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ABSTRACT
In this paper the geometric mean of partial positive definite matrices
with missing entries is considered. The weighted geometric mean of
two sets of positive matrices is defined, and we show whether such
a geometric mean holds certain properties which the weighted geo-
metric mean of two positive definite matrices satisfies. Additionally,
counterexamples demonstrate that certain properties do not hold.
A Loewner order on partial Hermitian matrices is also defined. The
known results for the maximum determinant positive completion
are developed with an integral representation, and the results are
applied to the weighted geometric mean of two partial positive defi-
nite matrices with missing entries. Moreover, a relationship between
two positive definite completions is established with respect to their
determinants, showing relationshipbetween their entropy for a zero-
mean,multivariate Gaussian distribution. Computational results as
well as one application are shown.
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1. Introduction

The geometric mean of two positive definite matrices A and B is given by an explicit
formula [1,2]:

A#1/2B = A1/2(A−1/2BA−1/2)1/2A1/2. (1)

This is known as the unique positive definite solution X of the Riccati equation XA−1X =
B [3,4]. Moreover, it can be extended to the unique geodesic t ∈ [0, 1] �→ A#tB =
A1/2(A−1/2BA−1/2)tA1/2 connecting fromA to B for the Riemannian trace distance on the
open convex cone of positive definite matrices [5,6]. This geodesic is called the weighted
geometric mean of A and B. A various theories of extending two-variable geometric mean
to multi-variable case have been developed: see [7–11]. A general framework of multi-
variable operator means containing the multivariable geometric mean as a special case
is considered [12]. Multi-variable geometric means as well as the two-variable geomet-
ric mean of positive definite matrices have been considered as important objects in many
pure and applied areas, such as data points in a diverse area of settings [13–15].
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In many research, there is the potential for missing or incomplete data since data
obtained from physical experiments and phenomena are often corrupt or incomplete. The
issue with missing data is that nearly all classic and modern statistical and analytical tech-
niques deal with complete data. It is vital to be able to deal with missing data rather than to
delete the incomplete data from the analysis. Over the past 20 years techniques for dealing
withmissing data in themost appropriate and desirable way possible have been extensively
studied inmany different fields such as data analysis, statistics, optimization, matrix theory
[16–19].

Covariance matrices are used as features for many signal and image processing appli-
cations, including biomedical image segmentation, radar detection, texture analysis, etc.
Recently new geometric approach has been developed for various problems, such as how
to measure the distance between two covariance matrices, how to find the average matrix
of covariance matrices [20–28]. Especially, in [29] Riemannian mean of covariance matri-
ces to space-time adaptive processing is considered. Recently it becomes more and more
important to deal with incomplete covariance matrices in perturbed environment [30].
General strategy for completing a partially specified covariance matrix was studied by
Dempster [31]. A zero-mean, multivariate Gaussian distribution on Rn with density

f (x) = (2π)−n/2|�|−1/2 exp
{
−1
2
x��−1x

}
is considered with a partially specified covariance matrix �. Dempster proposed a com-
pletion which maximizes the entropy

H(f ) = −
∫

Rn
log(f (x))f (x)dx (2)

= 1
2
log(det�) + 1

2
n(1 + log (2π)), (3)

implying that the completion has the maximum determinant. For more information about
the maximum determinant and the maximum entropy [32–34].

We consider the geodesic and the geometric mean of two covariance matrices as
space-time adaptive processing, additionally with missing entries, i.e. partially specified
covariance matrices. As the process of averaging, the concept of geometric mean of two
positive definite matrices with missing entries will play a role to apply a geometric mean
to applications in such areas. In this paper we mainly study the geometric mean of two
partial positive definite matrices with missing entries. After a series of preliminary defini-
tions and known results for a graph, a partial matrix, and the weighted geometric mean of
two positive matrices in Section 2 that will be used throughout this paper, we consider in
Section 3 the weighted geometric mean of two subsets of the positive cone. Several mean-
ingful examples for the geometricmean of two subsets are given, and topological properties
for it are shown. Using the geometric mean of two sets of positive definite completions,
in Section 4 we define the geometric mean of two partial positive definite matrices and
show that it holds several of the known properties for the geometric mean of two positive
definite matrices. In Section 5, we define a partial Loewner order for partial Hermitian
matrices and characterize the difference of two partial matrices. In Section 6, the known
results for a positive definite completion of maximizing determinant are developed with
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an integral representation and are applied to the weighted geometric mean of two partial
positive definite matrices. Some interesting computational results are found in Section 7.

2. Preliminary

2.1. Graph and positivematrix completion

In 1981, H. Dym and I. Gohberg studied extensions of band matrices with band inverses
[35]. In 1984, R. Grone, C. R. Johnson, E. M. Sá, and H. Wolkowicz considered positive
definite completion of partial Hermitian matrices (some entries specified, some missing)
[36]. They showed that if the undirected graph of the specified entries is chordal, a positive
definite completion necessarily exists. Johnson, Lundquist, and Naevdal studied positive
definite Toeplitz matrix completions in 1997. In [37], they proved that a pattern P of an
(n + 1) × (n + 1) partial Toeplitzmatrix is positive (semi) definite completable if and only
if P = {k, 2k, . . . ,mk} for somem ∈ N and k ∈ N.

LetV be the set of vertices, and let {x, y} denote the edge connecting two points x, y ∈ V .
A finite undirected graph is a pair G = (V ,E) where the set V of vertices is finite, and the
set E of edges is a subset of the set {{x, y} : x, y ∈ V}. In general Emay contain loops which
means that x= y. In this paper we assume that the graph always has all loops. Without loss
of generality we assume that V = {1, 2, . . . , n}.

Define a G-partial matrix as a set of complex numbers, denoted by [aij]G or A(G),
where aij is specified if and only if {i, j} ∈ E. A completion of A(G) = [aij]G is an n × n
matrix M = [mij] which satisfies mij = aij for all {i, j} ∈ E. We say that M is a positive
(semi-)definite completion of A(G) if and only if M is a completion of A(G) and M is
positive (semi-)definite. A clique is a subset C ⊂ V having the property that {x, y} ∈ E
for all x, y ∈ C. A cycle in G is a sequence of pairwise distinct vertices γ = (v1, . . . , vs)
having the property that {v1, v2}, {v2, v3}, . . . , {vs−1, vs}, {vs, v1} ∈ E, and s is referred to as
the length of the cycle. A chord of the cycle γ is an edge {vi, vj} ∈ E where 1 ≤ i < j ≤ s,
{vi, vj} �= {v1, vs}, and |i − j| ≥ 2.

Assume V = {1, . . . , n}, and let A(G) = [aij]G be a G-partial matrix. We say that A(G)

is a partial positive (semi-)definite if

aji = āij for all {i, j} ∈ E

and for any clique C of G, this principal submatrix [aij]i,j∈C of A(G) is positive (semi-)
definite. The graph G is called positive (semi-)definite completable if any G-partial positive
(semi-)definite matrix has a positive (semi-)definite completion.

The following proposition shows that the terms ‘positive definite completable ’ and
‘positive semi-definite completable’ coincide [36].

