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Abstract—Massive device connectivity is a crucial
communication challenge for Internet of Things (IoT) networks,
which consist of a large number of devices with sporadic traffic.
In each coherence block, the serving base station needs to
identify the active devices and estimate their channel state
information for effective communication. By exploiting the
sparsity pattern of data transmission, we develop a structured
group sparsity estimation method to simultaneously detect the
active devices and estimate the corresponding channels. This
method significantly reduces the signature sequence length while
supporting massive IoT access. To determine the optimal signa-
ture sequence length, we study the phase transition behavior of
the group sparsity estimation problem. Specifically, user activity
can be successfully estimated with a high probability when
the signature sequence length exceeds a threshold; otherwise,
it fails with a high probability. The location and width of
the phase transition region are characterized via the theory
of conic integral geometry. We further develop a smoothing
method to solve the high-dimensional structured estimation
problem with a given limited time budget. This is achieved by
sharply characterizing the convergence rate in terms of the
smoothing parameter, signature sequence length and estimation
accuracy, yielding a tradeoff between the estimation accuracy
and computational cost. Numerical results are provided to
illustrate the accuracy of our theoretical results and the benefits
of smoothing techniques.

Index Terms—Computation-estimation tradeoffs, conic inte-
gral geometry, group sparsity estimation, massive Internet of
Things (IoT) connectivity, phase transitions, statistical dimension.

I. INTRODUCTION

THE explosion of small and cheap computing devices
endowed with sensing and communication capability is

paving the way toward the era of Internet of Things (IoT),
which is expected to improve people’s daily life and bring
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socio-economic benefits. For example, connecting the automa-
tion systems of intelligent buildings to the Internet enables to
control and manage different smart devices to save energy and
improve the convenience for residents [1]. Other applications
include smart home, smart city, and smart health care [1].
To provide ubiquitous connectivity to enable such IoT-based
applications, massive machine-type communications and ultra-
reliable and low latency communications become critical in the
upcoming 5G networks [2], [3]. In particular, in many sce-
narios, there are huge numbers of devices to be connected
to the Internet via the base-station (BS). Thus, supporting
massive device connectivity is a crucial requirement for IoT
networks [4]–[6].

Existing cellular standards, including 4G LTE [7], are
unable to support massive IoT connectivity. Furthermore, the
acquisition of the channel state information (CSI) that is
needed for the effective transmissions will bring huge over-
heads, and thus will make IoT communications even more
challenging [5]. Fortunately, the IoT data traffic is typically
sporadic, i.e., only a few devices are active at any given instant
out of all the devices [8]. For example, in sensor networks, a
device is typically designed to stay in the sleep mode and is
triggered only by external events in order to save energy. By
exploiting the sparsity in the device activity pattern, it is possi-
ble to design efficient schemes to support simultaneous device
activity detection and channel estimation. As it is not feasible
to assign orthogonal signature sequences to all the devices,
this paper studies the joint activity detection and channel esti-
mation (JADE) problem considering nonorthogonal signature
sequences [9], [10].

A. Related Work

A growing body of literatures have recently proposed var-
ious methods to deal with massive device connectivity and
the high-dimensional channel estimation problem. The com-
pressed sensing (CS)-based channel estimation techniques
have been proposed by exploiting the sparsity of channel struc-
tures in time, frequency, angular, and Doppler domains [11]–
[13]. The spatial and temporal prior information was fur-
ther exploited to solve the high-dimensional channel estima-
tion problem in dense wireless cooperative networks [14].
However, in IoT networks with a limited channel coherence
time, it is critical to further exploit the sparsity in the
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device activity pattern to enhance the channel estimation
performance [3], [10], thereby reducing the training overhead.
Due to the large-scale nature of IoT communications, it is
also critical to develop efficient algorithms to address the
computation issue.

The sporadic device activity detection problem has recently
been investigated. In the context of cellular networks, the ran-
dom access scheme was investigated in [15] and [16] to deal
with the significant overhead incurred by the massive num-
ber of devices. In the random access scheme, a connection
between an active device and the BS shall be established if the
orthogonal signature sequence randomly selected by the active
device is not used by other devices. This scheme, however,
normally causes collision among a huge number of devices.
To support a massive number of devices, we thus focus on the
nonorthogonal multiuser access (NOMA) scheme [9], which is
able to simultaneously serve multiple devices via nonorthog-
onal resource allocation. The opportunities and challenges
of NOMA for supporting massive connectivity are investi-
gated in [9]. Furthermore, network densification [17] turns
to be a promising way to improve network capacity, enable
low-latency mobile applications and support massive device
connectivity by deploying more radio access points in IoT
networks [18].

The information theoretical capacity for massive connectiv-
ity was studied in [19]. The sparsity activity pattern yields a
CS-based formulation [10], [20] to detect the active devices
and estimate the channels. Recall that the CSI refers to the
channel propagation coefficients that describe how a signal
propagates between transmitters and receivers. In particu-
lar, in the related statements of “prior knowledge of CSI,”
CSI refers to the distribution information. A neural network
approach was proposed in [21] to predict channel conditions
for unmanned aerial vehicle communication. Assuming perfect
CSI, a sparsity-exploiting maximum a posteriori probabil-
ity criterion for multiuser detection in CDMA systems was
developed in [20]. Schepker et al. [22] and Du et al. [23] con-
sidered the multiuser detection problem with the aid of channel
prior-information. In [10], [24], and [25], a joint design of
channel estimation and user activity detection via the approxi-
mate message passing (AMP) algorithm was developed, which
leverages the statistical channel information and large-scale
fading coefficients to enhance the Bayesian AMP algorithm
with rigorous performance analysis. However, our approach
does not require prior information of the distribution of CSI
to reduce the signaling overhead. The work [26] proposed an
efficient channel reservation technique for hand-off to min-
imize the probability of dropping and blocking calls, while
this paper focuses on detecting the active devices in mas-
sive IoT network. When assuming no prior knowledge of
the distribution of CSI, the joint user detection and channel
estimation approach for cloud radio access network via the
alternating direction method of multipliers (ADMM) algorithm
was proposed in [27] without performance analysis.

In this paper, to eliminate the overheads of acquiring large-
scale fading coefficients and statistical channel information,
we propose a structured group sparsity estimation approach
to solve the JADE problem without prior knowledge of

the distribution of CSI. To determine the optimal signature
sequence length, we provide precise characterization for the
phase transition behaviors in the structured group sparsity
estimation problem. Although the bounds on the multiuser
detection error in the nonorthogonal multiple access system
have been presented in [23] based on the restricted isometry
property [28], the order-wise estimates are normally not accu-
rate enough for practitioners. A convex geometry approach
was thus introduced in [29] to provide sharp estimates of
the number of required measurements for exact and robust
recovery of structured signals. However, this approach can
only provide the success conditions for signal recovery guar-
antees. Subsequently, the phase transition of a regularized
linear inverse problem with random measurements was stud-
ied in [30] and [31] based on the theory of conic integral
geometry [32], which established both the success and failure
conditions for signal recovery. In particular, the location and
width of the transition are essentially controlled by the statis-
tical dimension of a descent cone associated with the convex
regularizers. However, these results are only applicable in the
real domain. It is not yet clear how to apply the appealing
methodology developed in [30] to provide sharp phase tran-
sition results for the high-dimensional estimation problem in
the complex domain in IoT networks, which will be pursued
in this paper.

