
k w}, k = 1, ...,K, (10)

where

Uk
∆
=

√
γk
pk

⎡

⎣
Ak

Bk

0T∑L
l=1 M2

l

⎤

⎦ ,vk
∆
=

[
0K−1+

∑L
l=1 Ml√

γk

pk
σd

]
.

The solution of (9) is a lower bound of p∗ as we remove
the rank-one constraint for X; while the solution of (10) is an
upper bound of p∗ as we use the conservative approximation
|bH

k w| ≥ ℜ{bH
k w}. Therefore, we can easily obtain pL

and pU through solving the convex problems (9) and (10),
respectively. If pU ≤ P , then the target {γk}Kk=1 are achiev-
able. If pL ≥ P , then {γk}Kk=1 are not achievable. If neither
pU ≤ P nor pL ≥ P , we resort to the more computationally
expensive algorithm [5] to obtain p∗. If p∗ ≤ P , then
{γk}Kk=1 are achievable; otherwise, they are not achievable.
Based on this observation, our proposed achievable rate region
characterization (ARR) algorithm is presented at the top of the
next page.

One way to determine the upper bound rmax in Algorithm
1 is as follows. Based on the Cauchy-Schwartz inequality,
we can obtain |bH

k w|2 ≤ ||bH
k ||2||w||2 and wHDw ≤

||w||2
∑T

t=1 ||d
H
t ||2, where D1/2 = [d1, ...,dT ]H and T =∑L

l=1 M
2
l . Using (4) and neglecting the interference and
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Algorithm 1: Optimal Beamforming for ARR
Step 0: Given Rsum ∈ [0, rmax], ν.
Step 1: Initialize rlow = 0, rup = rmax.
Step 2: Repeat
1) Set r ← 1

2 (rlow + rup);
2) Obtain pU with the given r: if pU ≤ P , set rlow ← r, go

to step 3; otherwise, obtain pL with the given r:
if pL ≥ P , set rup ← r, go to step 3; otherwise,
obtain p∗ with the given r;

3) Update r by the bisection method: if p∗ ≤ P , set
rlow ← r; otherwise, rup ← r.

Step 3: Until rup − rlow < δ, where δ represents an
accuracy requirement. The converged value of rup is the
optimal solution of Rmax in (7).

forwarded noise terms in the denominator of SINR in (5),
we can obtain an upper bound of SINRk as γk,max =
pk||bH

k ||2P/(σ2
d

∑T
t=1 ||dH

t ||2). Therefore, rmax can be given
by rmax = 1/2

∑K
k=1 log(1 + γk,max).

B. Sum-Rate Maximization

1) Optimal sum-rate maximization beamforming: Recently,
Joshi et al. [4] proposed an algorithm based on the branch and
bound technique to solve the weighted sum-rate maximization
problem for MISO downlink cellular networks. This method
can be easily extended to our cooperative relay networks. Due
to the scope of the paper, we omit the details of the algorithm,
which can be found in [4]. The main difference between our
problem and the problem considered in [4] is testing if a
specified set of SINR values {γk}Kk=1 [4, (24)] are achievable.
To reduce the computational complexity, we can follow exactly
the same steps described in Section III. A to check if these
SINR values are achievable. However, as the original problem
is NP-hard, the optimal solution has a prohibitive complexity
for practical implementation.

2) Suboptimal beamforming strategy to the sum-rate max-
imization: From the last subsection, we see that the global
optimal solution has high complexity, but it can be used to
provide performance benchmarks for designing low complex-
ity algorithms. In this subsection, we propose a low complexity
algorithm to design the beamforming matrices. From problem
(8), we find that the main difficulty is that the equivalent
effective scalar channel gains hsignal

k = bH
k w, k = 1, ...,K

are coupled with each other via the cooperative beamforming
vector w, which means it is impossible to use the phase
rotation technique as in [12]. This is a fundamental difference
from the single-hop MISO interference channel, for which we
can use the phase rotation technique to make all the channel
gains real and nonnegative at the same time [4, (3)] without
change the objective and the constraints. To overcome the
difficulty, we propose a method to decouple the equivalent
effective channels, i.e., adding the following constraint:

bH
k w = bH

k′w, ∀k, k
′
= 1, ...,K. (11)

After aligning these channel gains at the same level, relays can
jointly design the beamforming matrices to maximize the sum-
rate in a more tractable way. Let us introduce the (K − 1)×
∑L

l=1 M
2
l matrix F̄

∆
=

[
(bH

1 − bH
2 )

T
, ..., (bH

1 − bH
K)

T
]T

. We

will assume that
∑L

l=1 M
2
l > (K − 1) and F̄ is full row-rank

for independent channels. Thus, the constraint (11) can be
rewritten as F̄w = 0. The nontrivial solution to it is given by

w̄ = Ūα, (12)

where α is an arbitrary [
∑L

l=1 M
2
l − (K − 1)] × 1 vector,

Ū = [ϕ1,ϕ2, ...,ϕ∑L
l=1 M2

l −(K−1)] and ϕi is the eigenvector
corresponding to the ith zero eigenvalue of F̄HF̄. Thus, the
SINR at the kth destination is given by

SINRk =
pk|fHα|2

αHR̄kα+ σ2
d

, (13)

where fH
∆
= bH

1 Ū and R̄k
∆
= ŪH(Qk+Gk)Ū. The sum-rate

maximization problem becomes more tractable based on this
form of SINR. First, let us introduce the following lemma.

