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In this paper, a new measurement to compare two large-scale graphs based on the the- 

ory of quantum probability is proposed. An explicit form for the spectral distribution of 

the corresponding adjacency matrix of a graph is established. Our proposed distance be- 

tween two graphs is defined as the distance between the corresponding moment matrices 

of their spectral distributions. It is shown that the spectral distributions of their adjacency 

matrices in a vector state includes information not only about their eigenvalues, but also 

about the corresponding eigenvectors. Moreover, we prove that the proposed distance is 

graph invariant and sub-structure invariant. Examples with various graphs are given, and 

distances between graphs with few vertices are checked. Computational results for real 

large-scale graphs show that its accuracy is better than any existing methods and time 

cost is extensively cheap. 
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1. Introduction 

Graph is one of the most common representations of complex data and plays an crucial role in various research areas

and many practical applications. Over the past several decades, enormous breakthroughs have been made while many fun-

damental problems about graphs are remaining to be solved. Comparing graphs is one of the most important problems with

a very long history [41] . In practice, the similarity measure of graphs (or equivalently dissimilairty) is widely applied in so-

cial science, biology, chemistry, and many other fields. For instance, the similarity measure of graphs can be used to classify

ego networks [33] , distinguish between neurological disorders [6] , identify physical designs of circuits [34] , and discover

molecules with similar properties [3] . In order to measure similarity between graphs effectively, several definitions of dis-

tance or similarity have been proposed [10–13,23] . For example, graph edit distances are the minimum cost for transforming

one graph to another by the distortion of vertices and edges [19] . These definitions only pay attention to the similarities of

the vertices and edges but lacks the information of topological structures of the graphs. For the purpose of addressing this

limitation, frequency subgraph mining algorithms [36] , graph kernels [31] , and methods based on moments [27] have been
� This article is partially based on preliminary results published in the proceeding of IEEE International Symposium on Information Theory from June 17 

to 22, 2018 (ISIT2018Vail). 
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proposed. Moreover, various distance between spectrums are used to measure similarity of graphs [1,9,21,24,26,39,40] . For

a survey of similarity measures of graphs, please refer to [14] and to the literature cited therein. However, practically it is

almost impossible to find the spectrum of a large-scale graph. Recently many different approaches are proposed for efficient

algorithms [2,30,32] . However, these methods are not scalable to large-scale graphs containing millions of edges, which are

common in today’s applications. As a result, effective and scalable methods for large-scale graphs comparison are urgently

needed. 

In this paper, we propose a novel similarity measure for comparing large-scale graphs. We consider the adjacency ma-

trix of the graph as a real random variable on the algebraic probability space with the proposed state. We show that the

spectral distribution of a Hermitian matrix in a given state can be expressed as a unique discrete probability measure. Then

we propose an efficient and scalable method to measure the similarity between large-scale graphs based on the spectral

distribution of the corresponding adjacency matrix in the given state. Specifically, we compute the corresponding positive

semidefinite moment matrix whose entries consist of the first few numbers of moments of the spectrum distribution. Our

proposed distance between graphs is obtained by a distance between the moment matrices. We show that this distance is

graph invariant and sub-structure invariant. Moreover, it is scalable to extremely massive graphs and highly parallelable. Nu-

merical simulations demonstrate that our proposed distance not only has better performance over the competing methods,

but also outperforms the state-of-art method in collaboration graph classification. 

2. Background and preliminary 

Denote N the set of nonnegative integer numbers. Let M m ×n : = M m ×n (C ) be a set of all m × n matrices with entries in

the field C of complex numbers. We simply denote as M n := M n × n . An � 2 norm, known as the Frobenius norm, is defined

by ‖ A ‖ 2 = [ tr (A 

∗A )] 1 / 2 . 

2.1. Graph 

Let V be the set of vertices, and let { x , y } denote the edge connecting two points x , y ∈ V . We say that two vertices

x , y ∈ V are adjacent if { x , y } ∈ E , denoted by x ∼ y . A graph G = (V, E) is called finite if V is a finite set. Otherwise, it is

called infinite . In general E may contain loops which means that x = y . In this paper we consider a finite undirected graph

with no loops. The degree of a vertex x ∈ V is defined by deg (x ) = 

∣∣{ y ∈ V : y ∼ x } ∣∣. Two graphs G = (V, E) and G 

′ = (V ′ , E ′ )
are isomorphic if there is a bijection f : V −→ V ′ such that u ∼ v ⇐⇒ f (u ) ∼ f (v ) , denoted by G 