The large number of devices in IoT networks raises unique
computational challenges when solving the JADE problem
with a fixed time budget. Unfortunately, second-order meth-
ods like interior point method are inapplicable in large scale
optimization problems due to its poor scalability. In con-
trast, first-order methods, e.g., gradient methods, proximal
methods [33], ADMM algorithm [34], [35], fast ADMM algo-
rithm [36], and Nesterov-type algorithms [37] are particularly
useful for solving large-scale problems. Therefore, we focus
on the first-order method in this paper. Furthermore, one way
to minimize the computational complexity is to reduce the cost
of each iteration by sketching approaches [38], [39]. However,
this method is often suitable for solving an over-determined
system instead of the under-determined linear system in our
case. A different approach is to accelerate the convergence rate
without increasing the computational cost of each iteration.
It was shown in [40] that with more data it is possible
to increase the step-size in the projected gradient method,
thereby achieving a faster convergence rate. Giryes et al. [41]
showed that by modifying the original iterations, it is possible
to achieve faster convergence rates to maintain the estima-
tion accuracy without increasing the computational cost of
each iteration considerably. More generally, smoothing tech-
niques, such as convex relaxation [42] or simply adding a
nice smooth function to smooth the nondifferentiable objective
function [37], [43], [44] often achieves a faster convergence
rate. However, the amount of smoothing should be chosen
carefully to guarantee the performance of sporadic device
activity detection in IoT networks. In this paper, the smoothing
method will be exploited to solve the high-dimensional group
sparsity estimation problem with a fixed time budget by accel-
erating the convergence rate. This yields a tradeoff between
the computational cost and estimation accuracy, as increasing
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the smoothing parameter will normally reduce the estimation
accuracy. The tradeoff framework further provides guidelines
for choosing the signature sequence length to maintain the
estimation accuracy.

B. Applications in IoT Systems

The proposed approach in this paper pervades a large num-
ber of applications in IoT systems. For instance, detecting
active devices shall enhance data transmission efficiency in
dynamic IoT networks [45] and wireless sensor networks. The
proposed computation-estimation tradeoff techniques are par-
ticularly suitable for real-time wireless IoT networks, e.g.,
vehicular networks [46], as well as providing fault-tolerance
communication and supporting high QoS and QoE require-
ments [47] with low estimation errors, which are the basic
requirements in high QoS applications, such as high altitude
platforms communication [48]. While the lower computa-
tional complexity comes at the cost of relatively high estima-
tion errors, it shall reduce energy consumption significantly,
and thus is suitable for energy sensitive applications [49] vand
enabling green IoT [50]. In addition, the proposed approaches
can be jointly designed with the secure access methods,
which shall enable smart applications of IoT devices especially
related to healthcare applications [51].

C. Contributions

The major contributions of this paper are summarized as
follows.

1) By exploiting sparsity in the device activity pattern, we
propose a structured group sparsity estimation approach
to solve the JADE problem for massive IoT connectivity.
Our method is widely applicable and does not depend
on the knowledge of channel statistical information and
the large-scale fading coefficients.

2) Based on the theory of conic integral geometry, we pro-
vide precise prediction for the location and the width
of the phase transition region of the sparsity estimation
problem via establishing both the failure and success
conditions for signal recovery. This result provides the-
oretical guidelines for choosing the optimal signature
sequence length to support massive IoT connectivity and
channel estimation. We also provide evidence that mas-
sive multiple input multiple output (MIMO) system is
particularly suitable for supporting massive IoT connec-
tivity, as the width of the phase transition region can be
narrowed to zero asymptotically as the number of BS
antennas increases.

3) We further contribute this paper by computing the statis-
tical dimension for the descent cone of the group sparsity
inducing regularizer to determine the phase transition of
the high-dimensional group sparsity estimation problem.
The success of this paper is based on the proposal of
transforming the original complex estimation problem
into the real domain, thereby leveraging the theory of
conic integral geometry.

4) To solve the high-dimensional group sparsity estima-
tion problem with a fixed time budget, we adopt the

Fig. 1. Typical IoT network with massive sporadic traffic devices.

smoothing method to smooth the nondifferentiable group
sparsity inducing regularizer to accelerate the conver-
gence rates. We further characterize the sharp tradeoffs
between the computational cost and estimation accuracy.
This helps guide the signature sequence design to main-
tain the estimation accuracy for the smoothed estimator.
Numerical results shall be provided to show the benefits
of smoothing techniques.

Notations: Uppercase/lowercase boldface letters denote
matrices/vectors. For an L × 2N matrix Q, we denote its ith
row by qi, its jth column by qj. Let QVi

= [(qi)T, (qi+N)T]T

denote the row submatrix of Q consisting of the rows indexed
by Vi = {i, i + N}. The operator ∥ · ∥2, ∥ · ∥F, (·)T,ℜ(·),ℑ(·)
stand for transpose, Euclidian norm, Frobenius norm, real part,
imaginary part. Q ∼ CN (µ, σ 2I) denotes that each element
in Q follows independent identically distributed (i.i.d.) normal
distribution with mean µ and variance σ 2.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model and Problem Formulation

We consider an IoT network with one BS serving N single-
antenna IoT devices, where the BS is equipped with M
antennas. The channel vector from device i to the BS is
denoted by hi ∈ CM , i = 1, . . . , N. With sporadic commu-
nications, only a few devices are active out of all devices [8]
as shown in Fig. 1. We consider the synchronized wireless
system with block fading. That is, each device is active dur-
ing a coherence block, and is inactive otherwise. In each block,
we define the device activity indicator as follows: ai = 1
if device i is active, otherwise ai = 0. Furthermore, we
define the set of active devices within a coherence block as
S = {i|ai = 1, i = 1, . . . , N} with |S| denoting the number of
active devices.

For uplink transmission in a coherence block with length
T , we consider the JADE problem. Specifically, the received
signal at the BS is given by

y(ℓ) =
N∑

i=1

hiaiqi(ℓ) + n(ℓ) =
∑

i∈S
hiqi(ℓ) + n(ℓ) (1)
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for all ℓ = 1, . . . , L. Here, L < T is the length of the signature
sequence, qi(ℓ) ∈ C is the signature symbol transmitted from
device i at time slot ℓ, y(ℓ) ∈ CM is the received signal at
the BS, and n(ℓ) ∈ CM is the additive noise distributed as
CN (0, σ 2I).

With massive devices and a limited channel coherence
block, the length of the signature sequence is typically smaller
than the total number of devices, i.e., L ≪ N. It is thus
impossible to assign mutually orthogonal sequences to all
the devices. As suggested in [10], we generate the signature
sequences from i.i.d. complex Gaussian distribution with zero
mean and variance one, i.e., each device i is assigned a unique
signature sequence qi(ℓ) ∼ CN (0, 1), ℓ = 1, . . . , L. Notice
these sequences are nonorthogonal.

Let Y = [y(1), . . . , y(L)]T ∈ CL×M denote the received
signal across M antennas, H = [h1, . . . , hN]T ∈ CN×M be the
channel matrix from all the devices to the BS antennas, and
Q = [q(1), . . . , q(L)]T ∈ CL×N be the known signature matrix
with q(ℓ) = [q1(ℓ), . . . , qN(ℓ)]T ∈ CN . We rewrite (1) as

Y = QAH + N (2)

where A = diag(a1, . . . , an) ∈ RN×N is the diagonal activity
matrix and N = [n(1), . . . , n(L)] ∈ CL×M is the additive noise
matrix. Our goal is to jointly estimate the channel matrix H
and detect the activity matrix A.