Proposition 2.1: A graph G is positive definite completable if and only if G is positive semi-
definite completable.

From now on, we will henceforth only use the term ‘completable’. A graph G is chordal
if there are no minimal cycles of length ≥ 4. Equivalently, every cycle of length ≥ 4 has a
chord. This concept characterizes completable graphs [36].
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Theorem 2.2: The graph G is completable if and only if G is chordal.

Example 2.3: Let G = (V ,E) be a graph with V = {1, 2, 3, 4} and

E = {{1, 1}, {1, 2}, {1, 4}, {2, 2}, {2, 3}, {3, 3}, {3, 4}, {4, 4}}.

Example 2.3: Non-chordal graph. Example 2.4: A chordal graph.

Since the graph G is not chordal, by Theorem 2.2 there exists a partial positive definite
matrix A(G) which does not have any positive completions. For example, the following
partial positive definite matrix does not have a positive (semi-)definite completion.

N =

⎡⎢⎢⎣
1 −1 ? 0

−1 2 2 ?
? 2 3 1
0 ? 1 1

⎤⎥⎥⎦
whose missing entries are denoted by ?.

Example 2.4: Let G = (V ,E) be a graph with V = {1, 2, 3, 4} and

E = {{1, 1}, {1, 3}, {1, 4}, {2, 2}, {2, 3}, {3, 3}, {3, 4}, {4, 4}}.

Since the graphG is chordal, by Theorem 2.2 anymatrixA(G) has a positive (semi-)definite
completion. That is, the following partial positive definite matrix has a positive definite
completion.

A(G) =

⎡⎢⎢⎣
∗ ? ∗ ∗
? ∗ ∗ ?
∗ ∗ ∗ ∗
∗ ? ∗ ∗

⎤⎥⎥⎦
whosemissing entries are denoted by ? and specified entries are denoted by ∗. For example,
since the G-partial matrices

A(G) =

⎡⎢⎢⎣
1 ? 1 1
? 5 1 ?
1 1 3 1
1 ? 1 2

⎤⎥⎥⎦ and B(G) =

⎡⎢⎢⎣
4 ? 2 −1
? 3 1 ?
2 1 6 1

−1 ? 1 3

⎤⎥⎥⎦
are partial positive definite, they have positive definite completions.
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Let Mm×n := Mm×n(C) be a set of all m × n matrices with entries in the field C of
complex numbers. We equip onMm×n with the inner product defined as

〈A,B〉 := tr(A∗B) =
m,n∑
i,j=1

aijbij,

for A = [aij],B = [bij] ∈ Mm×n, where A∗ = ĀT is a complex conjugate transpose of A.
The inner product naturally gives us an l2 norm, known as the Frobenius norm and
Hilbert–Schmidt norm, defined by

‖A‖2 = [tr(A∗A)]1/2.

We simply denote asMn := Mn×n. We also denote as GLn the general linear group inMn.

Remark 2.5: The operator norm of A ∈ Mn is defined as

‖A‖ := max
‖x‖2=1

‖Ax‖2.

Note that

‖A‖2 =
[ n∑
i=1

σ 2
i (A)

]1/2
and ‖A‖ = σ1(A),

where σ1(A) ≥ · · · ≥ σn(A) are (non-negative) singular values of A in decreasing order.
Since ‖A‖ ≤ ‖A‖2 ≤ n‖A‖2, two norms ‖ · ‖2 and ‖ · ‖ are compatible.

Let H ⊂ Mn be the real vector space of all Hermitian matrices, and let P ⊂ H be the
open convex cone of n × n positive definite matrices. Then the closure P of P consists of
all n × n positive semi-definite matrices. For any A,B ∈ H we denote as A ≤ B if and only
if B − A ∈ P, and A<B if and only if B − A ∈ P. This is known as the Loewner partial
ordering [38, Section 7.7].

The Frobenius norm ‖ · ‖2 gives rise to the Riemannian trace metric on P given by

δ(A,B) = ‖ log(A−1/2BA−1/2)‖2 (4)

for any A,B ∈ P. Then P is a Cartan–Hadamard manifold, a simply connected complete
Riemannian manifold with non-positive sectional curvature. The curve

[0, 1] � t �→ A#tB := A1/2(A−1/2BA−1/2)tA1/2

is the unique geodesic from A to B, called the weighted geometric mean of positive definite
matrices A and B. Note that A#B := A#1/2B is the unique midpoint between A and B for
the Riemannian metric. We review several known properties of the weighted geometric
mean on the open convex cone P of positive definite matrices.

Theorem 2.6: The weighted two-variable geometric mean satisfies the following: for any A,
B, C, D ∈ P and t ∈ [0, 1]

(1) A#tB = A1−tBt if A and B commute.
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(2) (aA)#t(bB) = a1−tbt(A#tB) for any a,b>0.
(3) A#tB = B#1−tA.
(4) A#tB ≤ C#tD whenever A ≤ C and B ≤ D.
(5) [0, 1] × P × P � (t,A,B) �→ A#tB ∈ P is continuous.
(6) S∗(A#tB)S = (S∗AS)#t(S∗BS) for any invertible S ∈ GLn.
(7) [(1 − λ)A + λB]#t[(1 − λ)C + λD] ≥ (1 − λ)(A#tC) + λ(B#tD) for any λ ∈ [0, 1].
(8) (A#tB)−1 = A−1#tB−1.
(9) det(A#tB) = (detA)1−t(detB)t .
(10) [(1 − t)A−1 + tB−1]−1 ≤ A#tB ≤ (1 − t)A + tB for any t ∈ [0, 1].

Remark 2.7: Item (5) can be described as themap [0, 1] × P × P � (t,A,B) �→ A#tB ∈ P

is continuous with respect to the Riemannian trace metric δ:

δ(A#sB,C#tD) ≤ δ(A#sB,A#tB) + δ(A#tB,C#tD)

≤ |s − t|δ(A,B) + (1 − t)δ(A,C) + tδ(B,D)

for any A,B,C,D ∈ P and s, t ∈ [0, 1].

Remark 2.8: One can define the weighted geometric mean for positive semi-definite
matrices A and B such as

A#tB := lim
ε→0+

(A + εI)#t(B + εI). (5)

By Theorem 2.6 (4), (A + εI)#t(B + εI) is monotone decreasing on ε > 0 and is bounded
below by O. So it converges, and thus, the equation (5) is well-defined.

3. Weighted geometric mean of two subsets of the positive cone

In this paper we deal with the following weighted geometric mean of two subsets of P and
see its geometric properties.

Definition 3.1: Let S ⊂ P and T ⊂ P, and let t ∈ [0, 1]. The weighted geometric mean
of two subsets of positive definite matrices is defined by

S#tT := {S#tT | S ∈ S , T ∈ T }.
Example 3.2: The weighted geometric mean of two subsets of P has a very important
concept in the theory of operator, matrix means, and approximation. In order to see this
insight, we give several examples in the following.