∼= 

G 

′ . For m ∈ N , a finite

sequence of vertices x 0 , x 1 , . . . , x m 

∈ V is called a walk of length m if x 0 ∼ x 1 ∼ ��� ∼ x m 

, where some of x 0 , x 1 , . . . , x m 

may

coincide. A graph G = (V, E) is connected if every pair of distinct vertices x , y ∈ V ( x 
 = y ) is connected by a walk. If there

is a walk connecting two distinct vertices x , y ∈ V , the graph distance between x and y is the minimum length of a walk

connecting x and y , denoted by ∂( x , y ). For graphs G i = (V i , E i ) , i = 1 , 2 with V 1 ∩ V 2 = ∅ , the direct sum of G 1 and G 2 is

defined as G = (V 1 ∪ V 2 , E 1 ∪ E 2 ) , denoted by G = G 1 � G 2 . Without loss of generality we assume that V = { 1 , 2 , . . . , n } . The

adjacency matrix of a graph G = (V, E) is a n × n matrix A ∈ {0, 1} n × n where A i j = 1 if and only if { i , j } ∈ E for all i , j ∈ V . Any

graph G can be represented by an adjacency matrix. Every permutation π : { 1 , 2 , . . . , n } −→ { 1 , 2 , . . . , n } is associated with

a corresponding permutation matrix P . The matrix operator P left multiplied to matrix A rearranges the rows according to π
which right multiplication with P rearranges columns of the matrix A . Given an adjacency matrix A , graphs corresponding

to adjacency matrix A and PAP � are isomorphic for any permutation matrix P , i.e., they represent the same graph structure.

A property of graph is called graph invariant if the property does not change under the transformation of reordering of

vertices. Note that the adjacency matrix of a graph includes the full information about a graph. For x , y ∈ V and m ∈ N let

W m 

( x , y ) denote the number of walks of length m connecting x and y . Remark that W 0 (x, y ) = 0 if x 
 = y and W 0 (x, y ) = 1 if

x = y . 

Theorem 2.1. Let G = (V, E) be a graph and A the adjacency matrix. Then we have 

(A 

m ) i j = W m 

(i, j) 

for all i , j ∈ V and m ∈ N . 

Let A (G ) be the unital algebra generated by A (the algebra generated by A and the identity matrix I = A 

0 ), i.e., A (G ) =
{ f (A ) : f ∈ C [ x ] } , where C [ x ] is the set of all polynomials with complex coefficients. Moreover, the involution is defined by

(cA 

m ) ∗ = c̄ A 

m for c ∈ C . Then A (G ) becomes a unital ∗-algebra. We call A (G ) adjacency algebra of G . 

It is clear that if G 

∼= 

G 

′ then the corresponding eigenvalues of the adjacency matrices are identical. However, in general

the converse is not true. 

Cospectral graphs , also called isospectral graphs , are graphs that share the same graph spectrum. The smallest pair of

cospectral graphs is the graph union C 4 ∪ K 1 and star graph S 5 , illustrated in Fig. 1 . This is known that it is a unique pair

of cospectral graphs among 34 non-isomorphic graphs on 5 vertices. Both have a common characteristic polynomial, x 3 (x −
2)(x + 2) . For more examples for small graphs, see [37] and for more information about cospectral graphs see [5,18,22] . 
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Fig. 1. Cospectral graphs: C 4 ∪ K 1 and S 5 . 

 

 

 

 

 

 

 

 

 

2.2. Quantum probability 

For proof of each theorem and proposition, see [28] and references therein. To measure distance between two graphs we

propose to compare the spectral distributions of their adjacency matrices. 

Definition 2.2. Let A be a unital ∗-algebra over the complex number field C with the multiplication unit 1 A 

. A function

ϕ : A −→ C is called a state on A if 

( i ) ϕ is linear; ( ii ) ϕ( a ∗a ) ≥ 0; ( iii ) ϕ(1 A 

) = 1 . 

The pair (A , ϕ) is called an algebraic probability space. 

Proposition 2.3. A state ϕ on a unital ∗-algebra A is a ∗-map, i.e., ϕ(a ∗) = ϕ(a ) . 

Definition 2.4. Let (A , ϕ) be an algebraic probability space. An element a ∈ A is called an algebraic random variable or a

random variable for short. A random variable a ∈ A is called real if a = a ∗. 