Let !0 = AH ∈ CN×M with A as the sparse diagonal activ-
ity matrix. Matrix !0 thus has the structured group sparsity
pattern in its rows [52]. The linear measurement model (2)
can be further rewritten as

Y = Q!0 + N. (3)

To estimate the group row sparse matrix !0, we introduce
the following convex group sparse inducing norm (i.e., mixed
ℓ1/ℓ2-norm) in the form of [52]:

R(!) :=
N∑

i=1

∥θ i∥2 (4)

where θ i ∈ C1×M is the ith row of matrix !. This norm
will help to induce a group sparsity structure in the solution.
The resulting group sparse matrix estimation problem, i.e., the
JADE problem, can thus be formulated as the following convex
optimization problem:

P: minimize
!∈CN×M

R(!)

subject to ∥Q!− Y∥F ≤ ϵ (5)

where ϵ is an upper bound on ∥N∥F and assumed to be known
as a priori. Given the estimate matrix !̂, the activity matrix
can be recovered as Â = diag(â1, . . . , ân), where âi = 1 if
∥θ̂ i∥2 ≥ γ0 for a small enough threshold γ0(γ0 ≥ 0); oth-
erwise, âi = 0. The estimated channel matrix for the active
devices is thus given by Ĥ with its ith row as ĥ

i = θ̂
i

where
i ∈ {j|âj = 1}.

B. Problem Analysis

1) Phase Transitions: Due to the limited radio resources,
it is critical to precisely find the minimal number of signa-
ture symbols L to support massive device access. This can
be achieved by precisely revealing the locations of the phase
transition of the high-dimensional group sparsity estimation
problem via solving the convex optimization problem P .
Although recent years have seen progresses on structured sig-
nal estimation [29], [53], [54], they only provide a success
condition for signal recovery without precise phase transition
analysis. The recent work [30] provided a principled frame-
work to predict phase transitions (including the location and
width of the transition region) for random cone programs [55]
via the theory of conic integral geometry. Unfortunately, the
approach based on conic integral geometry is only applicable
in the real field case, which thus cannot be directly applied
for problem P in the complex field. To address this issue,
we propose to approximate the original complex estimation
problem P by a real estimation problem, followed by precise
phase transition analysis via conic integral geometry [30].
Theoretical results and numerical experiments will provide
evidences that the approximations are quite tight. We shall
prove that the locations of phase transitions are determined
by the intrinsic geometry invariants (i.e., the statistical dimen-
sion) associated with the high-dimensional estimation problem
P . In particular, we will show that the width of the transition
region can be reduced to zero asymptotically in the limit as
the number of antennas at the BS goes to infinity. Therefore,
massive MIMO is especially well-suited for supporting mas-
sive IoT connectivity by providing accurate phase transition
location.

2) Computation and Estimation Tradeoffs: To address the
computational challenges in massive IoT networks with a lim-
ited time budget, we adopt the smoothing method to smooth
the nondifferentiable group sparsity inducing regularizer to
accelerate the convergence rates. The computational speedups
can be achieved by projecting onto simpler sets [42], varying
the amount of smoothing [44], or adjusting the step sizes [40]
applied to the optimization algorithms. However, the computa-
tional speedups will normally reduce the estimation accuracy.
Based on the phase transition results, we shall propose to con-
trol the amount of smoothing to achieve sharp computation and
estimation tradeoffs for the smoothed optimization problem P
via the smoothing method. The smoothed formulation can be
further efficiently solved via various efficient first-order meth-
ods with cheap iterations and low memory cost, e.g., gradient
methods, proximal methods [33], ADMM algorithm [34], fast
ADMM algorithm [36], and Nesterov-type algorithms [37].

III. PRECISE PHASE TRANSITION ANALYSIS

In this section, we study the phase transition phenomenon
when solving the JADE problem. An example of such phe-
nomenon is demonstrated in Fig. 2, from which we see that the
empirical success probability changes from 0 to 1 sharply. In
particular, this indicates that when the base station is equipped
with two antennas, the signature sequence length around 30
is sufficient to achieve exact signal recovery for 100 devices
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Fig. 2. Empirical success probability for solving problem P via CVX [56]
in the noiseless case. The base station is equipped with two antennas, the
total number of devices is 100 and the number of active device is 10. The
channel matrix and signature matrix are generated as H ∼ CN (0, I) and Q ∼
CN (0, I), respectively. We declare successful recovery if ∥!̂−!0∥F ≤ 10−5

and each point is averaged for 100 times.

where 10 of them are active. Thus, if we can accurately find
the location of the phase transition, we may choose a minimal
signature sequence length accordingly to support massive IoT
connectivity and channel estimation.

In the following, we provide precise analysis of the loca-
tion and width of the phase transition region via char-
acterizing both success and failure conditions for signal
recovery based on the conic geometry, followed by com-
puting the probability for holding the conic optimality
conditions.

A. Optimality Condition and Convex Geometry

We consider the real-valued counterpart of the statistical
optimization problem P as follows:

Pr: minimize
!̃∈R2N×M

RG

(
!̃

)

subject to ∥Q̃!̃− Ỹ∥F ≤ ϵ (6)

where the linear observation in the real domain is given by

Ỹ = Q̃!̃0 + Ñ

=
[ℜ{Q} −ℑ{Q}
ℑ{Q} ℜ{Q}

][ℜ{!0}
ℑ{!0}

]
+

[ℜ{N}
ℑ{N}

]
(7)

and the regularizer is defined as RG(!̃) = ∑N
i=1 ∥!̃Vi∥F .

Here, !̃Vi = [(θ̃
i
)T, (θ̃

i+N
)T]T is the row submatrix of !̃

consisting of the rows indexed by Vi = {i, i + N}.
To facilitate phase transition analysis, problem Pr can be

further approximated as the following structured group sparse
estimation problem with group size 2M:

Papprox: minimize
!̃∈R2N×M

RG

(
!̃

)

subject to ∥Q̄!̃− Ỹ∥F ≤ ϵ (8)

(a) (b)

Fig. 3. Optimality condition for problem Pa. (a) Pa succeeds. (b) Pa fails.

where Q̄ ∈ R2L×2N ∼ N (0, 0.5I) is a Gaussian random
matrix. The phase transition of the approximated problem
Papprox is empirically demonstrated to coincide with the orig-
inal problem Pr [13], [57] with structured distribution in the
measurement matrix Q̃. This will be further verified in the
numerical experiments in Section V. Additionally, there are
extensive empirical evidences [58], [59] showing that the dis-
tribution of the random measurement matrix has little effect
on the locations of phase transitions. We thus focus on char-
acterizing the phase transitions of the approximate problem
Papprox in the real field.

To make the presentation clear, we first characterize the
phase transitions in the noiseless case and then extend the
results to the noisy case. In the noiseless case, we rewrite
problem Papprox as follows:

Pa: minimize
!̃∈R2N×M

RG

(
!̃

)

subject to Ỹ = Q̄!̃. (9)

Problem Pa is said to succeed for exact recovery when it has
a unique optimal points !̃

∗
, which equals the ground-truth

!̃0; otherwise, it fails. Here, the phase transition refers to the
phenomenon that problem Pa changes from the failure state
to the successful state as the sequence length L increases. In
order to establish the optimality condition for problem Pa,
we present the following definition in convex analysis [30].