Lemma 1: [13] For any positive real numbers f1, f2, ..., fK
we have:

min
t∈T

(
1

K

∑K

k=1
fktk)

K =
∏K

k=1
fk, (14)

where T ∆
= {t ∈ Rk

+ :
∏K

k=1 tk = 1}.

Then, consider the following sum-rate maximization prob-
lem, i.e., to maximize the sum-rate after decoupling:

max
α

1

2

∑K

k=1
log2(1 + SINRk) s. t. α

HD̄α ≤ P, (15)

where D̄
∆
= ŪHDŪ. At high SNR, this problem can be

approximated to

min
α

∏K

k=1

1

SINRk
s. t. αHD̄α ≤ P. (16)

Based on Lemma 1 and (16), the suboptimal α of (15) can
be obtained by solving the following problem

min
α,t∈T

∑K

k=1

tk
SINRk

s. t. αHD̄α ≤ P. (17)

This problem can be solved iteratively. Specifically, for a fixed
α, the optimal t of (17) are given by [13, (12)]

tk =
SINRk

(
∏K

k=1 SINRk)
1/K

, ∀k = 1, ...,K. (18)

For a fixed t, the optimization problem (17) is given by

min
α

∑K

k=1
tk
αHR̄kα+ σ2

d

pkαHf fHα
s. t. αHD̄α ≤ P. (19)

It is obvious that the optimal α∗ must satisfy (α∗)HD̄α∗ =
P . Thus, the above problem is equivalent to

α∗ = argmax
αHf fHα

αHRα
, (20)
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where R =
∑K

k=1 (
tk
pk
Rk + tkσ

2
d

pkP
D̄). It can be written in the

form of the Rayleigh-Ritz ratio and the optimal solution is
thus given as

α∗ = ξR−1f , (21)

where ξ > 0 is a scalar such that (α∗)HD̄α∗ = P . Thus,
our proposed iterative algorithm that provides a suboptimal
solution to (15) is summarized as follows.

Algorithm 2: Iterative Algorithm for Sum-Rate Maximiza-
tion
Step 0: Initialize t1 = t2 = · · · = tK = 1, and obtain Ū
through eigenvalue decomposition of F̄HF̄.
Step 1: Repeat
1) Update α∗ using (21) with a fixed t,
2) Update {tk}Kk=1 using (18) with a fixed α.
Step 2: Until convergence.
Step 3: Obtain w̄ using (12).

Convergence: At each step, the objective function of (17) is
non-increasing and the global optimum of it is also achieved.
The facts show that the iterative algorithm is guaranteed to
converge to the local optimum of problem (17).

IV. A SUBOPTIMAL SOLUTION: INTERFERENCE
NEUTRALIZATION BEAMFORMING

In this section, we present a new cooperative interfer-
ence management scheme, termed interference neutralization,
which allows interference to be canceled over the air at the last
hop. Here, the relay beamformer w is designed to neutralize
interferences at each destination terminal, i.e.,

F̃w = 0, (22)

where F̃
∆
= [fT1,2, ..., f

T
k,k′ , ..., fTK,K−1]

T , for k ̸= k
′
, is the

K(K − 1)×
∑L

l=1 M
2
l matrix with the 1×

∑L
l=1 M

2
l vector

fk,k′
∆
= [hT

1,k′ ⊗ gT
k,1, ...,h

T
L,k′ ⊗ gT

k,L]. We assume that
∑L

l=1 M
2
l > K(K − 1) and F̃ is full row-rank. A nontrivial

solution to (22) is given by any linear combination of the
eigenvectors corresponding to the null space of F̃HF̃, i.e.,

w̃ = Ũβ, where β is an arbitrary [
L∑

l=1
M2

l −K(K − 1)]× 1

vector, Ũ = [u1,u2, ...,u∑L
l=1 M2

l −K(K−1)] and ui are the
eigenvector corresponding to the ith zero eigenvalue of F̃HF̃.
As a result, the SINR at the kth destination is given by

ŜINRk =
pk|b̃H

k β|2

||B̃kβ||22 + σ2
d

, (23)

where b̃H
k

∆
= bH

k Ũ and B̃k
∆
= BkŨ.

A. Achievable Rate Region Characterization
To characterize the achievable rate region for the interfer-

ence neutralization scheme, we only need to determine the
[
∑L

l=1 M
2
l − K(K − 1)] × 1 vector β. Whereas, we need

to determine the
∑L

l=1 M
2
l × 1 beamforming vector w for

the optimal coordinated beamforming. We can use the same
steps described in section III. A to characterize the achievable
rate region for the interference neutralization scheme, letting
0 → Ak, B̃k → Bk, D̃ → D, b̃H

k → bH
k and β → w.