For a random variable a ∈ A the quantity of the form: 

ϕ(a ε 1 a ε 2 · · · a ε m ) , ε 1 , ε 2 , . . . , ε m 

∈ { 1 , ∗} , 
is called a mixed moment of order m . Statistical properties of an algebraic random variable are determined by its mixed

moments. For a real random variable a in A the mixed moments are reduced to the moment sequence : 

ϕ(a m ) , m = 0 , 1 , 2 , . . . , 

where ϕ( a m ) is called the mth moment of a . By definition ϕ(a 0 ) = 1 . 

For a real random variable a = a ∗, a moment matrix with degree n is defined as 

M n := 

⎡ 

⎢ ⎢ ⎣ 

ϕ(a 0 ) ϕ(a 1 ) · · · ϕ(a n ) 
ϕ(a 1 ) ϕ(a 2 ) · · · ϕ(a n +1 ) 

. . . 
. . . 

. . . 
. . . 

ϕ(a n ) ϕ(a n +1 ) · · · ϕ(a 2 n ) 

⎤ 

⎥ ⎥ ⎦ 

. (2.1)

Definition 2.5. Two real algebraic random variables a in (A , ϕ) and b in (B, ψ) are moment equivalent , denoted by a ◦eqb ,

if ϕ(a m ) = ψ(b m ) for all m ∈ N . 

Let B (R ) denote the set of all probability measures having finite moments of all orders. 

Theorem 2.6. Let (A , ϕ) be an algebraic probability space. For a real random variable a = a ∗ ∈ A there exists a probability

measure μ ∈ B (R ) such that 

ϕ(a k ) = 

∫ 
R 

x k d μ(x ) for all k ∈ N 0 . (2.2)

Such μ is called the spectral distribution of a in ϕ. 

It is noted that M n with the usual operators is a unital ∗-algebra. Recall that a matrix ρ ∈ M n is called a density matrix if

it is positive semidefinite and tr ρ = 1 . 

Definition 2.7. For A = [ a i j ] ∈ M n , the following are states on M n , implying that ( M n , ϕ) is an algebraic probability space. 

(1) (Normalized trace) The normalized trace is defined by 

ϕ tr (A ) = 

1 

n 

tr (A ) = 

1 

n 

n ∑ 

i =1 

a ii . 

(2) (Vector state) For a unit vector ξ ∈ C 

n , we define 

ϕ ξ (A ) = 〈 ξ , Aξ 〉 , A ∈ M n , 

where 〈 · , · 〉 is the usual inner product in C 

n . Such a state is called a vector sate with the state vector ξ . 

(3) (Density matrix state) For each density matrix ρ ∈ M n we define 

ϕ ρ (A ) = tr (ρA ) , A ∈ M n . 

Such a state is called a density matrix sate with the density matrix ρ . 
Proposition 2.8. For any state ϕ on M n there exists a unique density matrix ρ such that ϕ = ϕ ρ . 
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3. Main results 

Lemma 3.1. Let A ∈ M n have distinct eigenvalues λ1 , λ2 , . . . , λs and let 

q (t) = (t − λ1 )(t − λ2 ) . . . (t − λs ) . 

Then A is diagonalizable if and only if q (A ) = 0 . 

Denote the Dirac measure at λ as δλ. (i.e., δλ(S) = 1 if λ∈ S and δλ(S) = 0 if λ 
∈ S ). The support of measure, μ, is denoted

by supp ( μ). A measure μ is called a measure with n 0 mass point if 
∣∣supp(μ) 

∣∣ = n 0 . 

Theorem 3.2. Let { s k } be a real sequence and let 

H n = 

⎡ 

⎢ ⎢ ⎣ 

s 0 s 1 · · · s n 
s 1 s 2 · · · s n +1 

. . . 
. . . 

. . . 
. . . 

s n s n +1 · · · s 2 n 

⎤ 

⎥ ⎥ ⎦ 

. (3.1) 

be the Hankel matrix. If det (H n ) > 0 for all n < s and det (H n ) = 0 for all n ≥ s. Then there exists unique discrete measure, μ,

with 
∣∣supp(μ) 

∣∣ = s such that 

s k = 

∫ 
R 

x k dμ for all k ∈ N . 

Proof. See [4 , Theorem 1.1]. �

A Hermitian matrix A ∈ M n can be regarded as a real random variable in the algebraic probability space ( M n , ϕξ ) with

a vector state ϕξ , by Theorem 2.6 it follows that there exists the spectral distribution of A in ϕξ satisfying (3.2) . In the

following theorem we provide an explicit form of such measure. 