Definition 1 (Descent Cone): The descent cone D(R, x) of
a proper convex function R : Rd → R∪{±∞} at point x ∈ Rd

is the conic hull of the perturbations that do not increase R
near x, i.e.,

D(R, x) =
⋃

τ>0

{
y ∈ Rd : R(x + τy) ≤ R(x)

}
.

Let null(Q̄, M) = {Z ∈ R2N×M : Q̄Z = 02L×M} denote
the null space of the operator Q̄ ∈ R2L×2N . With the aid of
the descent cone [60], we shall establish the necessary and
sufficient condition for the success of problem Pa via convex
analysis [29], [30].

Fact 1 (Optimality Condition): Let R be a proper convex
function. Matrix !̃0 is the unique optimal solution to problem
Pa if and only if D(RG, !̃0)

⋂
null(Q̄, M) = {0}.

Fig. 3 illustrates the geometry of this optimality condition.
Problem Pa succeeds if and only if the null space of Q̄ misses
the cone of descent directions of RG at the ground-truth !̃0;
otherwise it fails since the optimal solution is !̃

∗ ̸= !̃0 as
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illustrated in Fig. 3(b). Intuitively, a smaller size of the decent
cone will lead to a higher successful recovery probability of
Pa. It is thus critical to characterize the size of the decent
cone to depict the phase transition phenomena.

Based on the optimality condition, the phase transition
problem is transformed into a classic problem in conic inte-
gral geometry: what is the probability that a randomly rotated
convex cone shares a ray with a fixed convex cone? The
Kinematic formula [32] provides an exact formula for com-
puting this probability. However, this exact formula is hard to
calculate. We thus present a practical formula that character-
izes the phase transition in two intersection cones in terms of
the statistical dimension [30].

Definition 2 (Statistical Dimension): The statistical dimen-
sion δ(C) of a closed convex cone C in Rd is defined as

δ(C) = E
[
∥#C(g)∥22

]

where g ∈ Rd is a standard normal vector, ∥·∥2 is the Euclidean
norm, and #C(x) = arg min{∥x − y∥2 : y ∈ C} denotes the
Euclidian projection onto C.

The statistical dimension allows us to measure the size of
convex cones and is the generalization of the dimension of
linear subspaces. We state the approximated conic kinematic
formula based on the statistical dimensions of general convex
cones [30].

Theorem 1 (Approximate Kinematic Formula): Fix a toler-
ance η ∈ (0, 1). Let C and K be convex cones in Rd, but one
of them is not a subspace. Draw a random orthogonal basis U.
Then

δ(C) + δ(K) ≤ d − aη

√
d =⇒ P{C ∩ UK ̸= {0}} ≤ η

δ(C) + δ(K) ≥ d + aη

√
d =⇒ P{C ∩ UK ̸= {0}} ≥ 1− η

where aη :=
√

8 log(4/η).
This theorem indicates a phase transition on whether the two

randomly rotated cones sharing a ray. That is, when the total
statistical dimension of the two cones exceeds the ambient
dimension d, the two randomly rotated cones share a ray with
high probability; otherwise, they fail to share a ray.

B. Phase Transition for Massive IoT Connectivity

Based on general results in Theorem 1, we shall present the
phase transition results for the exact recovery of the program
Pa in the noiseless case and robust recovery in the noisy case.

1) Phase Transition in the Noiseless Case: To predict phase
transitions of program Pa for signal recovery, we essentially
need to compute the probability for holding the optimality con-
dition in Fact 1. Specifically, for Gaussian random matrix Q̄, its
nullity is 2N−2L with probability one. Therefore, the statisti-
cal dimension of null(Q̄, M) is δ(null(Q̄, M)) = 2(N − L)M.
By replacing convex cones C and K in Theorem 1 by the
descent cone D(RG, !̃0) and the subspace null(Q̄, M), we
have the following recovery guarantees for signal recovery via
program Pa.

Theorem 2 (Phase Transition of Problem Pa): Fix a toler-
ance η ∈ (0, 1). Let !̃0 ∈ R2N×M be a fixed matrix. Suppose

Q̄ ∈ R2L×2N ∼ N (0, I) , and let Ỹ = Q̄!̃0. Then

2L ≥
δ
(
D

(
RG, !̃0

))

M
+ aη

√
2NM

M
⇒ P{Pa succeeds} ≥ 1− η

2L ≤
δ
(
D

(
RG, !̃0

))

M
− aη

√
2NM

M
⇒ P{Pa succeeds} ≤ η

where aη :=
√

8 log(4/η).
The above theorem indicates that Pa indeed reveals a

phase transition when the signature sequence lengths L =
([δ(D(RG, !̃0))]/2M). The transition from failure to success
across a sharp range with width O(

√
NM/M). The phase tran-

sition location is thus quite accurate. We will show that the
size of the decent cone of RG at a point depends solely on its
sparsity level.

There are mainly two implications of Theorem 2. First, in
the absence of noise, one can see that the proposed formulation
Pa allows perfect signal !̃0 recovery with exponentially high
probability if and only if the number of signature sequence
length L exceeds the range of phase transition. Second,
increasing the number of antennas M in BS will narrow the
range of phase transition. In particular, the width of the tran-
sition region can be reduced to zero asymptotically as the
number of antennas at the BS goes to infinity. Therefore, mas-
sive MIMO is particularly suitable for supporting massive IoT
connectivity by predicting accurate phase transition location.

The sharp phase transition results are thus able to guide
the selection of the signature sequence length. We will further
contribute this paper by computing the statistical dimension
of the descent cone D(RG, !̃0) for the group sparse inducing
norm in Section III-C.

2) Phase Transition in the Noisy Case: Let !̃
∗

be an esti-
mate of the ground truth matrix !̃0. To evaluate the accuracy
of the estimator, we define the average squared prediction error
as follows:

R
(
!̃
∗) = 1

2LM
∥Q̄!̃

∗ − Q̄!̃0∥2F. (10)

We further define the estimation error of the estimator as
EÑ[R(!̃

∗
)] for a given signature matrix Q̄ and ground truth

matrix !̃0. We will see this quantity enjoys a phase transition
as L varies.

To facilitate efficient analysis in the noisy case, we consider
the following formulation:

Pb: minimize
!̃∈R2N×M

∥Q̄!̃− Ỹ∥2F

subject to RG

(
!̃

)
≤ RG

(
!̃0

)
(11)

which is equivalent to problem Papprox for some choice of
the parameter ϵ. It turns out that this problem also undergoes
a phase transition when the length of the signature sequence
is picked as L = ([δ(D(RG, !̃0))]/2M), which is coincident
with the noiseless case [31]. We shall provide sharp phase tran-
sition results for robust group sparse estimation via program
Pb in the following theorem.