(1) The weighted geometric mean A#tB of A and B in P is a special example of that of
two subsets S = {A} ⊂ P and T = {B} ⊂ P. Moreover, if two subsets S and T have
cardinalities of p and q, respectively, then the cardinality of S#tT is less than or equal
to pq.

(2) For givenA,B ∈ P, considerS = {A + εI : ε1 > 0} and T = {B + ε2I : ε > 0}. Then
S ,T ⊂ P, and

(A + ε1I)#t(B + ε2I) ∈ S#tT ,

which is a generalized form of the right-hand side in the limit of (5).
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(3) For A,B,C,D ∈ P let S = [A,B] = {X ∈ P : A ≤ X ≤ B} and T = [C,D] = {Y ∈
P : C ≤ Y ≤ D}. Then by monotonicity of the geometric mean in Theorem 2.6 (4),

S#tT ⊆ [A#tC,B#tD].

(4) For A,B ∈ P let S = {X ∈ H : ‖A − X‖ ≤ r1} and T = {Y ∈ H : ‖B − Y‖ ≤ r2}.
Then S ,T ⊂ P for sufficiently small r1, r2 > 0. So the weighted geometric mean of
S and T , S#tT , can be considered as a set of approximations of A#tB.

Especially, for the case of (3) in Example 3.2 the following property which is similar to
[4, Theorem 3.4] holds.

Proposition 3.3: Assume that two subsets S and T of P are totally ordered with respect to
Loewner order. Then

M#N = max
{
X ∈ H :

(
A X
X B

)
≥ 0,A ∈ S ,B ∈ T

}
, (6)

where M is the maximum element of S and N is the maximum element of T .

Proof: It is known from Theorem 4.1.3 (iii) in [5] that for given A ∈ S ,B ∈ T

A#B = max
{
X ∈ H :

(
A X
X B

)
≥ 0
}
.

Since two subsets S and T of P are totally ordered with respect to Loewner order, A ≤
M for all A ∈ S and B ≤ N for all B ∈ T . By the monotonicity of geometric mean in
Theorem 2.6 (4), A#B ≤ M#N, and hence, we obtain (6). �

Theorem 3.4: Let S ,T ⊂ P, and let t ∈ [0, 1]. Then

(1) if S and T are bounded, then so is S#tT ,
(2) if S and T are closed, then so is S#tT .

Hence, S#tT is compact whenever S ,T are compact.

Proof: Note that it is enough to show (1) and (2) for compactness, since P is a subset of
Euclidean space H.

(1) Assume that S and T are bounded. By Remark 2.5 ‖A‖ ≤ c for all A ∈ S and some
constant c>0, and ‖B‖ ≤ d for all B ∈ T and some constant d>0. Then 0 < A ≤ cI
for all A ∈ S , and 0 < B ≤ dI for all B ∈ T . By Example 3.2 (3), and Theorem 2.6 (1)
and (4), it follows that

0 < A#tB ≤ c1−tdtI.

That is, ‖A#tB‖ ≤ c1−tdt , and thus, S#tT is bounded.
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(2) LetS and T be closed. Assume that sequencesAn ∈ S and Bn ∈ S converge toA ∈ S
and B ∈ T with respect to the Riemannian distance, respectively. By continuity of the
geometric mean in Theorem 2.6 (5) and Remark 2.7,

An#tBn → A#tB ∈ S#tT .

Thus, S#tT is closed.

�

Remark 3.5: Note that the union of a finite number of compact subsets of P is compact
and the intersection of any family of compact subspace of P is compact. If {Si} and {Tj} are
collections of compact subsets of P, then( n⋃

k=1

Sik

)
#

( m⋃
k=1

Tjk

)
and

(⋂
i
Si

)
#

⎛⎝⋂
j
Tj

⎞⎠
are compact.

Remark 3.6: Assume that S ,T ⊂ P are convex. Let A,B ∈ S and C,D ∈ T . Since S and
T are convex, (1 − λ)A + λB ∈ S and (1 − λ)C + λD ∈ T for any λ ∈ [0, 1], and hence,
[(1 − λ)A + λB]#t[(1 − λ)C + λD] ∈ S#tT . On the other hand, it holds from the joint
concavity of geometric mean in Theorem 2.6 (7) that

[(1 − λ)A + λB]#t[(1 − λ)C + λD] ≥ (1 − λ)(A#tC) + λ(B#tD)

for any λ ∈ [0, 1]. It is questionable whether or not (1 − λ)(A#tC) + λ(B#tD) ∈ S#tT . If
it is true, then we can say that S#tT is convex.

4. Geometric mean of partial positive matrices

From now on, we consider the geometric mean of partial positive matrices. In this paper,
we assume that any graph G always includes all loops. That is, any partial matrix does
not have missing entries on diagonal. Recall that H ⊂ Mn is the real vector space of all
Hermitian matrices, P ⊂ H is the open convex cone of n × n positive definite matrices,
and the closure P̄ of P consists of all n × n positive semi-definite matrices. We define

H(G) := {A(G) : A(G) is a n × nG-partial Hermitian matrix.},
P(G) := {A(G) ∈ H(G) : A(G) is a partial positive definite matrix.}.

For a given G-partial matrix A(G), we denote as p[A(G)] and p+[A(G)] the sets of all
positive semi-definite and positive definite completions of A(G), respectively.

Theorem 4.1: Let A(G) be a partial positive semidefinite matrix with a completable graph
G. Then p[A(G)] is non-empty, convex, and compact.
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Proof: Since G is a positive completable graph and A(G) is a partial positive semi-definite
matrix, clearly p[A(G)] is non-empty. IfM,N ∈ p[A(G)], then (1 − t)M + tN ∈ p[A(G)]
for t ∈ [0, 1], so p[A(G)] is convex. Since we assume that diagonal entries are given,
p[A(G)] is bounded, since

‖M‖2 =
[ n∑
i=1

λ2i (M)

]1/2
≤ tr(M) =

n∑
i=1

mii < ∞

for anyM ∈ p[A(G)], where λi(M) denotes the non-negative eigenvalue ofM.
Nowwe show thatp[A(G)] is closed. LetMk = [m(k)

ij ] be a sequence inp[A(G)] converg-
ing toM = [mij] in the Frobenius norm. SinceMk ∈ P for all k, we haveM ∈ P. Moreover,
since

|m(k)
ij − mij| ≤ ‖Mk − M‖2,

we have thatm(k)
ij → mij as k → ∞ for all 1 ≤ i, j ≤ n. Sincem(k)

ij = mij for all k and {i, j} ∈
E, taking the limit as k → ∞ yields thatmij = aij for all {i, j} ∈ E. So,M is a positive semi-
definite completion of A(G), that is,M ∈ p[A(G)]. �

Remark 4.2: For a partial positive definite matrix A(G) with a completable graph G,
one can see easily that p+[A(G)] ∈ P(G) is non-empty, convex, and bounded. Since
p+[A(G)] ⊂ p[A(G)], we have p+[A(G)] ⊂ p[A(G)] = p[A(G)] by Theorem 4.1, where
p+[A(G)] is the closure of p+[A(G)]. On the other hand, it is questionable that p[A(G)] ⊂
p+[A(G)].