Theorem 3.3. Let ( M n , ϕξ ) be the algebraic probability space with a vector state ϕξ and let A ∈ M n be a Hermitian matrix whose

all eigenvalues are distinct, λ1 , . . . , λn . There exists a unique probability discrete measure μ such that 

ϕ ξ (A 

k ) = 

∫ 
R 

x k d μ(x ) for all k ∈ N . (3.2) 

Furthermore, the measure has an explicit form μ = 

∑ n 
i =1 ω i δλi 

. Conversely, for a probability discrete measure μ = 

∑ n 
i =1 ω i δλi 

,

there exists a Hermitian matrix A ∈ M n with eigenvalues λ1 , . . . , λn such that A holds the equality (3.2) . 

Proof. ( ⇒ ) Let A ∈ C 

n ×n be a Hermitian matrix. By Spectral Theorem, A can be diagonalized by a unitary matrix U . That is,

A = U DU 

∗. Put v = U 

∗ξ = [ v 1 , . . . , v n ] � ∈ C 

n , ω i = | v i | 2 for all i = 1 , . . . , n, and μ = 

∑ n 
i ω i δλi 

. Then the k th moment of A is 

ϕ ξ (A 

k ) = ξ ∗A 

k ξ = v ∗D 

k v = 

n ∑ 

i =1 

ω i λ
k 
i = 

∫ 
R 

x k d μ. 

Since it holds that ∫ 
R 

dμ = 

n ∑ 

i =1 

ω i = 

n ∑ 

i =1 

v ∗v = 

n ∑ 

i =1 

ξ ∗U U 

∗ξ = 1 , 

the measure μ is a probability measure. 

( ⇐ ) Let μ = 

∑ n 
i =1 ω i δλi 

with ω i ≥ 0 and λi ∈ R for all i ∈ N , and 

∑ 

i =1 ω i = 1. Let D be the n × n diagonal matrix whose

diagonal entries are λ1 , λ2 , . . . , λn . Let v = [ 
√ 

ω 1 . . . 
√ 

ω n ] 
� . Since v and ξ both are unit vectors, there exists a unitary matrix

U such that Uv = ξ . Take A = U DU 

∗. Then A holds the equality (3.2) . �

Note that 〈 u i , ξ 〉 = cos θi such that θ i is the angle between u i and ξ , where u i is i th column vector of U . Since 
∑ 

ω i = 1 ,

it holds that 
∑ | cos θi | 2 = 1 . So, cos θ i are the direction cosines of ξ with respect to orthonormal eigenvectors, u 1 , u 2 , . . . , u n .

Especially, if ξ = u i , then the spectral distribution is μ = δλi 
. 

Corollary 3.4. Let (M n , ϕ tr ) be the algebraic probability space with the normalized trace state ϕ tr and let A ∈ M n be a Hermitian

matrix whose all eigenvalues, λ1 , . . . , λn , are distinct. An explicit form of the unique probability discrete measure μ such that

ϕ tr (A 

k ) = 

∫ 
R 

x k d μ(x ) for all k ∈ N is μ = 

1 
n 

∑ n 
i =1 δλi 

. 

Lemma 3.5. If Hermitian matrices A, ˜ A ∈ M n satisfy ϕ tr (A 

k ) = ϕ tr ( ̃  A 

k ) for all k = 1 , 2 , . . . , n, then A and ˜ A have same spectrums.

Proof. Recall that a monic polynomial is a univariate polynomial in which the leading coefficient (the nonzero coefficient

of highest degree) is equal to 1. Let λi , ̃
 λi be eigenvalues of A, ˜ A , respectively. Let f and 

ˆ f be degree m monic polynomial

functions whose roots consist of eigenvalues of A and 

˜ A , respectively. Since 
∑ 

i (λi ) 
k = 

∑ 

i ( ̃
 λi ) 

k , k = 1 , 2 , . . . , n, by Newton’s
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identities it follows that the coefficients of two polynomials f and 

ˆ f are identical. Thus, the roots of f and 

ˆ f are identical.

Therefore, λi = ̃

 λi for all i . �

Remark that while the spectral distribution of a Hermitian matrix A in ϕ tr includes only information about eigenvalues

for A , the spectral distribution of A in ϕξ generally includes information about the corresponding eigenvectors as well as

eigenvalues for A . 

Now we generalize Theorem 3.3 for any Hermitian matrices. 

Theorem 3.6. Let ( M n , ϕξ ) be the algebraic probability space with a vector state ϕξ and let A ∈ M n be a real random variable.