Theorem 3 (Phase Transition of Problem Pb): Assume
matrix Q̄ ∈ R2L×2N satisfies Q̄Q̄T = I. Let the noise matrix
Ñ ∼ N (0, σ 2I) be independent of Q̄ and Y = Q̄!̃0 + Ñ
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with !̃0 ∈ R2N×M . Let !̃
∗

denote the optimal solution to
problem Pb. The prediction error R(!̃

∗
) and empirical error

R̂(!̃
∗
) is defined as R(!̃

∗
) = (1/2LM)∥Q̄!̃

∗ − Q̄!̃0∥2F ,
R̂(!̃

∗
) = (1/2LM)∥Q̄!̃

∗ − Y∥2F , respectively. Set δ =
([δ(D(RG, !̃0))]/2M). Then there exist constants c1, c2 > 0
such that:

1) whenever L < δ

max
σ>0

EÑ

[
R
(
!̃
∗)]

σ 2 = 1 (12)

lim
σ→0

EÑ

[
R̂
(
!̃
∗)]

σ 2 = 0 (13)

with probability 1− c1 exp(−c2(L− δ)2/(NM3));
2) whenever L > δ

∣∣∣∣∣∣
max
σ>0

EÑ

[
R
(
!̃
∗)]

σ 2 − δ

L

∣∣∣∣∣∣
≤ t
√

2NM
2LM

(14)

∣∣∣∣∣∣
lim
σ→0

EÑ

[
R̂
(
!̃
∗)]

σ 2 −
(

1− δ

L

)∣∣∣∣∣∣
≤ t
√

2NM
2LM

(15)

with probability 1− c1 exp(−c2t2).
Here, the probabilities are calculated over the random mea-
surement matrix Q̄.

Proof: Please refer to Appendix A for details.
This theorem describes a phase transition at location δ in

the noisy case, which extends the results in the noiseless
case. When the signature sequence length L is smaller than
δ, the worst-case estimation error EÑ[R(!̃

∗
)] is simply the

noise power σ 2, and increasing L cannot decrease the estima-
tion error. This means that the regularized linear regression
problem is sensitive to noise. After crossing the phase transi-
tion, increasing the signature length can reduce the worst-case
estimation error at the rate 1/L. The worst-case estimation
error is achieved when σ → 0 [31]. It will be verified in
Section V that the obtained phase transition results accurately
depict the phase transition behavior of the original problem P .
One observation in Theorem 3 is that the behavior of empirical
estimation error R̂(!̃

∗
) provides guidance for choosing param-

eter ϵ in problem Papprox. Using the worst case empirical
estimation error, we can set

ϵ = σ

√
2LM − δ

(
D

(
R̃G, !̃0

))
(16)

provided a reasonable estimate of noise power σ 2.

C. Computing the Statistical Dimension

Theorems 2 and 3 allow us to sharply locate the phase
transitions for Pa and Pb, respectively, and computing the
statistical dimension of the descent cone is the key to evaluate
the theoretical results. But this presents its own challenges to
provide a computationally feasible formula for the statistical
dimension. We thus provide an accurate estimate and insight-
ful expression for δ(D(RG, !̃0)) using the following recipe
suggested in [30].

Lemma 1 (The Statistical Dimension of a Descent Cone):
Let R : Rd → R ∪ {±∞} be a proper convex function and
x ∈ Rd. Assume that the subdifferential ∂R(x) is nonempty,
compact, and does not contain the origin. Then

δ(D(R, x)) ≤ inf
τ≥0

E
[
dist2(g, τ · ∂R(x))

]
(17)

where g ∈ Rn is a standard normal vector.
Although Lemma 1 suggested a general method to study the

statistical dimension of a descent cone, it still needs additional
technical effort to compute accurate estimate for the statistical
dimension of a descent cone for the group sparsity inducing
norm adopted in this paper.

Proposition 1 (Statistical Dimension for RG): Let !0 ∈
CN×M be with S nonzero rows, and define the normalized
sparsity ρ := S/N. The upper bound of statistical dimension
of descent cone of RG at !̃0 = [(ℜ{!0})T, (ℑ{!0)

T}]T ∈
R2N×M is given by

δ
(
D

(
RG; !̃0

))

N
≤ inf

τ≥0

{
ρ
(

2M + τ 2
)

+ (1− ρ)
21−M

*(M)

×
∫ ∞

τ
(u− τ )2u2M−1e−

u2
2 du

}
.

(18)

The unique optimum τ ⋆ which minimizes the right-hand side
of (18) is the solution of

21−M

*(M)

∫ ∞

τ

( u
τ
− 1

)
u2M−1e−

u2
2 du = ρ

1− ρ
. (19)

Proof: Please refer to Appendix B for details.
The bound provided in Proposition 1 can be numer-

ically computed efficiently, and thus can be utilized in
Theorems 2 and 3 to compute the locations of phase tran-
sitions. Note that the bound only depends on the sparsity
level of matrix !̃0 and turns out to be accurate via extensive
experiments.

IV. SHARP COMPUTATION AND ESTIMATION TRADEOFFS

VIA SMOOTHING METHOD

In an IoT network with a massive number of devices, it
becomes critical to solve the JADE problem under a fixed time
budget. To address the computational challenges for solving
the high-dimensional group sparsity estimation problem, we
adopt the smoothing method to smooth the nondifferentiable
group sparsity inducing regularizer to accelerate the conver-
gence rates. We further characterize the sharp tradeoff between
the computational cost and estimation accuracy. This pro-
vides guidelines on choosing the optimal signature sequences
to maintain the estimation accuracy for the smoothed group
sparsity estimator.

A. Accelerating Convergence Rate via Smoothing

Adding a smooth function to “smooth” the nondifferentiable
objective function is a well-known idea in the context of sparse
optimization, which makes the regularized problem easy to
solve [43], [44]. In particular, for problem P , we augment
R(!) by adding a smoothing function (µ/2)∥!∥2F , where µ
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is a positive scalar and called as the smoothing parameter.
Problem P is thus smoothed as

Ps: minimize
!∈CN×M

R̃(!) := R(!) + µ

2
∥!∥2F

subject to ∥Q!− Y∥F ≤ ϵ (20)

which can be rewritten in the real domain as follows:

Pr̃: minimize
!̃∈R2N×M

R̃G

(
!̃

)

subject to ∥Q̃!̃− Ỹ∥F ≤ ϵ (21)

where !̃, Q̃, and Ỹ are given in problem Papprox (8).
As problem Pr̃ is not differentiable, applying the subgra-

dient method to solve it would yield a slow coverage rate.
Fortunately, the dual formulation of problem Pr̃ leverages
the benefits from smoothing techniques, as the smoothed dual
problem can be reduced to an unconstrained problem with the
composite objective function consisting of a convex, smooth
function and a convex, nonsmooth function. This composite
form can be solved by a rich set of first-order methods, such
as Auslender and Teboulles algorithm [61], Nesterovs 2007
algorithm (N07) [62] and Lan, Lu, and Monteiros modifica-
tion of N07 (LLM) algorithm [63], etc., and these algorithms
have the O(1/

√
γ ) (γ is the numerical accuracy) convergence

rate [37], [64].
The dual problem of Pr̃ is given by

maximize
Z,t

D(Z, t) := inf!̃
{
R̃

(
!̃

)
− ⟨Z, Q̃!̃− Ỹ⟩ − tϵ

}

subject to ∥Z∥F ≤ t

where Z ∈ R2N×M and t > 0. Since ϵ ≥ 0, eliminating the dual
variable t, we obtain the unconstrained problem as follows:

minimize
Z∈R2N×M

D(Z) := −inf
!̃

{
R̃

(
!̃

)
− ⟨Z, Q̃!̃− Ỹ⟩ − ϵ∥Z∥F

}
.

