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The von Neumann graph entropy (VNGE) can be used as 
a measure of graph complexity, which can be the measure 
of information divergence and distance between graphs. 
However, computing VNGE is extensively demanding for a 
large-scale graph. We propose novel quadratic approximations 
for fast computing VNGE. Various inequalities for error 
between the quadratic approximations and the exact VNGE 
are found. Our methods reduce the cubic complexity of VNGE 
to linear complexity. Computational simulations on random 
graph models and various real network datasets demonstrate 
superior performance.
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1. Introduction

Graph is one of the most common representations of complex data. It has the sophis-
ticated capability of representing and summarizing irregular structural features. Today, 
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graph-based learning has become an emerging and promising method with numerous ap-
plications in many various fields. With the increasing quantity of graph data, it is crucial 
to find a way to manage them effectively. Graph similarity as a typical way of presenting 
the relationship between graphs have been vastly applied [28,11,7,1,10]. For example, 
Sadreazami et al. proposed an intrusion detection methodology based on learning graph 
similarity with a graph Laplacian matrix [25]; also, Yanardag and Vishwanathan gave a 
general framework to smooth graph kernels based on graph similarity [29]. However, all 
the above approaches relied on presumed models, and thus limited their ability of be-
ing applied on comprehending the general concept of divergences and distances between 
graphs.

Meanwhile, graph entropy [3] which is a model-free approach, has been actively used 
as a way to quantify the structural complexity of a graph. By regarding the eigenvalues 
of the normalized combinatorial Laplacian of a graph as a probability distribution, we 
can obtain its Shannon entropy. By giving the density matrix of a graph, which is the 
representation of a graph in a quantum mechanical state, we can calculate its von Neu-
mann entropy for a graph [4]. Bai et al. proposed an algorithm to solve the depth-based 
complexity characterization of the graph using von Neumann entropy [5]. Liu et al. gave 
a method of detecting a bifurcation network event based on von Neumann entropy [20]. 
Other applications include graph clustering [6], network analysis [30], and structural re-
duction of multiplex networks [12]. However, the cost of computing the exact value is 
highly expensive for a large-scale graph.

1.1. Von Neumann entropy

The von Neumann entropy, which was introduced by John von Neumann, is the exten-
sion of classical entropy concepts to the field of quantum mechanics [17]. He introduced 
the notion of the density matrix, which facilitated the extension of the tools of classical 
statistical mechanics to the quantum domain in order to develop a theory of quantum 
measurements.

Denote the trace of a square matrix A as trA. A density matrix is a Hermitian 
positive semidefinite with unite trace. The density matrix ρ is a matrix that describes 
the statistical state of a system in quantum mechanics. The density matrix is especially 
useful for dealing with mixed states, which consist of a statistical ensemble of several 
different quantum systems.

The von Neumann entropy of a density matrix ρ, denoted by H(ρ), is defined as

H(ρ) = − tr(ρ lnρ) = −
n∑

i=1
λi lnλi,

where λ1, . . . , λn are eigenvalues of ρ. It is conventional to define 0 ln 0 = 0. This defi-
nition is a proper extension of both the Gibbs entropy and the Shannon entropy to the 
quantum case.
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1.2. Von Neumann graph entropy

In this article we consider only undirected simple graphs with non-negative edge 
weights. Let G = (V, E, W ) denote a graph with the set of vertices V and the set of 
edges E, and the weight matrix W . The combinatorial graph Laplacian matrix of G
is defined as L(G) = S − W , where S is a diagonal matrix and its diagonal entry 
si =

∑n
j=1 W ij . The density matrix of a graph G is defined as

ρG = 1
tr (L(G))L(G),

where 1
tr (L(G)) is a trace normalization factor. Note that ρG is a positive semidefinite 

matrix with unite trace. The von Neumann entropy for a graph G, denoted by H(G), is 
defined as

H(G) := H(ρG),

where ρG is the density matrix of G. It is also called von Neumann graph entropy
(VNGE). Computing von Neumann graph entropy requires the entire eigenspectrum 
{λi}ni=1 of ρG. This calculation can be done with time complexity O(n3) [16], making it 
computationally impractical for large-scale graphs.