B. Sum-Rate Maximization
In principle, we can also use the same algorithm described

in Section III. B 1) to find the global optimal solution for the
sum-rate maximization problem. However, to avoid the high
complexity of that algorithm, in this section, we propose a
suboptimal solution for the interference neutralization scheme.
Besides the interference neutralization constraint on the relay
beamforming vector w, we impose a linear constraint on the
desired signals to preserve the signal level, i.e.,

[b∗
1, ...,b

∗
K ]Tw = ζ1K . (24)

By combining the constraints (22) and (24), we can rewrite the
two constraints as Fw = ζc, where F

∆
= [F̃; [b∗

1, ...,b
∗
K ]T ],

c
∆
= [0K(K−1);1K ], and ζ ∈ C is selected to meet the

sum-power constraint at relays. Thus, we need to solve the
following optimization problem

min
w

wHDw s. t. Fw = c. (25)

This is a convex optimization problem. Using the Lagrange
multipliers method, the optimal solution to it can be given
by w̌ = D−1FH [FD−1FH ]−1c. Therefore, the suboptimal
solution for the interference neutralization scheme is given in
the closed-form as

ŵ = ζw̌, (26)

where ζ =
√

PR/(w̌HDw̌) is to satisfy the relay sum-power
constraint ŵHDŵ = P .

V. NUMERICAL RESULTS

In this section, numerical results are presented to compare
the performance of different coordinated relay beamforming
methods in terms of the achievable rate region and the achiev-
able sum-rate.

In Fig. 2, we consider a scenario with K = 2 source-
destination pairs communicating through L = 2 relays with 2
antennas each. In our simulation, it is assumed that all sources
and relays have the same transmit power p and σ2

r = σ2
d = 1,

and the SNR is defined as p/σ2
r , which is set to be 10 dB.

All channel coefficients are generated from independent circu-
larly symmetric complex Gaussian variables with distribution
CN (0, 1). Each rate pair point is based on averaging over
100 independent and random channel realizations. This figure
shows that the interference neutralization scheme provides
good performance with a relatively low complexity compared
with the optimal coordinated relay beamforming.

In Fig. 3, we consider a scenario of K = 3 source-
destination pairs and L = 3 2-antenna relays assisting the
data transmission. We assume that all sources have the same
transmit power p and all relays have the same transmit power
0.8p and σ2

r = σ2
d = 1, and the SNR is defined as p/σ2

r .
All direct-link channel coefficients hi,i and gi,i are generated
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from i.i.d. CN (0, 1) and all cross-link channel coefficients hi,j

and gi,j are generated from i.i.d. CN (0, 1) and multiplied by
a factor 1/2 to indicate different path losses. For comparison,
the total leakage minimization algorithms subject to signal
preservation constraints [6] or a relay sum-power constraint
[7] are also evaluated. These are denoted by “Min leakage
algorithm 1” and “Min leakage algorithm 2”, respectively.
This figure shows that our proposed Algorithm 2 achieves
the best performance among the evaluated relay beamforming
algorithms. Moreover, the proposed closed-form solution (26)
for the interference neutralization scheme also outperforms
“Min leakage algorithm 1” in the high SNR region. Further-
more, at the medium to high SNRs, all the cooperative relay
beamforming strategies outperform the non-cooperative relay
beamforming scheme [14] where each relay only knows its
direct-link channel coefficients.
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Fig. 2. Achievable rate region at SNR=10 dB.
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Fig. 3. Achievable sum-rates of different relay beamforming methods.

In Table I, we choose one channel realization 1 from the
same scenario considered in Fig. 3 to compare the proposed
low-complexity Algorithm 2 with the optimal beamforming.
It is observed that our proposed algorithm 2 only has a
performance loss about 10% compared with the optimal relay
beamforming, but it has very low complexity and can be
implemented in real-time.

1The corresponding channel coefficients for the realization can be found at
http://www.ece.ust.hk/˜eejzhang/document/channel.mat

TABLE I
SUM-RATE COMPARISONS FOR DIFFERENT BEAMFORMING STRATEGIES

SNR (dB) 5 10 15 20 25
Optimal beamforming 2.35 4.07 6.08 8.37 10.73
Proposed Algorithm 2 1.99 3.56 5.43 7.53 9.85

VI. CONCLUSION

In this paper, we investigated coordinated relay beamform-
ing for interference mitigation in two-hop interference net-
works. We first provided performance benchmarks by develop-
ing optimal coordinated relay beamforming algorithms. It was
demonstrated that the proposed iterative Algorithm 2 always
outperforms exiting suboptimal relay beamforming algorithms.
We also showed that the proposed interference neutralization
scheme can provide good performance with a relatively low
complexity, especially at high SNR. Possible future research
directions include considering a general setting with arbitrary
number of antennas at all terminals and developing practical
CSI acquisition methods.
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