The dual objective function can be further represented as the
following composite function:

D(Z) = −inf
!̃

{
R̃

(
!̃

)
− ⟨Z, Q̃!̃⟩

}
− ⟨Z, Ỹ⟩

︸ ︷︷ ︸
D̃(Z)

+ϵ∥Z∥F
︸ ︷︷ ︸

H(Z)

. (22)

Function D̃(Z) is differentiable and its gradient is

∇D̃(Z) = −Ỹ + Q̃!̃Z

where

!̃Z := arg min
!̃

{
R̃

(
!̃

)
− ⟨Z, Q̃!̃⟩

}
. (23)

Furthermore, ∇D̃(Z) is a Lipschitz continuous with Lipschitz
constant upper bounded by Ls := µ−1∥Q̃∥22. That is to say, the
dual objective is a composition of the smooth function D̃(Z)

and the nonsmooth function H(Z). This composite form (22)
can be solved by a rich set of first-order methods [37], which
are particularly sensitive to the smoothing parameter µ, i.e.,
a larger value of the smoothing parameter µ leads to a faster
convergence rate.

In particular, we present the LLM’s algorithm [63] in
Algorithm 1 as a typical example to show the benefits of
smoothing.

Algorithm 1: LLM’s Algorithm

Input : Signature matrix Q̃ ∈ R2L×2N , observed matrix
Ỹ ∈ R2L×M , and parameter ϵ.

1 Z0 ← 0, Z̄0 ← Z0, t0 ← 1
2 for k = 0, 1, 2, · · · do
3 Bk ← (1− tk)Zk + tkZ̄k

4 !̃k ← µ−1SoftThreshold(Q̃
T

Bk, 1)

5 Z̄k+1 ← Shrink(Z̄k − (Q̃!̃k − Ỹ)/Ls/tk, ϵ/Ls/tk)
6 Zk+1 ← Shrink(Bk − (Q̃!̃k − Ỹ)/Ls, ϵ/tk)
7 tk+1 ← 2/(1 + (1 + 4/t2k)

1/2)

8 end

In Algorithm 1, line 4 is the solution to (23), lines 5 and 6
are the solutions to the following composite gradient mapping,
respectively:

Z̄k+1 ← arg min
Z∈R2N×M

{
⟨∇D̃(Z), Z⟩+ 1

2
tkLs∥Z− Z̄k∥F + H(Z)

}

Zk+1 ← arg min
Z∈R2N×M

{
⟨∇D̃(Z), Z⟩+ 1

2
Ls∥Z− Bk∥F + H(Z)

}
.

The operator Shrink is given by

Shrink(Z, t) = max
{

1− t
∥Z∥F

, 0
}

Z.

Let X = SoftThreshold(Z, t) ∈ RN×M . Each row of X is
given by

xi = Shrink
(
zi, t

)
, for i = 1, . . . N.

Let Z∗ be an optimal point for (22), then the convergence
behavior of Algorithm 1 satisfies [37]

D(Zk+1)−D
(
Z∗

)
≤ 2∥Q̃∥22∥Z0 − Z∗∥2F

µk2 . (24)

Therefore, the number of iterations required to reach γ accu-

racy is at most ⌈
√

([2∥Q̃∥22]/µγ )∥Z0 − Z∗∥F⌉, which implies
that a larger µ will result in a faster convergence rate. For
each iteration in Algorithm 1, the operators SoftThreshold and
Shrink are computationally cheap, and the dominate cost is
the matrix–matrix products involving the signature matrix Q̃,
which is O(LNM).

In practice, we terminate the algorithm when the relative
primal feasibility gap satisfies |∥Q̃!̃k − Ỹ∥F − ϵ|/ϵ ≤ γ0 for
a small enough γ0. The bound of the feasibility gap of primal
iterates !̃k at each iteration k is given as follows [44]:

∣∣∣∥Q̃!̃k − Ỹ∥F − ϵ
∣∣∣ ≤ 2∥Q̃∥22∥Z∗∥F

µk
. (25)

Therefore, the number of iterations sufficient for convergence
is upper bounded as

k ≤ 2∥Q̃∥22∥Z∗∥F

γ0µσ

√
2LM − δ

(
D

(
R̃G, !̃0

)) (26)

which shows the number of iterations required for convergence
in terms of the smoothing parameter, signature sequence length
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and solution accuracy. We will show in Fig. 6 that the conver-
gence rate of the smoothed estimator Ps will be accelerated
as the smoothing parameter increases.

B. Computation and Estimation Tradeoffs

From the geometric perspective, the smoothing term in
R̃(!) (with µ > 0) enlarges the sublevel set of the reg-
ularizer R(!), which results in a problem that is compu-
tationally easier to solve with an accelerated convergence
rate. However, this geometric deformation brings a loss in
the estimation accuracy according to the phase transition
results in Theorem 3. This results in a tradeoff between the
computational time and estimation accuracy. The tradeoff is
controllable given the statistical dimension of the decent cone
of the smoothed regularizer R̃G(!̃) = RG(!̃) + (µ/2)∥!̃∥2F .
In particular, the statistical dimension δ(D(R̃G, !̃0)) can be
accurately estimated by the following result.

Proposition 2 (Statistical Dimension Bound for R̃G): Let
!0 ∈ CN×M be with S nonzero rows, and define the nor-
malized sparsity as ρ := S/N. An upper bound of the
statistical dimension of the descent cone of R̃G at !̃0 =
[(ℜ{!0})T, (ℑ{!0)

T}]T ∈ R2N×M is given by

δ
(
D

(
R̃G; !̃0

))

N
≤ inf

τ≥0

{
ρ
(

2M + τ 2
(

1 + 2µā + µ2b̄
))

+ (1− ρ)
21−M

*(M)

∫ ∞

τ
(u− τ )2u2M−1e−

u2
2 du

}
.

(27)

The unique optimum τ ⋆ which minimizes the right-hand side
of (27) is the solution of

21−M

*(M)

∫ ∞

τ

( u
τ
− 1

)
u2M−1e−

u2
2 du = ρ

(
1 + 2µā + µ2b̄

)

1− ρ
(28)

where ā = (1/S)
∑S

i=1 ∥(!̃0)Vi∥F , b̄ =
(1/S)

∑S
i=1 ∥(!̃0)Vi∥2F .

Proof: Please refer to Appendix C for details.
Note that ā and b̄ can be calculated given the distribution of

the ground truth !0. For instance, with !0 ∼ CN (0, 2σ 2I),
we have !̃0 ∼ N (0, σ 2I). Here, ∥(!̃0)Vi∥F/σ follows chi
distribution with 2M degrees of freedom and ∥(!̃0)Vi∥2F/σ 2

follows chi square distribution with 2M degrees of freedom.
Hence, we can set ā =

√
2([*((2M + 1)/2)]/*(M))σ , b̄ =

2Mσ 2.
Although the convergence rate can be accelerated by

increasing the smoothing parameter as shown in the previous
section, Proposition 2 suggests that a larger smoothing param-
eter results in a larger statistical dimension δ(D(R̃G, !̃0))

as the bound in (27) grows with µ. This will reduce the
estimation accuracy for a given signature sequence length
according to the result in Theorem 3. Fig. 7 will demon-
strate that the estimation error indeed will increase as the
smoothing parameter becomes large. Therefore, the smooth-
ing method yields a tradeoff between the computational cost
and estimation accuracy, as increasing the smoothing param-
eter will improve the convergence rate while reduce the
estimation accuracy. Such a tradeoff is particular important

in scenarios with massive IoT devices and a limited time
budget, but not very stringent requirement on estimation
accuracy.