For example, the von Neumann graph entropy have been proved to be an feasible 
approach in the computation of Jensen-Shannon distance between any two graphs from 
a graph sequence [12]. However, in the process of machine learning and data mining 
tasks, a sequence of large-scale graphs will be involved. Therefore, it is of great signif-
icance to find an efficient method to compute the von Neumann entropy of large-scale 
graphs faster than the previous O(n3) approach. More details about the application 
of Jensen-Shannon distance will be shown in Section 4. To tackle this challenge about 
computational inefficiency, Chen et al. [9] proposed a fast algorithm for computing von 
Neumann graph entropy, which uses a quadratic polynomial to approximate the term 
−λi lnλi rather than extracting the eigenspectrum. It was shown that the proposed 
approximation is more efficient than the exact algorithm based on the singular value 
decomposition. Although it is true that our work was inspired by [9], the prior work 
needs to calculate the largest eigenvalue for the approximation. Our proposed methods 
does not need the largest eigenvalue to approximate VNGE, so the computational cost 
is slightly better than the prior work. Moreover, our proposed methods have superior 
performances in random graphs as well as real datasets with linear complexity.

2. Quadratic approximations

For a Hermitian matrix A ∈ Cn×n it is true that tr f(A) =
∑

i f(λi) where {λi}ni=1 is 
the eigenspectrum of A. Since H(ρ) = − tr(ρ lnρ), one natural approach to approximate 
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the von Neumann entropy of a density matrix is to use a Taylor series expansion to 
approximate the logarithm of a matrix. It is required to calculate tr (ρj), j ≤ N for 
some positive integer N . Indeed, ln(In − A) = − 

∑∞
j=1 A

j/j for a Hermitian matrix 
A whose eigenvalues are all in the interval (−1, 1). Assuming that all eigenvalues of a 
density matrix ρ are nonzeros, we have

H(ρ) = − lnλmax +
N∑
j=1

1
j

tr
(
ρ(In − (λmax)−1ρ)j

)
,

where λmax is the maximum eigenvalue of ρ. We refer to [19] for more details. However, 
the computational complexity is O(n3), so it is impractical as n grows.

In this article, we propose quadratic approximations to approximate the von Neumann 
entropy for large-scale graphs. It is noted that only tr (ρ2) is needed to compute them. We 
consider various quadratic polynomials fapp(x) = c2x

2 + c1x + c0 to approximate f(x) =
−x ln x on (0, 1] (f(0) = 0). Then H(ρ) = tr(f(ρ)) ≈ tr(fapp(ρ)) =

∑n
i=1 fapp(λi) =

c2 tr (ρ2) + c1 + c0n. Such approximations are required to be considered on the only 
values in [0, 1] such that their sum is 1, which are eigenvalues of a given density matrix.

Recall that tr (ρ2) is called purity of ρ in quantum information theory. The purity 
gives information on how much a state is mixed. For a given graph G, the purity of ρG

can be computed efficiently due to the sparsity of the ρG as follows.

Lemma 1. For a graph G = (V, E, W ) ∈ G,

tr (ρ2
G) = 1

(tr (L))2

(∑
i∈V

S2
ii + 2

∑
(i,j)∈E

L2
ij

)
.

Proof. Since L, ρG are symmetric, it follows that

tr (ρ2
G) = ||ρG||2F = 1

(trL)2 ||L||2F

= 1
(trL)2

∑
1≤i,j≤n

L2
ij

= 1
(trL)2

( ∑
1≤i≤n

L2
ii + 2

∑
1≤i<j≤n

L2
ij

)
. �

It is trivial that tr (ρ2
G) only depends on the edge weights in G = (V, E, W ), resulting 

in linear computation complexity O(n + m), where |V | = n and |E| = m.
We denote the maximum eigenvalue of a given density matrix as λmax. When the 

eigenspectrum of ρ, {λi}ni=1, is given, we denote H(ρ) as H(λ1, . . . , λn). We will use 
them interchangeably.
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Proposition 1. The following are true.

(1) 2λmax(1 − λmax) ≤ H(λmax, 1 − λmax) ≤ H(λ1, . . . , λn).
(2) 1/n ≤ tr (ρ2) ≤ λ2

max + (1 − λmax)2.
(3) tr(−ρ2 lnρ) ≤ − tr (ρ2) ln | tr (ρ2)|.

Proof. Let λn ≤ . . . ≤ λ1 be eigenvalues of a given density matrix ρ.