Let λ1 , λ2 , . . . , λs with respective multiplicities n 1 , . . . , n s , and let � = λ1 I n 1 � · · · � λs I n s . Supposed that U = [ U 1 U 2 . . . U s ] ∈ M n

is unitary matrix such that A = U �U 

∗ and for each i = 1 , 2 , . . . , s, 

U i = [ u 

(i ) 
1 

u 

(i ) 
2 

. . . u 

(i ) 
n i 

] ∈ M n ×n i , 

where u (i ) 
1 

, . . . , u (i ) 
n i 

are the corresponding unit eigenvectors of λi . Then there uniquely exists a probability discrete measure, μ =∑ s 
i =1 ω i δλi 

, such that 

ϕ ξ (A 

k ) = 

∫ 
R 

x k d μ(x ) for all k ∈ N . (3.3)

Furthermore, ω i = 

∑ n i 
j=1 

∣∣ cos θ (i ) 
j 

∣∣2 
where θ (i ) 

j 
is the angle between u (i ) 

j 
and ξ . 

Proof. Note that since A is a Hermitian matrix, by Spectral Theorem, A can be diagonalized by an unitary matrix. Let ω i =∑ n i 
j=1 

∣∣〈 u (i ) 
j 

, ξ 〉 ∣∣2 
and μ = 

∑ s 
i =1 ω i δλi 

. Then it follows that for each k ∈ N 

ϕ ξ (A 

k ) = ξ ∗U �k U 

∗ξ = ξ ∗U 1 λ
k 
1 I n 1 U 

∗
1 ξ � · · · � ξ ∗U s λ

k 
s I n s U 

∗
s ξ = 

s ∑ 

i =1 

ω i λ
k 
i = 

∫ 
R 

x k d μ(x ) . 

Since it holds that 

∫ 
R 

dμ = 

s ∑ 

i =1 

ω i = 

s ∑ 

i =1 

n i ∑ 

j=1 

∣∣〈 u 

(i ) 
j 

, ξ 〉 ∣∣2 = 

s ∑ 

i =1 

| U 

∗
i ξ | 2 = ξ ∗U U 

∗ξ = 1 

the measure μ is a probability measure. Since u (i ) 
j 

for all i , j is a unit vector and ξ is also a unit vector, it follows that 

ω i = 

n i ∑ 

j=1 

∣∣〈 u 

(i ) 
j 

, ξ 〉 ∣∣2 = 

n i ∑ 

j=1 

∣∣ cos θ (i ) 
j 

∣∣2 
, 

where θ (i ) 
j 

is the angle between u (i ) 
j 

and ξ . 

( Uniqueness ) (To apply Theorem 3.2 , we have to show that det (M j ) is nonnegative.) For the moment sequence { ϕξ ( A 

k )} k ,

the corresponding moment matrix M j with degree j is defined as 

M j := 

⎡ 

⎢ ⎢ ⎣ 

ϕ ξ (A 

0 ) ϕ ξ (A 

1 ) · · · ϕ ξ (A 

j ) 
ϕ ξ (A 

1 ) ϕ ξ (A 

2 ) · · · ϕ ξ (A 

j+1 ) 
. . . 

. . . 
. . . 

. . . 

ϕ ξ (A 

j ) ϕ ξ (A 

j+1 ) · · · ϕ ξ (A 

2 j ) 

⎤ 

⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎣ 

ξ ∗Iξ ξ ∗Aξ · · · ξ ∗A 

j ξ
ξ ∗Aξ ξ ∗A 

2 ξ · · · ξ ∗A 

j+1 ξ
. . . 

. . . 
. . . 

. . . 

ξ ∗A 

j ξ ξ ∗A 

j+1 ξ · · · ξ ∗A 

2 j ξ

⎤ 

⎥ ⎥ ⎦ 

. 

Since for any n 

M n = 

[
Iξ Aξ . . . A 

j ξ
]∗[

Iξ Aξ . . . A 

j ξ
]
, 

M n is positive semidefinite and det (M j ) ≥ 0 . 

Let λ1 , λ2 , . . . , λs be the distinct eigenvalues of A and 

q (t) = (t − λ1 )(t − λ2 ) · · · (t − λs ) = 

s ∑ 

j=1 

c j t 
j 

Since A is a Hermitian matrix, by Lemma 3.1 it follows that q (A ) = 

∑ s 
j=1 c j A 

j = 0 . Then it follows that 

0 = 〈 ξ , q (A ) ξ 〉 = ξ ∗
s ∑ 

j=1 

c j A 

j ξ = 

s ∑ 

j=1 

c j ϕ ξ (A 

j ) . 