C. Discussion

For typical IoT applications, we are particularly interested
in reducing the overall computational cost while maintaining
the estimation accuracy, which can be achieved by interpreting
the above tradeoff from another perspective. For the smoothed
estimator Ps, Proposition 2 together with Theorem 3 can
help to provide guidelines for choosing a minimal signature
sequence length to maintain the estimation accuracy for a
given smoothing parameter µ. Specifically, while smoothing
may increase the estimation error, we can increase the sig-
nature sequence for the smoothed estimator Ps compared
with the original nonsmooth estimator P . Specifically, given a
smoothing parameter µ, according to Theorem 3, we are able
to maintain the estimation accuracy by choosing the signature
sequence length L as follows:

L =
δ
(
D

(
R̃G(µ), !̃0

))

2Mγ1
(29)

where γ1 = maxσ>0([EÑ[R(!̃
∗
)]]/σ 2) is the expectation

of the worst-case estimation accuracy normalized by noise
power σ 2.

V. SIMULATION RESULTS

In this section, we verify the phase transition phenom-
ena in IoT networks characterized by Theorems 2 and 3
via simulations. We further simulate the developed dual-
smoothed algorithm to illustrate the benefits of smoothing,
as well as the tradeoffs between the estimation accuracy and
computational cost.

A. Phase Transitions

To verify the phase transition in the noiseless case, we con-
sider the scenario in which the base station is equipped with
two antennas, and the total number of devices is 100. For esti-
mation problem P in this noiseless setting, the channel matrix
and signature matrix are generated as H ∼ CN (0, I) and
Q ∼ CN (0, I), respectively. We declare successful recovery
if ∥!̂−!0∥F ≤ 10−5, and we record the success probability
from 50 trials. The experiments are performed using the CVX
package [56] in MATLAB with default settings.

In Fig. 4(a), we show the probability of successful recovery
as a function of the signature sequence length and the number
of active devices. The brightness corresponds to the empirical
recovery probability (white = 100%, black = 0%). On top
of this heap map, the empirical curves of 5%, 50%, 95% are
success probabilities that are calculated from data. It can be
seen that the theoretical curve from Theorem 2 closely matches
the empirical curve of the 50% success probability.

To verify the phase transition in the noisy case, we consider
a scenario, where the base station is equipped with three anten-
nas, and the total number of devices is 300. We fix the number
of active devices as |S| = 42, hence the theoretical phase
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(a)

(b)

Fig. 4. Phase transitions in massive device connectivity. (a) Noiseless case.
(b) Noisy case.

transition location is given as ([δ(D(RG, !̃0))]/2M) ≈ 100.
For estimation problem P , the channel matrix is generated as
H ∼ CN (0, I), the signature matrix as Q ∼ CN (0, I), and the
additive noise matrix as N ∼ CN (0, 0.001I). The simulation
results are averaged for 100 times.

In Fig. 4(b), we see that the normalized prediction error
can be accurately predicted by Theorem 3. The dashed blue
line computed by (12) and (14) in Theorem 3 is the the-
oretical prediction. The dashed black line is computed by
Proposition 1, and the red markers are the experimental results.
We observe that the theoretical results and experimental results
are closely matched, and the phase transition location is
accurately predicted by Proposition 1.

B. Computation and Estimation Tradeoffs

We shall verify Proposition 2 under the same settings as
Fig. 4(a) via simulations. We fix the activity device number
as |S| = 10 to show the impact on the exact recovery using
different smoothing parameters µ. As shown in Fig. 5, the the-
oretical curve from Theorem 2 closely matches the empirical

Fig. 5. Phase transitions in massive device connectivity via smoothing.

Fig. 6. Convergence behavior of Algorithm 1.

curve of the 50% success probability. Furthermore, it can be
seen from Fig. 5 that increasing the smoothing parameter will
result in a larger statistical dimension of the descent cone of
R̃(!), yielding longer signature sequences for signal recovery.

To evaluate the effectiveness of the smoothing method
proposed in Section IV, we consider a scenario, where the
base station is equipped with 10 antennas, and the total num-
ber of devices is set to be 2000. We fix the number of
active devices as |S| = 100. For estimation problem Ps, the
channel matrix follows H ∼ CN (0, I), the signature matrix
follows Q ∼ CN (0, I) and the additive noise matrix follows
N ∼ CN (0, 0.01I).

We compare the convergence behavior of Algorithm 1
with different amount of smoothing under a fixed signature
sequence length L = 500 in Fig. 6, which shows that increas-
ing the amount of smoothing will accelerate the convergence
rate significantly.

Under a fixed signature sequence length L = 500, we fur-
ther solve problem Ps using Algorithm 1 for different amount
of smoothing µ and stop it when |∥Q̃!̃− Ỹ∥F− ϵ|/ϵ ≤ 10−3,
where ϵ is set according to (16). The simulation results are
averaged over 300 times and are presented in Fig. 7. It can
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Fig. 7. Estimation error versus smoothing parameter µ.

be seen that the average squared estimation error increases as
the smoothing parameter µ becomes large. This is because a
larger smoothing parameter results in a larger statistical dimen-
sion δ(D(R̃G, !̃0)) as presented in Proposition 2, and thus the
estimation error increases as predicted by Theorem 3.

VI. CONCLUSION

We developed a structured group sparsity estimation
approach to solve the joint active device detection and channel
estimation problem in IoT networks. Precise theoretical results
were provided to characterize the location and width of the
phase transition region for high-dimensional structured group
sparsity estimation, which provides theoretical guidelines for
choosing the optimal signature sequence length. In particu-
lar, we observed that the transition width can be narrowed
to zero asymptotically in the massive MIMO setting, yielding
highly accurate phase transition location prediction. Numerical
results demonstrated the accuracy of our developed theoretical
results. Furthermore, we adopted the smoothing techniques to
reduce the computational cost by accelerating the convergence
rates, which yields a tradeoff between computational cost and
estimation accuracy. This was achieved by precisely charac-
terizing the convergence rate in terms of smoothing parameter,
signature sequence length, and estimation accuracy via conic
integral geometry.

APPENDIX A
PROOF OF THEOREM 3

It turns out that the average squared prediction error satisfies
[31, Lemma 7.1]

2LM · max
σ>0

EÑ

[
R
(
!̃
∗)]

σ 2 = 2LM − δ
(

Q̄C
(
!̃0, Q̄

T
))

(30)

where C(!̃0, Q̄
T
) = D(RG, !̃0)

◦ ∩ Range(Q̄
T
) with

D(RG, !̃0)
◦ denoting the polar cone of D(RG, !̃0). Note that

C(!̃0, Q̄
T
) is the intersection of a cone with the uniformly ran-

dom subspace, hence, Theorem 1 is applicable. We split the
problem into two cases.