(1) Even though this is one of known properties, we provide a proof here. Let f(x) =
−x ln x. It is true that f(p1 + p2) ≤ f(p1) + f(p2) for all p1, p2 ≥ 0. Indeed,

f(p1) + f(p2) − f(p1 + p2) = −p1 ln p1 − p2 ln p2 + (p1 + p2) ln (p1 + p2)

= p1(ln (p1 + p2) − ln p1) + p2(ln (p1 + p2) − ln p2) ≥ 0.

Thus, by induction we have

f(λ2 + · · · + λn) ≤ f(λ2) + · · · + f(λn).

Therefore, f(λ1) + f(λ2 + · · · + λn) ≤ f(λ1) + · · · + f(λn) = H(ρ).
The first inequality holds from the fact that x − 1 ≥ ln x for all x > 0. Thus,

−λmax lnλmax − (1 − λmax) ln (1 − λmax) ≥ −λmax(λmax − 1) − (1 − λmax)(−λmax)

= 2λmax(1 − λmax).

(2) Since tr(ρ2) ≤ λ2
1 + (λ2 + · · · + λn)2, clearly tr(ρ2) ≤ λ2

1 + (1 − λ1)2. For a proof of 
the first inequality, see [18].

(3) By Proposition 1 (2), clearly 1/n ≤ tr (ρ2) ≤ 1. Since f(x) = −x ln x is concave on 
[0, 1], by Jensen’s inequality, it follows that

f(tr (ρ2)) = f

(
n∑

i=1
λ2
i

)
≥

n∑
i=1

λif(λi) =
n∑

i=1
−λ2

i lnλi. �

This article considers the following quadratic approximations for von Neumann en-
tropy: (i) FINGER-Ĥ; (ii) Taylor-T; (iii) Modified Taylor-T̂; (iv) Radial Projection-R. 
Note that they all can be computed by the purity of density matrix of a graph. Addi-
tionally (i) and (iii) need to compute the maximum eigenvalue as well.

2.1. FINGER-Ĥ

Chen et al. [9] proposed a fast incremental von Neumann graph entropy (FINGER) 
to reduce the cubic complexity of von Neumann graph entropy to linear complexity. 
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Fig. 1. FINGER-Ĥ: graphs of the quadratic function in (1) with different λmax are shown. (For interpretation 
of the colors in the figure(s), the reader is referred to the web version of this article.)

They considered the following quadratic polynomial to approximate f(x) = −x ln x (see 
Fig. 1).

q(x) = −(lnλmax)x(1 − x) on [0, 1]. (1)

Then FINGER, denoted by Ĥ, is defined as

Ĥ(G) :=
n∑

i=1
q(λi) = −(lnλmax)(1 − tr(ρ2

G)),

where λ1, . . . , λn are the eigenvalues of ρG.
Note that since all eigenvalues are smaller than or equal to the maximum eigenvalue, 

it is better to deal with the functions f and q on the interval [0, λmax] instead of [0, 1]. 
Now let us show that the approximation FINGER is always smaller than the exact von 
Neumann entropy.

Lemma 2. The following are true.

(1) f − q is concave on [0, λmax].
(2) f(x) − q(x) ≥ λmaxf(x) on [0, λmax].

Proof. It is trivial for λmax = 1. Suppose that λmax �= 1.

(1) Note that f(x) < 1/e < 1/2 on all 0 ≤ x ≤ 1. So, −λmax lnλmax < 1/2. Then 
λmax < 1

−2 ln λmax
, implying, −1 − 2x lnλmax < 0 for all 0 ≤ x ≤ λmax. Thus,

(f − q)′′(x) = −1 − 2x lnλmax

x
< 0.
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(2) When x = 0 or x = λmax, it is trivial. Since (1 − λmax)f(x) − q(x) = x((λmax −
1) ln x +(lnλmax)(1 −x)), it suffices to show φ(x) = (λmax−1) ln x +lnλmax(1 −x) > 0
for all 0 < x < λmax. By observing the tangent line at x = 1 for y = x lnx, it is easy 
to check that λmax − 1 < λmax lnλmax. Then

λmax − 1
lnλmax

> λmax.