So, it is clear that det (M j ) = 0 for j ≥ s and det (M j ) > 0 for j < s . By Theorem 3.2 , there exists a unique discrete measure

with s number of point mass. Therefore, μ is a unique probability discrete measure. �
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Fig. 2. For a symmetric matrix A ∈ M 2 ×2 (R ) and a unit vector ξ ∈ R 2 , there exists the probability discrete measure μ = cos 2 θ1 δλ1 
+ cos 2 θ2 δλ2 

such that 

ξ� Aξ = 

∫ 
R 

x k dμ for all k ∈ N . 

 

 

 

 

 

 

 

 

 

 

 

 

Example 3.7. Consider 2 × 2 symmetric matrix A ∈ M 2 as 

A = 

[
2 1 

1 2 

]
= 

[
1 / 

√ 

2 −1 / 
√ 

2 

1 / 
√ 

2 1 / 
√ 

2 

][
3 0 

0 1 

][
1 / 

√ 

2 1 / 
√ 

2 

−1 / 
√ 

2 1 / 
√ 

2 

]
. 

Let ξ = [ ξ1 ξ2 ] 
� be a unit vector in R 

2 . Then by Theorem 3.2 , there exists a unique probability measure μ = ω 1 δλ1 
+

ω 2 δλ2 
such that 

ϕ ξ (A 

k ) = ξ� A 

k ξ = 

∫ 
R 

x k d μ(x ) for all k ∈ N . 

It is easy to check a closed form of the measure is μ = (1 / 2 + ξ1 ξ2 ) δ3 + (1 / 2 − ξ1 ξ2 ) δ1 . The weights ω 1 , ω 2 depends on

ξ . Especially, when ξ = [1 / 
√ 

2 1 / 
√ 

2 ] � , the spectral distribution of A is μ = δ3 . When ξ = [ −1 / 
√ 

2 1 / 
√ 

2 ] � , the spectral

distribution of A is μ = δ1 (see Fig. 2 ). 

Since ω i depends on ξ for all i , the spectral distribution of a given Hermitian matrix A ∈ M n depends on a unit vector

ξ ∈ C 

n . However, since the eigenvalues do not change, the Dirac measures δλi 
do not change. The only weights ω i depends

on a unit vector ξ ∈ C 

n . 

Lemma 3.8. Let A be a n × n Hermitian matrix and ξ be a unit column vector in C 

n . Then ϕ ξ (A 

k ) = λk for all k ∈ N if and only

if Aξ = λξ . 

Proof. ( ⇐ ) Since Aξ = λξ implies A 

k ξ = λk ξ for all k ∈ N , it follows that ξ ∗A 

k ξ = ξ ∗λk ξ = λk . 

( ⇒ ) Since ϕ ξ (A 

k ) = λk , by definition ξ ∗A 

k ξ = λk . Then by Theorem 3.6 it follows that
∑ s 

i =1 ω i λ
k 
i 

= λk for all k ∈ N , where

λ1 , . . . , λs are the distinct eigenvalues of A . By the uniqueness of the spectral distribution, λ = λ� for some 1 ≤ � ≤ s . The

following linear system ⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

1 1 · · · · · · 1 

λ1 λ2 · · · · · · λs 

λ2 
1 λ2 

2 · · · · · · λ2 
s 

. . . 
. . . 

. . . 
. . . 

. . . 

λs −1 
1 

λs −1 
2 

· · · · · · λs −1 
s 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

ω 1 

ω 2 

ω 3 

. . . 
ω s 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

1 

λ1 
� 

λ2 
� 

. . . 
λs 

� 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

has a unique solution ω i = 0 for all i 
 = � and ω � = 1 . Thus, ξ is the corresponding eigenvector of λ� . �

Theorem 3.9. The following statement are equivalent. 

(i) There exists a unique discrete measure μ with n 0 mass points such that m k = 

∫ 
x k d μ for all k ∈ N ; 

(ii) There is a Hermitian matrix A ∈ C 

m ×m with n 0 distinct eigenvalues and a unit vector ξ ∈ C 

m such that m k = ξ ∗A 

k ξ for all

k ∈ N ; 

(iii) M n ≥ 0 for all n ∈ N , and M n > 0 if and only if n < n 0 . 