Let G and F be given completable graphs. One can naturally ask to define the geometric
mean of partial positive definite matrices A(G) and B(F). Using the geometric mean of
subsets of P in Definition 3.1, we define the geometric mean of two partial positive definite
matrices A(G) and B(F) as

A(G)#tB(F) := p+[A(G)]#tp+[B(F)], (7)

where t ∈ [0, 1].

Remark 4.3: Using Remark 2.8, one can define the geometric mean of partial positive
semi-definite matrices A(G) and B(F) as

p[A(G)]#tp[B(F)].

There are some results for the geometric mean of positive semi-definite matrices [3], but
it holds more limited properties than that of positive definite matrices. So we consider in
this article the geometric mean of partial positive definite matrices.

Remark 4.4: By Theorem 3.4 and Reamrk 4.2, A(G)#tB(F) is bounded for partial positive
definite matrices A(G) and B(F) with completable graphs G and F.

It would be interesting to find some properties for A(G)#tB(F) corresponding to those
in Theorem 2.6.
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Remark 4.5: Note thatA(G)#tA(G) �= p+[A(G)], sinceA1#tA2 may not be a positive def-
inite completion of A(G) even though A1,A2 ∈ p+[A(G)]. For instance, see Example 2.4.
Let

A1 =

⎡⎢⎢⎣
1 1 1 1
1 5 1 1
1 1 3 1
1 1 1 2

⎤⎥⎥⎦ , A2 =

⎡⎢⎢⎣
1 −1 1 1

−1 5 1 −1
1 1 3 1
1 −1 1 2

⎤⎥⎥⎦ .

Then A1 and A2 are positive definite completions of A(G). However,

A1#A2 ≈

⎡⎢⎢⎣
0.8750 −0.0769 1 0.8750

−0.0769 4.1251 1 −0.0769
1 1 3 1

0.8750 −0.0769 1 1.8750

⎤⎥⎥⎦ ,

which is not a positive definite completion of A(G). Clearly, it holds that p+[A(G)] ⊂
A(G)#A(G).

For A(G),B(G) ∈ H(G) with a given graph G, the sum of two G-partial matrices and the
scalar product of a G-partial matrix, denoted by A(G) + B(G) and αA(G) are defined by

[A(G) + B(G)]ij =
{
aij + bij if {i, j} ∈ E,
missing otherwise,

[αA(G)]ij =
{

αaij if {i, j} ∈ E,
missing otherwise,

where A(G) = [aij]{i,j}∈E and B(G) = [bij]{i,j}∈E, respectively.
Note that A(G) + B(G) and αA(G) are in H(G). It is natural to define the difference of

two G-partial matrices as A(G) − B(G) := A(G) + (−1)B(G).
Let S ⊂ P and let α > 0. For convenience, we denote

αS : = {αA : A ∈ S},
S−1 : = {A−1 : A ∈ S}.

Note that αS ,S−1 ⊂ P. It is trivial that

αp+[A(G)] = p+[αA(G)], p+[A(G) + B(G)] = p+[A(G)] + p+[B(G)].

Proposition 4.6: For completable graphs G and F, let A(G) and B(F) be partial positive
definite matrices. Then the following hold:

(1) a1−tbt(p+[A(G)]#tp+[B(F)]) = (ap+[A(G)])#t(bp+[B(F)]) for any a,b>0,
(2) p+[A(G)]#tp+[B(F)] = p+[B(F)]#1−tp

+[A(G)], and
(3) (p+[A(G)]#tp+[B(F)])−1 = p+[A(G)]−1#tp+[B(F)]−1.
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Proof: Let A(G) ∈ P(G) and B(F) ∈ P(F).

(1) Let A#tB ∈ p+[A(G)]#tp+[B(F)], where A ∈ p+[A(G)] and B ∈ p+[B(F)]. Then
aA ∈ ap+[A(G)] = p+[aA(G)], and bB ∈ p+[bB(G)]. By Theorem 2.6 (2),

a1−tbt(A#tB) = (aA)#t(bB) ∈ (ap+[A(G)])#t(bp+[B(F)]).

So a1−tbt(p+[A(G)]#tp+[B(F)]) ⊆ (ap+[A(G)])#t(bp+[B(F)]).
Let C#tD ∈ (ap+[A(G)])#t(bp+[B(F)]), where C ∈ p+[aA(G)] and D ∈ p+[bB(F)].
Then a−1C ∈ p+[A(G)] and b−1D ∈ p+[B(F)], and furthermore, by Theorem 2.6 (2)

C#tD = a1−tbt[(a−1C)#t(b−1D)] ∈ a1−tbt
(
p+[A(G)]#tp+[B(F)]

)
.

(2) By Theorem 2.6 (3), A#tB = B#1−tA for any A ∈ p+[A(G)] and B ∈ p+[B(F)]. Thus,
it is proved.

(3) By Theorem 2.6 (8), (A#tB)−1 = A−1#tB−1 for anyA ∈ p+[A(G)] and B ∈ p+[B(F)].
Thus, it is proved.

�

5. Difference of partial matrices and Loewner order on partial matrices

Analogous to the Loewner order on H, we define the relation for G-partial semi-definite
matrices.

Definition 5.1: For a given completable graph G, we define the relation ≤ on H(G) as
follows:

(i) A(G) ≥ B(G) if and only if A(G) − B(G) ∈ P(G);
(ii) A(G) > B(G) if and only if A(G) − B(G) ∈ P(G).

Theorem5.2: The relation ≤ is indeed a partial order onH(G)with a completable graphG.

Proof: Let G be a completable graph.
(Reflexive) Since A(G) − A(G) is the zero matrix, it holds A(G) ≤ A(G) for all A(G) ∈

H(G).
(Anti-symmetric) Suppose that A(G) ≤ B(G) and B(G) ≤ A(G) for A(G),B(G) ∈

H(G). Since A(G) − B(G) and A(G) − B(G) partial positive semidefinite, then the diag-
onal entries of A(G) − B(G) must be 0, implying A(G) − B(G) = 0. Thus A(G) = B(G).

(Transitive) Suppose that A(G) ≤ B(G) and B(G) ≤ C(G) for A(G),B(G),C(G) ∈
H(G). Let α ⊂ {1, 2, . . . , n} such that A(G)[α] be a fully specified principal submatrix.
Clearly, M = (A(G) − B(G))[α] and N = (B(G) − C(G))[α] are fully specified princi-
pal submatrices of A(G) − B(G) and B(G) − C(G), respectively. Since A(G) − B(G) and
B(G) − C(G) are partial positive semidefinite,M andN are positive semidefinite. Note that
M+N is a fully specified principal submatrix of A(G) − C(G) and positive semidefinite.
Since α is arbitrary, every fully specified submarix ofA(G) − C(G) is positive semidefinite,
implying A(G) ≤ C(G). �
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Example 5.3: Consider the following G-partial (positive) matrices:

A(G) =

⎡⎢⎢⎣
3 ? 2 1
? 6 1 ?
2 1 4 1
1 ? 1 5

⎤⎥⎥⎦ , B(G) =

⎡⎢⎢⎣
1 ? 1 1
? 5 1 ?
1 1 3 1
1 ? 1 2

⎤⎥⎥⎦ .