Thus, φ′(x) = λmax−1
x − lnλmax < 0 for all 0 < x < λmax. Since φ(λmax) = 0 and 

φ′(x) < 0 for all 0 < x < λmax, it follows that φ(x) > 0 for all 0 < x < λmax. �
Theorem 1. For any density matrix ρ, it holds that

(1) Ĥ(λ1, . . . , λn) ≥ Ĥ(λmax, 1 − λmax).
(2) H(ρ) ≥ Ĥ(ρ) The equality holds if and only if λmax = 1.
(3) H(ρ) − Ĥ(ρ) ≥ λmaxH(ρ).

Proof. (1) Let φ(x) = x(1 −x). Then it is easy to check that φ(t1) +φ(t2) −φ(t1+t2) ≥ 0
for all t1, t2 ≥ 0. Thus, q(t1 + t2) ≤ q(t1) + q(t2). By induction, it holds that

q(t1 + · · · + tn) ≤ q(t1) + · · · q(tn),

for all ti ≥ 0, i = 1, . . . , n. Then it follows that

Ĥ(λ1, . . . , λn) =
n∑

i=1
q(λi) = q(λ1) +

n∑
i=2

q(λi)

≤ q(λ1) + q
( n∑

i=2
λi

)
= q(λ1) + q(1 − λ1),

where λn ≤ · · · ≤ λ1 are spectrum of ρ.
(2) Let λ be an eigenvalue of ρ. Since λ ≤ λmax, it follows that

f(λ) − q(λ) = −λ lnλ + (lnλmax)λ(1 − λ)

≥ −λ lnλ + (lnλ)λ(1 − λ)

= −λ2 lnλ ≥ 0.

Note that 0 = λn = · · · = λ2 and λ1 = 1 if and only if λ2
i lnλi = 0 for all 1 ≤ i ≤ n.

(3) By Lemma 2 (2) we can find the error bound for FINGER. �
For more information about FINGER, see [9].



134 H. Choi et al. / Linear Algebra and its Applications 585 (2020) 127–146
2.2. Taylor-T

Since the sum of all eigenvalues of density matrix is 1, the average of them is 1
n . As 

n gets bigger, the average gets closer to 0. Thus, for a large-scale n × n density matrix, 
many of its eigenvalues must be on [0, 1n ]. So, it is reasonable to use Taylor series for f
at x = 1

n instead of x = 0. In fact, since f ′(0) does not exist, there does not exist Taylor 
series for f at x = 0.

Lemma 3. Let λmax be the maximum eigenvalue of a density matrix ρ. Then, 1
n ≤ λmax ≤

1. Especially, λmax = 1 if and only if H(ρ) = 0. Also it is true that λmax = 1
n if and 

only if H(ρ) = ln(n).

Proof. Since trρ = 1, if λmax = 1 then all eigenvalues are 0 except λmax. It is known 
that H(ρ) ≤ ln(n) and the equality holds when λi = 1

n for all i. �
We can propose the quadratic Taylor approximation for f at x = 1

n as follows.

q(x) = f

(
1
n

)
+ f ′

(
1
n

)(
x− 1

n

)
+

f ′′( 1
n )

2!

(
x− 1

n

)2

= −n

2x
2 + (lnn)x− 1

2n.

Using such approximation, Taylor, denoted by T, is defined as

T(G) = −n

2 tr(ρ2
G) + lnn− 1

2 .

As Fig. 2 shows, the function q is very similar to the function f near x = 1
n . However, 

as the maximum eigenvalue gets closer to 1, the error becomes very large. Note that 
f(λmax) − q(λmax) = −λmax lnλmax + n

2λ
2
max − (lnn)λmax − 1

2n −→ ∞ as n −→ ∞ for 
λmax ≈ 1. Alternatively, this approximation needs to be modified. We use the information 
about λmax in order to reduce the error.

We assume that the eigenvalues concentrate around the mean 1/n. Remark that this 
would be in general true for small-world or relatively small-world graphs, but for example 
in planar graphs or graphs representing a low dimensional manifold where Weyl’s law 
holds this would not be true. In particular for planar geometry or 2D manifolds the 
smallest eigenvalues would grow linearly, and this rate would most likely hold well around 
1/n.

2.3. Modified Taylor-T̂

Consider the quadratic approximation, q, to approximate f(x) = −x lnx such that it 
holds
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Fig. 2. Modified Taylor-T̂: graphs of the quadratic function in (2) with different λmax are shown.

q

(
1
n

)
= f

(
1
n

)
, q′

(
1
n

)
= f ′

(
1
n

)
, q(λmax) = f(λmax),

assuming that λmax �= 1
n , we have

q(x) = σx2 +
(

lnn− 1 − 2σ
n

)
x + σ + n

n2 , (2)

where

σ = −nλmax ln (nλmax) + nλmax − 1
n(λmax − 1

n )2
.