Whenever L < δ, i.e., 2LM < δ(D(RG, !̃0)), using
Theorem 1, we find with probability 1 − c1 exp(−c2(L −
δ)2/(NM3)), D(RG, !̃0)

◦ ∩Range(Q̄
T
) = {0}. We thus obtain

δ(Q̄C(!̃0, Q̄
T
)) = δ(Q̄{0}) = 0, yielding (12) by substituting

it into (30).
Whenever L > δ, i.e., 2LM > δ(D(RG, !̃0)),

using the modification of Theorem 1 which is
given in [31, Proposition 13.1], there exists constant
c1, c2 > 0 such that with probability 1 − c1 exp(−c2t2),
we have
∣∣∣δ

(
C
(
!̃0, Q̄

T
))
−

(
2LM − δ

(
D

(
RG, !̃0

)))∣∣∣ ≤ t
√

2MN.

The rotational invariance property of statistical dimension
gives

δ
(

Q̄C
(
!̃0, Q̄

T
))

= δ
(
C
(
!̃0, Q̄

T
))

.

Consequently, we have
∣∣∣δ

(
Q̄C

(
!̃0, Q̄

T
))
−

(
2LM − δ

(
D

(
RG, !̃0

)))∣∣∣ ≤ t
√

2MN

which gives (14) by combining with (30).
Using the fact [31, Sec. 7.3] that

max
σ>0

EÑ

[
R
(
!̃
∗)]

σ 2 + lim
σ→0

EÑ

[
R̂
(
!̃
∗)]

σ 2 = 1 (31)

gives (13) and (15).

APPENDIX B
PROOF OF PROPOSITION 1

Since the regularizer RG(!̃0) is invariant under coordinate
permutations of !̃0. We assume without loss of generality that
!0 = [(θ1

0)
T, . . . , (θS

0)
T, 0M×(N−S)]T ∈ CN×M , where θ i

0 are
nonzero. Therefore, (17) becomes

δ
(
D

(
RG; !̃0

))
≤ inf

τ≥0
E

[
dist2

(
G, τ · ∂RG

(
!̃0

))]
(32)

where G ∈ R2N×M has independent standard normal
entries.

The next step is to calculate ∂RG(!̃0). Assume Z ∈
∂RG(!̃0), then from the definition of the subdifferential, for
any !̃ ∈ R2N×M we have

N∑

i=1

∥!̃Vi∥F ≥
N∑

i=1

∥∥∥∥
(
!̃0

)

Vi

∥∥∥∥
F

+
N∑

i=1

⟨ZVi , !̃Vi −
(
!̃0

)

Vi
⟩.

Specifically, for some !̃ ∈ R2N×M satisfying !̃Vj = 0 for
j ̸= i, we have

∀!̃Vi ∈ R2×M : ∥!̃Vi∥F ≥
∥∥∥∥
(
!̃0

)

Vi

∥∥∥∥
F

+ ⟨ZVi , !̃Vi −
(
!̃0

)

Vi
⟩ (33)

which means ZVi ∈ ∂∥(!̃0)Vj∥F . Conversely,
if (33) is satisfied for all i ∈ [N], then sum-
ming over all indices shows that Z ∈ ∂RG(!̃0).
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Hence,

Z ∈ ∂RG

(
!̃0

)
⇔ ∀j ∈ [N] : ZVj ∈ ∂∥

(
!̃0

)

Vj
∥F

⇔

⎧
⎪⎪⎨

⎪⎪⎩

ZVj =
(
!̃0

)

Vj∥∥∥∥
(
!̃0

)

Vj

∥∥∥∥
F

, for j = 1, . . . , S

∥ZVj∥F ≤ 1, for j = S + 1, . . . , N.

(34)

Then we have

dist2
(

G, τ · ∂RG

(
!̃0

))

=
S∑

i=1

∥GVi − τ

(
!̃0

)

Vi∥∥∥∥
(
!̃0

)

Vi

∥∥∥∥
F

∥2F +
N∑

i=S+1

inf
∥ZVi∥≤1

∥GVi − τZVi∥2F

=
S∑

i=1

∥GVi − τ

(
!̃0

)

Vi∥∥∥∥
(
!̃0

)

Vi

∥∥∥∥
F

∥2F +
N∑

i=S+1

max
{
∥GVi∥2 − τ, 0

}2
.

(35)

Since the entries of G are independent standard normal, it
has 2M degrees of freedom. Taking the expectation over the
Gaussian matrix G gives

E
[
dist2

(
G, τ · ∂RG

(
!̃0

))]

= S
(

2M + τ 2
)

+ (N − S)E
[
max

{
∥GVi∥2 − τ, 0

}2
]

= S
(

2M + τ 2
)

+ (N − S)
21−M

*(M)

∫ ∞

τ
(u− τ )2u2M−1e−

u2
2 du

(36)

where the following equality is applied:

E
[
max

{
∥GVi∥2 − τ, 0

}2
]

= E
[
max{u− τ, 0}2

]

= 21−M

*(M)

∫ ∞

τ
(u− τ )2u2M−1e−

u2
2 du

in which ∥GVi∥F is replaced by a chi distribution variable u.
Let ρ = S/N and take the infimum over τ ≥ 0 we complete

the proof of (18). The way to show that τ ⋆ is the unique
minimizer of the righthand side of (18) is similar to that in
[30, Proposition 4.5].

APPENDIX C
PROOF OF PROPOSITION 2

The proof is similar to Proposition 1. We assume without
loss of generality that !0 = [(θ1

0)
T, . . . , (θS

0)
T, 0M×(N−S)]T ∈

CN×M , where θ i
0 are nonzero. Therefore, (17) becomes

δ
(
D

(
R̃G; !̃0

))
≤ inf

τ≥0
E

[
dist2

(
G, τ · ∂R̃G

(
!̃0

))]
(37)

where G ∈ R2N×M has independent standard normal entries.
Since ∂R̃G(!̃0) = ∂RG(θ̃0) + (µ/2)∂∥!̃0∥2F , we have

U ∈ ∂RG

(
!̃0

)
⇐⇒

⎧
⎨

⎩
UVj =

(
!̃0

)

Vj
/∥

(
!̃0

)

Vj
∥F + µ

(
!̃0

)

Vj
, if j = 1, . . . , S

∥UVj∥F ≤ 1, if j = S + 1, . . . , N.

(38)

Hence,

dist2
(

G, τ · ∂R̃G

(
!̃0

))

=
S∑

i=1

∥GVi − τ

((
!̃0

)

Vi
/∥

(
!̃0

)

Vi
∥F + µ

(
!̃0

)

Vj

)
∥2F

+
N∑

i=S+1

max
{
∥GVi∥2 − τ, 0

}2
. (39)

Since the entries of G are independent standard normal,
∥GVi∥F follows the chi distribution with 2M degrees of free-
dom. Taking the expectation over the Gaussian matrix G
gives

E
[
dist2

(
G, τ · ∂RG

(
!̃0

))]

= S
(

2M + τ 2
(

1 + 2µā + µ2b̄
))

+ (N − S)
21−M

*(M)

∫ ∞

τ
(u− τ )2u2M−1e−

u2
2 du (40)

where ā = (1/S)
∑S

i=1 ∥(!̃0)Vi∥F , and b̄ =
(1/S)

∑S
i=1 ∥(!̃0)Vi∥2F . Let ρ = S/N and taking the

infimum over τ ≥ 0 completes the proof of (27).
The way to show that τ ⋆ is the unique minimizer

of the righthand side of (27) is similar to that in
[30, Proposition 4.5].
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