Since the difference

C(G) := A(G) − B(G) =

⎡⎢⎢⎣
2 ? 1 0
? 1 0 ?
1 0 1 0
0 ? 0 3

⎤⎥⎥⎦
is partial positive definite, by the definition A(G) > B(G).

Remark 5.4: In general, the existence of positive completions of two partial matricesA(G)

and B(G) does not guarantee the existence of positive completion of A(G) − B(G). For
example, the partial matricesA(G) and B(G) in Example 5.3 have positive definite comple-
tions (see Example 2.4). Since the difference C(G) is partial positive definite with positive
completable graph G, it also has positive definite completions. On the other hand, the par-
tial matrix A(G) − 3B(G) does not have any positive (semi-)definite completion since it is
not partial positive (semi-)definite although A(G) ≥ 0, 3B(G) ≥ 0, and they have positive
(semi-)definite completions.

Lemma 5.5: Let G be a given completable graph. Suppose that A(G) and B(G) are partial
positive definite matrices. Then p+[A(G) − B(G)] ⊂ p+[A(G)] − p+[B(G)].

Proof: LetG = (V ,E) be a given completable graph. If p+[A(G) − B(G)] = ∅, it is trivial.
Let C ∈ p+[A(G) − B(G)]. Then C is a positive definite completion of A(G) − B(G). That
is, there exist a positive definite matrix C = [cij] such that cij = aij − bij for all {i, j} ∈ E,
where A(G) = [aij]{i,j}∈E and B(G) = [bij]{i,j}∈E. Let B = [bij] ∈ p+[B(G)]. Since B>0
and C>0, we have B+C>0. Since bij + cij = aij for all {i, j} ∈ E, it follows that B + C ∈
p+[A(G)]. Since B is arbitrary, it holds that B + C ∈ p+[A(G)] for all B ∈ p+[B(G)]. Thus,
C = (B + C) − B ∈ p+[A(G)] − p+[B(G)]. �

Remark 5.6: (i) For a completable graphG, assume thatA(G) and B(G) are partial posi-
tive semi-definitematrices. Then p[A(G) − B(G)] ⊂ p[A(G)] − p[B(G)] by following
the proof of Lemma 5.5 similarly to positive semi-definite completions.

(ii) Since p+[A(G)] − p+[B(G)] may or may not include an element which is not a
positive definite matrix, in general, p+[A(G) − B(G)] �= p+[A(G)] − p+[B(G)]. For
example, consider the following partial positive definite matrices.

A(G) =
⎡⎣2.5 1 ?

1 2.5 1
? 1 2.5

⎤⎦ , B(G) =
⎡⎣2 1 ?
1 2 1
? 1 2

⎤⎦ .
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Then it is clear that

A =
⎡⎣2.5 1 1

1 2.5 1
1 1 2.5

⎤⎦ ∈ p[A(G)], B =
⎡⎣2 1 0
1 2 1
0 1 2

⎤⎦ ∈ p[B(G)],

and

A − B =
⎡⎣0.5 0 1

0 0.5 0
1 0 0.5

⎤⎦ ∈ p+[A(G)] − p+[B(G)].

However, A − B /∈ p+[A(G) − B(G)] since A−B is not positive definite. This shows
that A(G) < B(G) does not imply A<B for all A ∈ p+[A(G)] and B ∈ p+[B(G)].

Theorem5.7: LetGbe a given completable graph. Suppose thatA(G) andB(G) areG-partial
matrices with 0 < B(G) < A(G). Then

p+[A(G) − B(G))] = (p+[A(G)] − p+[B(G)]) ∩ P.

That is, all positive completions of A(G) − B(G) are expressed as differences of positive
completions of A(G) and B(G).

Proof: Let C ∈ p+[A(G) − B(G)]. Then by Lemma 5.5 it follows that C ∈ p+[A(G)] −
p+[B(G)]. Since C is positive definite, it follows that C ∈ (p+[A(G)] − p+[B(G)]) ∩ P,
so p+[A(G) − B(G)] ⊂ (p+[A(G)] − p+[B(G)]) ∩ P. LetD ∈ (p+[A(G)] − p+[B(G)]) ∩
P. Then there exist M ∈ p+[A(G)] and N ∈ p+[B(G)] such that D=M−N is positive
definite. SinceM − N ∈ p+[A(G) − B(G)], we have that D ∈ p+[A(G) − B(G)]. �

6. Maximizing the determinant

For a given completable graphG, we see in this section several interesting consequences for
positive definite completions of G-partial positive matrices maximizing the determinant
with the previous notions of geometric mean and order relation.

Lemma 6.1: [36, Lemma 1] The function f (A) = log det (A) is strictly concave on
p+[A(G)].

Theorem 6.2: Let G be a given completable graph, and let A(G) be a G-partial matrix with
A(G) > 0. Then there exists a unique positive definite completion of A(G), say Â, such that

det(Â) = max {det(M) : M ∈ p+[A(G)]}.

Furthermore, Â is the unique positive definite completion of A(G) whose inverse C = [cij]
satisfies

cij = 0 for all {i, j} /∈ E.

Proof: It follows by Lemma 6.1 amd Theorem 4.1 (see [36]). �
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Now we investigate relationship between Â and other positive definite completions for
their determinants.

Theorem 6.3: Let G be a given completable graph, and let A(G) be a G-partial matrix with
A(G) > 0. For 0 < k < det(Â), there exists A ∈ p+[A(G)] such that det(A) = k.

Proof: Since p[A(G)] is convex, it is also path-connected, hence connected. Since the
determinant, det : p[A(G)] → R, is a continuous function on p[A(G)], the range of the
determinant function is connected. By the inequality of Hadamard, it follows that

0 ≤ det(A) ≤
n∏

i=1
aii for all A ∈ p[A(G)].

So, det(p[A(G)]) is bounded in R, i.e. det(p[A(G)]) = [a, b] for some 0 ≤ a < b. Claim
that a=0. It is enough to show that there exist S ∈ p[A(G)] such that det(S) = 0.

Let Z ∈ p[A(G)] with det (Z) �= 0. Pick one missing entry of A(G), say x. We fix all
entries of Z except x and convert Z into the block matrix of the form (11) via permutation
similarity to place x in the (1, n) spot. Set Z̃ = [z̃ij] as the matrix obtained by taking x =√
ab, where a,b are entries in the (1, 1) and (n, n) spots, respectively. Since the determinant

of the principal submatrix Z̃[1, n] is zero, det (Z̃) = 0. By Proposition 2.3 in [39], Z̃ ≥ 0,
so Z̃ ∈ p[A(G)]. �

Using the similar proof of [40, Theorem 1], one can have an integral representation for
determinants of two positive definite completion of a G-partial matrix.