Using such approximation, the Modified Taylor, denoted by T̂, is defined as

T̂(G) = σ

(
tr(ρ2

G) − 1
n

)
+ lnn.

Lemma 4. The following are true.

(1) q is concave on [0, λmax].
(2) 1

n ≤ − 1
2σ ≤ λmax.

Proof. (1) Since q is a quadratic polynomial in x, it suffices to show σ < 0. Let φ(t) =
−t ln t +t −1. Since φ(1) = 0 and φ′(t) < 0 for all t > 1, it is true that φ(t) < 0 for all 
t > 1. By Lemma 3, nλmax > 1, so φ(nλmax) = −nλmax ln (nλmax) + nλmax − 1 < 0.

(2) Let t = nλmax. By Lemma 3, t > 1. Since

1
−2σ − 1

n
= 1

n

(
(t− 1)2

2(t ln t− t + 1) − 1
)
.
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It suffices only if we show (t − 1)2 > 2(t ln t − t + 1). Recall that t ln t − t + 1 > 0 for 
all t > 1. Let φ(t) = t2−2t ln t −1. Since ln t < t −1 for all t, φ′(t) = 2t −2 ln t −2 =
2((t − 1) − ln t) > 0 for all t ≥ 1. From the fact φ(1) = 0, clearly, φ(t) > 0 for all 
t > 1. So, 1

n ≤ − 1
2σ . Taking t = nλmax, we have

λmax − 1
−2σ = t

n
− (t− 1)2

2n(t ln t− t + 1)

= 2t(t ln t− t + 1) − (t− 1)2

2n(t ln t− t + 1) > 0. �
Theorem 2. For any density matrix ρ, it holds that

T̂(ρ) ≥ H(ρ).

Proof. Let h(x) = q(x) −f(x). Clearly, h(1/n) = h(λmax) = 0 and h′(1/n) = 0. We show 
that h(x) ≥ 0 for three different intervals: (i) [0, 1n ], (ii) [ 1

n , −
1
2σ ], and (iii) [− 1

2σ , λmax]. 
(i) Since h′′ = 2σ+ 1

x , Lemma 4 (2) implies that h is convex on [0, − 1
2σ ]. Since h(1/n) =

h′(1/n) = 0, h(x) ≥ 0 on [0, 1n ]. (ii) In the similar way, it holds that h(x) ≥ 0 on [ 1
n , −

1
2σ ]. 

(iii) Since h is concave on [− 1
2σ , λmax], by the definition of concavity, it follows that

h
(
− 1

2σ t + λmax(1 − t)
)
≥ h

(
− 1

2σ

)
t + h(λmax)(1 − t) ≥ 0

for all 0 ≤ t ≤ 1. The last inequality holds from the fact that h(− 1
2σ ) ≥ 0 and h(λmax) =

0. Thus, h(x) ≥ 0 on [− 1
2σ , λmax]. Therefore, by (i), (ii), (iii) it holds that h(x) ≥ 0 on 

[0, λmax]. �
2.4. Radial Projection-R

We denote the simplex of positive probability as Δn, i.e.,

Δn :=
{

(λ1, λ2, . . . , λn)
∣∣∣ n∑
i=1

λi = 1, λi ≥ 0
}
.

Also we denote E := (1/n, . . . , 1/n). Clearly, E ∈ Δn. The Shannon entropy of Λ ∈ Δn

is defined as S(Λ) = − 
∑n

i=1 λi lnλi. It is well-known that it holds S(Λ) ≤ lnn, with 
equality if Λ = E . That is, E is the only point where the entropy is maximum.

As Fig. 3 is shown, the simplex of positive probability Δ3 can be geometrically pre-
sented as a part of plane in R3. The color stands for the value of Shannon entropy at 
each point. One can see that as Λ ∈ Δ3 gets closer to E , the entropy gets bigger and 
bigger. Our main observation is that if two points on Δ3 have same (Euclidean) distances 
from E , then their purity are same. In general it holds for any n.
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Fig. 3. The Shannon entropy at each point (λ1, λ2, λ3) ∈ Δ3 with different color levels.