Proof. (i) ⇒ (ii) Let μ = 

∑ n 0 
i =1 

ω i δλi 
with ω i ≥ 0 and λi ∈ R for all i ∈ N , and 

∑ n 0 
i =1 

ω i = 1 and ξ be a unit vector in C 

n . Let D

be the n × n diagonal matrix whose diagonal entries are λ1 , λ2 , . . . , λn 0 , 0 , . . . , 0 . Let v = [ 
√ 

ω 1 · · · √ 

ω n 0 0 · · · 0] � . Since v and

ξ both are unit vectors, there exists a unitary matrix U such that Uv = ξ . Let A = UDU 

∗. Then it follows that m k = ξ ∗A 

k ξ for

all k ∈ N . 
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(ii) ⇒ (iii) Let c = [ c 0 , c 1 , . . . , c n ] 
∗ be a vector in C 

n +1 . Then 

c ∗M n c = 

n ∑ 

i, j=0 

m i + j c ∗i c j = 

n ∑ 

i, j=0 

(e ∗A 

i + j e ) c ∗i c j = 

∥∥∥ n ∑ 

i =0 

c i A 

i e 

∥∥∥2 

≥ 0 . 

Since c ∈ C 

n +1 is arbitrary, M n is positive semidefinite for all n ∈ N . Since A is Hermitian, the minimal polynomial is q (x ) :=
(x − λ1 )(x − λ2 ) . . . (x − λn 0 ) were λi are all eigenvalues. So, 

∑ n 0 
i =1 

q i A 

i = 0 , implying ‖ ∑ n 0 
i =0 

q i A 

i e ‖ = 0 . Thus M n is singular

for n ≥ n 0 . Suppose that there exists a polynomial r(x ) := 

∑ m 

i r i x 
i with m < n 0 such that r(A ) e = 0 . Since n 0 is the degree of

minimal polynomial, r ( x ) is a zero function. 

(iii) ⇒ (i) See [4 , Theorem 1.1]. �

Denote the set of n × n permutation matrices as S . Denote the identity matrix as I and the matrix whose all entries are

1 as J . 

Definition 3.10. Let ( M n , ϕ) be an algebraic probability space. A state ϕ is called permutationally invariant on M n if 

ϕ(A ) = ϕ(P � AP ) for all A ∈ M n , P ∈ S. (3.4)

Lemma 3.11. A necessary and sufficient condition that ϕ is permutationally invariant is that there exists a density matrix ρ such

that ϕ(A ) = tr (ρA ) satisfying 

ρ = pI + qJ, n (p + q ) = 1 , p ≥ 0 , p + qn ≥ 0 . (3.5)

Proof. Recall that for any state ϕ on M n there exists a unique density matrix ρ such that ϕ = ϕ ρ . 

( ⇒ ) If ρ = pI + qJ, then tr (ρP � AP ) = tr (P � ρPA ) = tr (ρA ) for all A ∈ M n , P ∈ S . 

( ⇐ ) Let ρ = [ ρi j ] be a density matrix. Since tr (ρP � A 

� P ) = tr (ρA 

� ) for all 

A = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

a 11 a 12 0 . . . 0 

a 21 a 22 0 . . . 0 

0 0 0 . . . 0 

. . . 
. . . 

. . . 
. . . 

. . . 
0 0 0 · · · 0 

⎤ 

⎥ ⎥ ⎥ ⎦ 

∈ M n , 

it holds ρ11 a 11 + ρ12 a 12 + ρ21 a 21 + ρ22 a 22 = ρii a 11 + ρi j a 12 + ρ ji a 21 + ρ j j a 22 for all i , j . Since a 11 , a 12 , a 21 , a 22 are arbi-

trary, ρii = ρ j j for all i , j and ρi j = ρk� for all i 
 = j , k 
 = � . So, ρ is of the form ρ = pI + qJ. Note that the eigenvalues of

pI + qJ are p and p + qn . Since tr (pI + qJ) = 1 and pI + qJ ≥ 0 , it follows that n (p + q ) = 1 , p ≥ 0, and p + qn ≥ 0 . �

Theorem 3.12. Let A be the adjacency matrix of a given graph G. Then the kth moment of A in a permutationally invariant state

is a graph invariant. 

Let A be the adjacency matrix of a given graph G . By Theorem 2.1 , it is easy to check that ϕ tr (A 

k ) is the average of closed

walks of length k in G . Denote the n dimensional all-ones column vector by 1 n , and denote 1 n / ‖ 1 n ‖ by e . From now on, the

vector state with the state vector ξ = e will be mainly used to compare two graphs. Specifically, the state ϕ e : M n → C is

defined by 

ϕ e (A ) = 〈 e, Ae 〉 (3.6)

for all A ∈ M n . Then it is clear that ϕe is a state on M n , implying that ( M n , ϕe ) is an algebraic probability space. Note that it

holds 

ϕ e (A 

k ) = 

1 

n 

〈 1 n , A 

k 1 n 〉 = E [ A 

k 1 n ] , 

where E (v ) = 

1 

n 

∑ n 
i =1 v i is the average of entries of vector v . Since the value of ( A 

k ) i , j is equal to the number of walks of

length k from vertex i to vertex j and A 

k 1 n is the column vector whose i th entry is equal to the sum of the number of all

walks of length k from the vertex i , ϕe ( A 

k ) is the average of the the sum of the number of all walks of length k from each

vertex. 