Theorem 6.4: Let C be a non-empty convex subset of P. Let A0 and A1 be in C. Define
A(λ) := (1 − λ)A0 + λA1 for all λ ∈ [0, 1]. Then,

det(A1) = det(A0) exp
{∫ 1

0
tr(A(λ)−1(A1 − A0)) dλ

}
.

Proof: LetM(λ) = [mij(λ)]ij be a n × nHermitian matrix whose entriesmij(λ) are func-
tions of a parameter λ on I = [a, b] and its determinant be denoted by 
(λ). Assume that
the functionsmij(λ) are differentiable on I for all i,j and det (M(λ)) �= 0 for all λ ∈ I. Then
by the trace theorem [41, p.83], it follows that

d
(λ)

dλ
= 
(λ)tr

(
M(λ)−1 dM(λ)

dλ

)
, (8)

where dM(λ)/dλ is the matrix whose elements are d(mij(λ))/dλ. Clearly, A(λ) ⊂ C ⊂ P

for all λ ∈ [0, 1]. Since dA(λ)/dλ = A1 − A0, by (8) it follows that

d
(λ)

dλ
= 
(λ)tr

(
A(λ)−1(A1 − A0)

)
. (9)

Since 
(λ) �= 0, the equation (9) can be rewritten as

d
(λ)


(λ)
= tr

(
A(λ)−1(A1 − A0)

)
dλ. (10)
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Since A(λ)−1 is continuous, tr(A(λ)−1(A1 − A0)) is a continuous function of λ on [0, 1].
Also, 
(λ) is a polynomial of λ. By integrating both sides of the equation (10) we have

ln (|
(1)/
(0)|) =
∫ 1

0
tr(A(λ)−1(A1 − A0)) dλ.

Note that 
(0) = det(A0) and 
(1) = det(A1). �

Consider a zero-mean, multivariate Gaussian distribution on Rn,

f (x) = (2π)−n/2|�|−1/2 exp
{
−1
2
x��−1x

}
,

where the covariance matrix �(G) is partial positive definite with a completable graph G.
Recall that H(f ) in (3) is the Shannon entropy.

Theorem 6.5: Let f0, f1 be zero-mean, mutivariate Gaussian distributions on Rn with
covariance matrices �0,�1 ∈ p+[�(G)], respectively. Then the following are true:

(1) the difference between Shannon entropy for two distributions can be expressed as

H(f1) − H(f0) = 1
2

∫ 1

0
tr(�(λ)−1(�1 − �0)) dλ,

where �(λ) = (1 − λ)�0 + λ�1.
(2) for a zero-mean, multivariate Gaussian distribution on Rn with the covariance matrix

�0#t�1, says f0#tf1, it holds that

H(f0#tf1) = (1 − t)H(f0) + tH(f1).

Proof: (i) By Equation (3) and Theorem 6.4, it holds. (ii) by Equation (3) and Theorem 2.6
(9), it follows that

H(f0#tf1) = 1
2
log(det�0#t�1) + 1

2
n(1 + log (2π))

= 1
2
((1 − t) log(det�0) + t log(det�1)) + 1

2
n(1 + log (2π))

= (1 − t)H(f0) + tH(f1). �

Especially, when t = 1/2, it shows that entropy of distribution with the geometric mean
of two covariances is the average of entropy of two distributions with each covariance.

Corollary 6.6: Let A(G1) > 0 and B(G2) > 0 be given partial matrices with completable
graphs G1 and G2. Suppose that A(G1)#tB(G2) is convex. Then the determinant of A#tB in
A(G1)#tB(G2) can be expressed as

det(Â)1−t det(̂B)t · exp
{∫ 1

0
tr(St(λ)−1Tt) dλ

}
,

where St(λ) = (1 − λ)(Â#tB̂) + λ(A#tB) and Tt = Â#tB̂ − A#tB.



16 H. CHOI ET AL.

Theorem 6.7 (Fischer’s Inequality[38]): Let a (m + n) × (m + n) Hermitian positive
definite matrix H have the partitioned form

H =
[
A X
X B

]
,

where A ∈ Mm and B ∈ Mn. Then

detH ≤ (detA)(detB)

with equality if and only if X=0.

The following is a similar result to Fischer’s Inequality for partial matrices.

Proposition 6.8: Let G1 = (V1,E1) and G2 = (V2,E2) be disjoint completable graphs with
V1 ∩ V2 = ∅. Let G = (V ,E) with V = V1 ∪ V2 and E = E1 ∪ E2. Let

H(G) =
[
A(G1) X
X B(G2)

]
,

where all entries of X are missing. If A(G1) > 0 and B(G2) > 0, then

detH ≤ (det Â)(det B̂) for all H ∈ p[A(G)]

with equality if and only if X = 0. Here Â and B̂ are the maximum determinant positive
definite completions of A(G1) and B(G2), respectively.

Proof: Since G1 and G2 are chordal, so is G. By Theorem 2.2, the graph G is com-
pletable. Since A(G1) > 0 and B(G2) > 0, it is clear thatH(G) > 0, implying p+[H(G)] �=
∅. By Theorem 6.2, the graphs A(G1), B(G2) have the maximum determinant pos-
itive definite completions, say Â, B̂ respectively. By Theorem 6.7, it follows that
det(H) ≤ (detA)(detB) ≤ (det Â)(det B̂) for all H ∈ p[H(G)], A ∈ p[A(G1)], and B ∈
p[B(G2)]. When X = 0, the equality holds. If det(H) = (det Â)(det B̂), then X = 0 by
Theorem 6.7. �

Lemma 6.9: The map f : P × P → P defined by f (A,B) = log det(A#tB) for any t ∈ [0, 1]
is strictly jointly concave.

Proof: By Theorem 2.6 (1), the function f on P × P can be written as

f (A,B) = log det(A#tB) = (1 − t) log detA + t log detB.

Since the map log det : P → R is strictly concave, so is f. �

Remark 6.10: We can show the joint concavity of the map f in Lemma 6.9 by using the
joint concavity of geometric mean. Indeed, by Theorem 2.6 (7),

[(1 − λ)A1 + λA2]#t[(1 − λ)B1 + λB2] ≥ (1 − λ)(A1#tB1) + λ(A2#tB2)

for any A1,A2,B1,B2 ∈ P and any λ ∈ [0, 1]. Since 0 < A ≤ B implies 0 < detA ≤ detB
from [38, Corollary 7.7.4], the logarithmic map log : (0,∞) → R is monotone increasing,
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and the map log det : P → R is strictly concave,

f ((1 − λ)(A1,B1) + λ(A2,B2)) = log det[(1 − λ)A1 + λA2]#t[(1 − λ)B1 + λB2]

≥ log det[(1 − λ)(A1#tB1) + λ(A2#tB2)]

≥ (1 − λ)f (A1,B1) + λf (A2,B2).

Theorem 6.11: Let G and F be a given completable graph, and let A(G) and B(F) be partial
matrices with A(G) > 0 and B(F) > 0. For t ∈ [0, 1] there exists a unique positive definite
completion H of A(G)#tB(F) such that

det(H) = max {det(M#tN) : M#tN ∈ A(G)#tB(F)}.