Lemma 5. Let Λ = (λ1, λ2, . . . , λn) ∈ Δn. Then the following are true.

(1) ||E − Λ||22 =
∑n

i=1 λ
2
i − 1

n .
(2) 〈E , E − Λ〉 = 0. (〈·, ·〉 is the usual inner product.)

Proof. It is easy to check that

||E − Λ||22 =
n∑

i=1

(
λi −

1
n

)2

=
n∑

i=1
λ2
i −

1
n
. �

Theorem 3. Let ρ and ρ̃ be n × n density matrices. Then ||ρ− 1/nI||F = ||ρ̃− 1/nI||F
if and only if their purity are identical.

Proof. Note that ||ρ − 1/nI||F = ||ρ̃ − 1/nI||F if and only if ||E − Λ||2 = ||E − Λ̃||2, 
where λ1, λ2, . . . , λn and λ̃1, ̃λ2, . . . , ̃λn are eigenvalues of ρ and ρ̃, respectively. It is true 
from Lemma 5. �

Lemma 5 states that two points on Δn have the same distance from E if and only if 
the distances from the origin are identical. Then we can find Λ̃ ∈ Δn whose entropy can 
be computed much easily such that

||E − Λ||2 = ||E − Λ̃||2.

There are infinitely many directions from E to find Λ̃ ∈ Δn. Among them we pick 
w = (c, 1−c

n−1 , . . . , 
1−c
n−1 ) ∈ Δn with c = λmax.

We consider the line segment �(t) = (w − E)t + E , 0 ≤ t ≤ 1, i.e.,

�(t) =
(

1 − t + tc,
1 − t + t(1 − c)

, . . . ,
1 − t + t(1 − c)

)
.

n n n− 1 n n− 1
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Since Δn is convex, �(t) ∈ Δn for all 0 ≤ t ≤ 1. For each 0 ≤ t ≤ 1, we have

S(�(t)) = −
(

1 − t

n
+ tc

)
ln

(
1 − t

n
+ tc

)
− (n− 1)

(
1 − t

n
+ t(1 − c)

n− 1

)
ln

(
1 − t

n
+ t(1 − c)

n− 1

)
.

Lemma 5 implies that

||E − �(t)||22 = t2||w − E||22 = (cn− 1)2

n(n− 1) t
2.

We solve the following equation for 0 ≤ t ≤ 1:

||E − Λ||2 = ||E − �(t)||2.

Then the solution, say t0, is

t0 =
√
n(n− 1)
cn− 1

√√√√ n∑
i=1

λ2
i −

1
n
.

Since ||E − Λ||2 = ||E − �(t0)||2, we have that

S(Λ) ≈ S(�(t0)) = −
(

1 − t0
n

+ t0c

)
ln

(
1 − t0
n

+ t0c

)
− (n− 1)

(
1 − t0
n

+ t0(1 − c)
n− 1

)
ln

(
1 − t0
n

+ t0(1 − c)
n− 1

)
.

In fact, putting t0 into the right side the constant c can be canceled. Thus, this approx-
imation does not need the maximum eigenvalue.

Now we propose the quadratic approximation for the von Neumann graph entropy, 
called Radial Projection, denoted by R, is defined as

R(G) = −
(√

n− 1
n

κG + 1
n

)
ln

(√
n− 1
n

κG + 1
n

)
− (n− 1)

(
− 1√

(n− 1)n
κG + 1

n

)
ln

(
− 1√

(n− 1)n
κG + 1

n

)
, (3)

where κG = [tr(ρ2
G) − 1 ]1/2.
n
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2.5. Weighted mean

Denote the weighted mean of a, b ∈ R as a#tb. That is, a#tb = ta + (1 − t)b. In a 
similar way we consider Ĥ(ρ)#tT̂(ρ) and Ĥ(ρ)#tR(ρ). By Theorem 1 (2), it is shown 
that FINGER-Ĥ is always smaller than the exact von Neumann entropy. On the other 
hand, by Theorem 2 Modified Taylor-T̂ is always greater than the exact von Neumann 
entropy. Even though it is not proved mathematically, Figs. 3, 6, 7 show that Radial 
projection-R are greater than the exact von Neumann entropy. The weighted mean of 
them can be computed to improve the approximations.

We solve a optimization problem to find optimal t∗. For example, consider Ĥ#tT̂. 
Given large quantity of real data sets, the approximation of von Neumann entropy using 
Ĥ and T̂ were calculated as the input values x(i)

T̂
and x(i)

Ĥ
while the actual von Neumann 

entropy value were also calculated as output values y(i) for i = 1, . . . , N (N is the number 
of data sets). Then the optimization problem is given as follows:

t∗ = arg min
0≤t≤1

J(t),

where the cost function is

J(t) = 1
N

N∑
i=1

(
tx

(i)
Ĥ

+ (1 − t)x(i)
T̂

− y(i)
)2

.

We use the gradient descent method to find optimal t∗. Initially, t0 = 1
2 is given. In each 

step of gradient descent, tj is updated with the function:

tj = tj−1 − αJ ′(tj−1),

where j denotes iteration times, and α is the step size, which is set to be 10−6.
One may wander if such “real data sets” are independent of the test networks employed 

in the numerical experiments. On the one hand they should, in order to avoid a circular 
argument; on the other hand, to be effective such “training” should somehow extract 
the generalities of a class of graphs. In order to eliminate overfitting, we separated our 
datasets into two parts, the training datasets and the test datasets. After we got the 
optimal weights t∗ using the process stated above with training datasets, we calculate the 
approximate value V1 of the test datasets. Then we use test datasets to find the optimal 
t∗test and calculate the approximate value V2 using t∗test, the average difference between 
V1 and V2 are lower than 0.02, which is acceptable. However, it is still questionable to 
show mathematically that t∗ is optimal.

Using the optimal values t∗ solved by the gradient descent method, we call Ĥ#0.3824T̂
and Ĥ#0.2794R as Improved Modified Taylor and Improved Radial Projection, respec-
tively. As anonymous referee suggested, we also consider ω1Ĥ + ω2T + ω3T̂ + ω4R + β, 
where ωi are weights such that 0 ≤ ωi ≤ 1 and ω1 + · · · + ω4 = 1, and β ∈ R is a 
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constant shift. In a similar way, the optimal weights can be found. It is shown that 
0.2299Ĥ + 0.3099T̂ + 0.4602R− 0.0073 has superior performances for real datasets. We 
call this as Mixed Quadratic approximation.

3. Experiments

3.1. Random graphs

In this section results from various experiments with data sets are provided. 
All experiments were conducted by MATLAB R2016 on a 16-core machine with 
128 GB RAM.

Three random graph models are considered: (i) the Erdős-Rényi (ER) model [14,15]
- the ER model represents two closely related models that were introduced indepen-
dently and simultaneously. Here we use the ER model which was proposed by Gilbert 
[15]. G(n, p) is denoted as a model with n nodes, and each pair of nodes were linked 
independently with probability 0 ≤ p ≤ 1; (ii) the Barabási-Albert (BA) model [2] -
the BA model is a special case of the Price’s model. It can generate scale-free graphs 
in which the degree distribution of the graph follows the power law distribution; and 
(iii) the Watts-Strogatz (WS) model [27] - the WS model generates graphs with small 
world properties, given a network with N nodes and the mean degree K, initially nodes 
are linked as a regular ring where each node is connected to K/2 nodes in each side, 
then rewire the edges with probability 0 ≤ p ≤ 1. The approximation error is defined as 
|Exact −Approximation|. The results are averaged over 50 random trials.

The simulations demonstrate that Improved Modified Taylor and Improved Radial 
Projection have best performances. However, they are required to compute the maximum 
eigenvalue. Thus, the computational cost is slightly higher than Radial Projection which 
does not need to compute the maximum eigenvalue. Thus considering the time cost, 
Radial Projection is the superior method.

Theorem 1 (2) states that FINGER-Ĥ is always smaller than the exact von Neumann 
entropy. On the other hand, by Theorem 3 Modified Taylor-T̂ is always greater than 
the exact von Neumann entropy. Additionally, Theorem 3 shows that FINGER Ĥ(ρ) is 
bounded above by (1 −λmax)H(ρ). That is, the FINGER is always under-estimated whose 
error is bigger than λmaxH(ρ). In a similar way, T̂ is always over-estimated. Although 
we could not find the minimum error mathematically, the simulation results for lots of 
dataset show that the minimum error is strictly bigger than 0.