Furthermore, H = Â#tB̂, where Â and B̂ are the maximum determinant positive definite
completions of A(G) and B(F), respectively.

Proof: Since det(M) ≤ det(Â) and det(N) ≤ det(̂B) for all M ∈ p+[A(G)] and N ∈
p+[B(F)], it is clear that det(M#tN) = (det(M))1−t(det(N))t ≤ (det(Â))1−t(det(̂B))t =
det(Â#̂B). We just show the uniqueness. Suppose that there exists C ∈ p+[A(G)]
and D ∈ p+[B(F)] such that det (C#tD) = det(Â#tB̂). Then, (det(C))1−t(det(D))t =
(det(Â))1−t(det(̂B))t . Setting x = det(C)/ det(Â), y = det(D)/ det(̂B), we have x1−tyt =
1, implying that (t − 1) log x = t log y. Since x ≤ 1 and y ≤ 1, it must be x= y=1 for some
0< t<1. Therefore, det(Â) = det(C) and det(̂B) = det(D). By the uniqueness of Â and B̂,
it holds that Â = C and B̂ = D. �

In other words, the positive definite completion of A(G)#tB(F) can uniquely be
expressed as positive definite completions of A(G) and B(F) with respect to maximum
determinant.

Corollary 6.12: Let G1 = (V1,E1) and G2 = (V2,E2) be disjoint completable graphs with
V1 ∩ V2 = ∅. Let G = (V ,E) with V = V1 ∪ V2 and E = E1 ∪ E2. Let

A(G) =
[
A1(G1) X

X A2(G2)

]
and B(G) =

[
B1(G1) Y

Y B2(G2)

]
,

where all entries of X and Y are missing. If Ai(Gi) > 0 and Bi(Gi) > 0 for i=1,2, then

det (A#tB) ≤ det (A1#tB1) det (A2#tB2) for all A#tB ∈ A(G)#tB(G)

with equality if and only if X = Y = 0.

Proof: By Proposition 6.8 and Theorem 2.6 (9) it is trivial. �

Theorem 6.13: Let G be a given completable graph. If 0 < A(G) ≤ B(G), then 0 <

det(Â) ≤ det(̂B).

Proof: Since the graphG = (V ,E) is completable andB(G) − A(G) > 0, the partialmatrix
B(G) − A(G) has the maximum determinant positive definite completion, say M̂. Let Â
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be the maximum determinant positive definite completion of A(G). Let bij be entries of
B(G) for {i, j} ∈ E. Since M̂ij + Âij = bij for all {i, j} ∈ E, M̂ + Â is a positive definition
completion of B(G). Then it follows that

0 < det (Â) < det (M̂) + det (Â) ≤ det (M̂ + Â) ≤ det (̂B)

Note that det (A) + det (B) ≤ det (A + B) for A,B ∈ P (see p.511, [38]). �

7. Computational results

Consider finding the maximum determinant positive definite completion among
A(G)#B(G) when A(G) and B(G) are n × n G-partial positive definite matrices with only
one missing entry in the (1, n) position, respectively.

Theorem 7.1 ([42]): Consider the following partial matrix with the only one missing entry:

H(x) =
⎡⎣a vT x

v C w
x wT b

⎤⎦ , (11)

where all entries are given except x. If H(x) is partial positive definite, H(x) has a positive
definite completion. Indeed, the set of all such completions is given by the inequality

|x − vTC−1w|2 <
detA detB
(detC)2

.

Two endpoints of this interval give singular positive semidefinite completions of H(x). When
x = vTC−1w, the positive definite completion has the maximum determinant

det (A) det (B)

(detC)2
,

where

A =
[
a vT

v C

]
and B =

[
C w
wT b

]
.

Clearly it holds that H(x) > 0 if and only if A>0 and B>0. In [43] a robust and fast
algorithm based on the preceding theorem is introduced. Suppose that a partial matrix
with one or possibly more then one missing entries is given. We fix all but one entry and
then place the position in the (1, n) spot via permutation similarity. Then by Theorem 7.1
the maximum determinant completion can be found. Repeating this process, the sequence
of completion matrices is constructed with respect to each of missing entries. It is shown
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that the sequence converges to the unique global maximum determinant completion (for
more information, see [43, Theorem 2]).

Now using Theorem 7.1 behaviours of A(G)#tB(F) are shown computationally. All
graphs in Figures 1–4 are generated by a MATLAB program [44].

Example 7.2: Consider the following partial matrices.

A(x) =
⎡⎣ 3 −1 x

−1 3 2
x 2 4

⎤⎦ , B(y) =
⎡⎣4 3 y
3 5 −1
y −1 2

⎤⎦ ,

where x and y are missing entries. SinceA(x) > 0 and B(y) > 0, by Theorem 7.1 they have
positive definite completions when −10/3 < x < 2 and (−3

√
11 − 3)/5 < y < (3

√
11 −

3)/5. The determinant and each eigenvalue of A(x)#B(y)with respect to such values x and
y are shown in Figure 1. Also, it is shown that A(x)#B(y) have the maximum determinants
when x = −2/3 and y = −3/5, respectively.

Figure 1. (a) the determinant of A(x)#B(y); (b) the maximum eigenvalue of A(x)#B(y); (c) the second
maximum eigenvalue of A(x)#B(y); (d) the smallest eigenvlue of A(x)#B(y).
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Figure 2. (a) the determinant of A(x)#B(y); (b) the largest eigenvalue of A(x)#B(y); (c) the second
largest eigenvalue of A(x)#B(y); (d) the third largest eigenvlue of A(x)#B(y); (e) the fourth eigenvlue
of A(x)#B(y); (f ) the smallest eigenvlue of A(x)#B(y).

Example 7.3: We consider the geometric mean of same partial matrices. Let

A(x) =

⎛⎜⎜⎜⎜⎝
3 −1 1 1 x

−1 3 −1 1 0
1 −1 3 2 1
1 1 2 4 2
x 0 1 2 4

⎞⎟⎟⎟⎟⎠ and B(y) =

⎛⎜⎜⎜⎜⎝
3 0 1 2 y
0 1 0 −1 0
1 0 5 −1 1
2 −1 −1 3 0
y 0 1 0 4

⎞⎟⎟⎟⎟⎠ ,

where x and y are missing entries. Since A(x) > 0 and B(y) > 0, by Theorem 7.1 they
have positive definite completions when (10 − √

1036)/3 < x < (10 + √
1036)/3 and

(4 − √
34)/9 < y < (4 + √

34)/9. The determinant and each eigenvalue of A(x)#B(y)
with respect to such values x and y are shown in Figure 2. Also, it is shown that A(x)#B(y)
have the maximum determinants when x = 10/13 and y = 4/9, respectively.