In order to further analyze the performance of our proposed algorithms, we perform 
a correlation study between the exact von Neumann entropy and corresponding approx-
imate value returned by four approximation algorithms on three different random graph 
model. More specifically, for each model, we generate 50 graphs. Fig. 5 shows the results 
of the correlation analysis. It is shown that there exists a strong correlation between 
the exact VNGE and its approximation obtained by Radial Projection on all random 
graphs. We then observe that correlation between exact VNGE and its approximation 
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Fig. 4. Error of the approximations for three random models: (i) Erdős-Rényi (ER) model; (ii) Barabási-
Albert (BA) model; (iii) Watts-Strogatz (WS) model.
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Fig. 5. Entropies correlations on the ER model (top), BA model (middle) and WS model (bottom).

Fig. 6. Exact entropy versus approximate entropy for the unweighted real datasets.

got by Taylor is strong on BA and WS model, but becomes much weaker on ER model. 
The reader is referred to [21] for a recent analysis of FINGER approximation for graph 
Laplacians.
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Fig. 7. Exact entropy versus approximate entropy for the weighted real datasets.

3.2. Real-world datasets

The real-world datasets in various fields are considered [24,23,22]. We use 137 different 
number of unweighted networks and 48 different number of weighted networks in different 
fields for simulations. The detailed information about datasets on Fig. 6 and Fig. 7 can 
be found at https://github .com /Hang14 /RDJ. Fig. 6 and Fig. 7 show the scatter points 
of the von Neumann entropy (y-axis) versus the quadratic approximations (x-axis) for 
both the unweighted and weighted real-world datasets. It demonstrates that Modified 
Taylor and Radial Projection have better performances than FINGER. Mixed Quadratic 
approximation shows the best performance.

3.3. Time comparison

Recall that computing von Neumann graph entropy requires O(n3) computational 
complexity. In order to accelerate its computation, we use the quadratic approximations 
for the function f(x) = −x ln x. Then each approximation can be computed by the purity 
of the density matrix for a given graph. Lemma 1 shows that computing the purity 
requires O(n + m) computational complexity, where |V | = n and |E| = m. However, 
FINGER and Modified Taylor additionally need to compute the maximum eigenvalue 
whose time complexity is O(n2) [16]. On the other hand, Radial projection shows the 
best performance with no maximum eigenvalue. When the original graph is a complete 
graph then |E| = n2 which is also the upper bound of |E|. However, in real life scenario, 

https://github.com/Hang14/RDJ
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complete graph is rare, instead, sparse graph are more commonly seen, therefore, the 
time complexity can remain in a rather linear form.

4. Applications

One major application of von Neumann graph entropy is the computation of Jensen-
Shannon distance (JSdist) between any two graphs from a graph sequence [12]. Given a 
graph sequence G, the Jensen-Shannon distance of any two graphs G = (V, E, W ) ∈ G
and G′ = (V, E′, W ′) ∈ G is defined as

JSdist(G,G′) =
√

H(G) − 1
2 [H(G) + H(G′)],

where G = (V, E, W ) = G⊕G′

2 is the averaged graph of G and G′ such that W = W+W ′

2 . 
The Jensen-Shannon distance has been proved to be a valid distance metric in [13,8].

The Jensen-Shannon distance have been applied into many fields including network 
analysis [12] and machine learning [26]. Especially, it can be used in anomaly detection 
and bifurcation detection [20]. [9] demonstrated the validation of using FINGER for 
computing VNGE. Comparing to the state-of-art graph similarity methods, FINGER 
yields superior and robust performance for anomaly detection in evolving Wikipedia 
networks and router communication networks, as well as bifurcation analysis in dynamic 
genomic networks. Note that the simulations show that our proposed methods show 
better performance than FINGER.

5. Final remarks

We proposed quadratic approximations for efficiently estimating the von Neumann 
entropy of large-scale graphs. It reduces the computation of VNGE from cubic complexity 
to linear complexity for a given graph. We finally close with some open problems arisen 
during our study.

(1) In Theorem 2, the modified Taylor-T̂ is always bigger than VNGE. However, it is still 
open if there exists any error bound for T̂ which is same as or similar to Theorem 1
(3).

(2) The simulations show that Radial projection-R have superior performances without 
any information about the maximum eigenvalue. However, it is questionable if there 
exists some error bound between von Neumann entropy and Radial projection.

(3) Fig. 4 shows that the error for weighted means have interesting behaviors. Further 
analysis is needed with different class of graphs. It remains for future work.
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