Example 7.4: Let

In(x) =
⎛⎝1 0 x
0 I 0
x 0 1

⎞⎠ ,
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Figure 3. (a) the determinant of I10(x)#I10(y); (b) the largest eigenvalue of I10(x)#I10(y); (c) the second
largest eigenvalue of I10(x)#I10(y); (d) the smallest eigenvlue of I10(x)#I10(y).

where I is the (n − 2) × (n − 2) identity matrix. By Theorem 7.1, In(x)#In(y) has posi-
tive definite completions when x, y ∈ (−1, 1) and has the maximum determinants when
x= y=0. The determinant and each eigenvalue of I(x)#I(y) with respect to such values
x and y are shown in Figure 3. Note that each graph looks like symmetric with respect to
y=−x and y= x since In(x)#In(y) = In(y)#In(x) = In(−x)#In(−y).

Example 7.5: Let

A(x, y) =
⎛⎝2 1 x
1 2 y
x y 2

⎞⎠ , B =
⎛⎝4 3 0
3 5 −1
0 −1 2

⎞⎠ ,

By simple calculations, it can be shown that A(x, y)#B has positive definite completions if
and only if |x| < 2, |y| < 2, and 6 + 3xy − 2x2 − 2y2 > 0, and has the maximum deter-
minants when x= y=0. The determinant and each eigenvalue ofA(x, y)#Bwith respect to
such values x and y are shown in Figure 4.

Example 7.6: Consider the following positive definite matrix. For sufficiently small ε > 0,

A =
⎛⎝1.5 1 1

1 1 1/3 + ε

1 1/3 + ε 1

⎞⎠
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Figure 4. (a) the determinant of A(x, y)#B; (b) the largest eigenvalue of A(x, y)#B; (c) the second largest
eigenvalue of A(x, y)#B; (d) the smallest eigenvlue of A(x, y)#B.

Setting a23 = 0.33333333, the matrix A will lose positivity. So, arbitrarily small perturba-
tions of a positive definitematrix eject one from the cone of positive definitematrices. Thus,
for any positive definite matrix B,A#Bwill be changed fast as even very small perturbation
occurs.

8. Application in computer vision

Let I be a 1-dimensional intensity or 3-dimensional colour image and F be the fea-
ture image extracted from I. For a given rectangular region R ⊂ F, let {zk}1≤k≤m be the
d-dimensional feature points on R. The Region covariance (RC) descriptor is the d × d
covariance matrix of the feature points which is defined by

CR = 1
m − 1

m∑
k=1

(zk − μ)(zk − μ)�, (12)

where μ is the mean of the points (see [45]).
The RC descriptor has recently become a popular method in several areas such as com-

puter vision and applications of these topics to problems in optimization,machine learning,
medical image, and etc [46]. The RC descriptors are symmetric positive definite matrices
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which is relatively low-dimensional descriptors extracted from several different features
computed at the level of regions. Since a single covariance matrix extracted from a region
is usually enough to match the region in different views and poses, RC descriptor con-
sequently reduces the computational cost of classification. In [47] an image classification
scheme based on the generalized geometric mean of positive definite matrices computed
from features of all sub-regions in a given medical image, specifically a breast histological
image is proposed. Indeed, an image region R can be divided into n small non-overlapping
sub-regions {R1, . . . ,Rn} to calculate the corresponding RC descriptors CRk , k = 1, . . . , n.
Note that the regional covariance descriptors computed from sub-image are points lying
on the Riemannian manifold of positive definite matrices. Therefore, a representative of
different RC descriptors calculated from sub-images can be considered as the general-
ized geometric mean of positive definite matrices. There are several different symmetric
weighted geometricmeans for positive definitematrices, butwe deal with theKarchermean
as follows: for a positive probability vector ω = (w1, . . . ,wn)

�(ω;A1, . . . ,An) := argminX∈P

n∑
k=1

wiδ
2(X,Ai), (13)

where δ(·, ·) is defined in (4). It is shown that there exists the unique minimum for the
optimization problem (13) if the matrices all lie in a convex ball in a Riemannian manifold
(see [48, section 6.15] and [10]). For more information, see [6,14]. Thus, the representative
of RC descriptors for sub-regions can then be combined through the generalized geometric
mean as �(ω;CR1 , . . . ,CRn).

However, missing entries of RC descriptor in practice can occur due to various rea-
sons, such as poor imaging quality or detector noise. Considering missing entries as the
zero values or some values possibly reduces precision or encourage such matrix to lose
its positivity. Assuming that CR1(G1), . . . ,CRn(Gn) are partial positive definite matrices
with completable graphs G1, . . . ,Gn, the representative of RC descriptors for sub-regions
withmissing entries is the generalized geometricmean of partial positive definitematrices,
which is �(ω;CR1(G1), . . . ,CRn(Gn)).

Here, we shortly introduce the recent result, called no dice theorem [49,50], to compute
the Karcher mean. For a positive probability vector ω = (w1, . . . ,wn), we denote

ω := (w1, . . . ,wn,w1, . . . ,wn, . . .),

and s(N) :=
N∑
i=1

ωi for each N ∈ N, where ωi is the ith component of the infinite-

dimensional vector ω. The sequence of weighted inductive means is defined by

S1 = A1, SN = Ak#s(N−1)/s(N)SN−1

for natural numbers N ≥ 2, where k ∈ {1, . . . , n} is chosen so that k ≡ N (mod n). Then

lim
N→∞ SN = �(ω;A1, . . . ,An). (14)

This is the special case of law of large numbers on the Hadamard space of positive definite
matrices. Using the convergence in (14), we can find approximately the Karcher mean of
partial positive definite matrices to meet our needs.
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9. Final remarks

We have studied the weighted geometric mean of two partial positive definite matrices
including some numerical computation with missing entries. We finally close with some
open problems arisen during our study. Let G and F be completable graphs.

(1) For A,B ∈ P, set

A0 = A, B0 = B, An+1 =
(
A−1
n + B−1

n
2

)−1

, Bn+1 = An + Bn
2

.

It is known from [4] that

An ≤ An+1 ≤ A#B ≤ Bn+1 ≤ Bn

for all n ≥ 1, and the sequences {An} and {Bn} converge monotonically to A#B. For
subsets S and T of P, we can define the harmonic mean and arithmetic mean such as(S−1 + T −1

2

)−1

and
S + T

2

via the natural definitions of scalar multiplication, sum, and inversion in Section 4.
It is questionable that the sequences {Sn} and {Tn} of subsets of P constructed by
the above mean iteration converge to S#T . It may be applied to the geometric mean
p+[A(G)]#p+[B(F)] of partial positive definite matrices A(G) and B(F).

(2) One can naturally ask the geometric characterization of the geometric mean of par-
tial positive definite matrices. In Theorem 4.1 and Remark 4.2 we have seen that
p+[A(G)] is non-empty, convex, and bounded. So p+[A(G)]#tp+[B(F)] is bounded
by Remark 4.4, but it is unknown that p+[A(G)]#tp+[B(F)] is convex for t ∈ [0, 1].
This is connected with the question in Remark 3.6.

(3) In Theorem 6.13 we have seen that A(G) ≤ B(G) for partial positive definite matri-
ces A(G) and B(G) implies det(Â) ≤ det(̂B), where Â is the maximum determinant
positive definite completion of A(G). It naturally occurs that Â ≤ B̂. If it is true, then
Theorem 6.13 holds automatically.
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