Proposition 3.13. If ϕ tr (A ) = ϕ tr (B ) and ϕ e (A ) = ϕ e (B ) for all k ∈ N , then ϕ(A ) = ϕ(B ) for all permutationally invariant state

ϕ. 

Proof. Since ϕ tr (A ) = 

1 
n tr (IA ) and ϕ e (A ) = 

1 
n tr (JA ) for all A ∈ M n , by Lemma 3.11 it holds. �

In other words, if the averages of closed walks and all walks of length k in two graphs are idetical for all k , respec-

tively, then their adjacency matrices are moment equivalent in ( M n , ϕ) for any permutationally invariant state ϕ. Especially,
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if two Hermitian matrices A , B ∈ M n have distinct eigenvalues, respectively, and ϕ e (A 

k ) = ϕ e (B k ) for all k ∈ N , then for all

permutation invariant state ϕ, we have ϕ(A 

k ) = ϕ(B k ) for all k ∈ N . 

Using several known results for the number of all walks of length k , it is easy to check the following results. 

Proposition 3.14. Let A ∈ M n be an adjacency matrix of a given graph. Then the following are true. 

(1) ϕ e (A ) ≤ 1 
n 

∑ n 
i =1 deg (i ) k for all k ≥ 1, 

(2) ϕe ( A 

k ) ≤ � 

k for all k ≥ 1 and ϕ e (A 

k ) ≤ 2 ϕ e (A ) � 

k −1 for all k ≥ 2, 

(3) ( ϕ e ( A )) k ≤ϕ e ( A 

k ) for all k ∈ N , 

(4) ϕ e (A 

2 a + b ) ϕ e (A 

b ) ≤ ϕ e (A 

2 a +2 b ) for all a, b ∈ N , 

(5) ϕ e (A 

a + b ) ϕ e (A 

a + b ) ≤ ϕ e (A 

2 a ) ϕ e (A 

2 b ) for all a, b ∈ N , 

where � is the maximum degree. 

Proof. For (1) see [16] . For (2) see [7 , Theorem 2]. For (3)–(5) see [35 , Theorem 1–3]. �

Since ϕe is a permutationally invariant state, the k th moment of A in ϕe is a graph invariant. 

Theorem 3.15. Let A be the adjacency matrix of a given graph G. Then the moment matrix M n is a graph invariant. 

Hence, we will henceforth denote M n as M n (G ) if a graph G is given. M n (G ) is an informative representation for the

given graph G . Indeed, M n (G ) includes information about the spectral properties of the adjacent matrix of G . 

To measure similarity between two large-scale graphs, we compare the spectral distributions of their adjacency matrices.

There are various distances and divergences between two distributions such as Kullback-Leibler divergence, Bhattacharyya

distance, etc [8,25] . However, since large-scale graphs in real world possibly have rich spectrums, to reconstruct the spectral

distributions is almost impossible in practice. Instead, we can use moments of the distributions. In general, all the moments

up to infinity are required to obtain a perfect reconstruction. However, the first few moments are only sufficient if the class

of functions in which the reconstruction is sought is restricted appropriately. It has been mentioned in the literature that the

most of the information about the measure is contained in the first few moments, and the higher-order ones providing only

little additional information [17,20] . Since the moment matrix has sufficient information about the distribution, a distance

between moment matrices can be calculated to measure a distance between two spectral distributions. 

For two graphs G and 

˜ G , we propose new distance between G and 

˜ G as a distance between the corresponding moment

matrices, i.e., 

d(G, ˜ G ) := δ(M m 

(G ) , M m 

( ̃  G )) , 

where m ∈ N is fixed and δ( · , · ) is a distance between positive (semi)definite matrices. If M m 

is positive definite for some

m , then it is a point on the Riemannian manifold of positive definite matrices (see [4 , Theorem 1.1]). Denote the set of all

n × n positive definite matrices as P 

o . There are various distances between two positive definite matrices such as Frobenius,

Cholesky-Frobenius, J-divergence, Affine-invariant, Log-Frobenius [38] . The affine-invariant distance on P 

o given by δ(A, B ) =
‖ log (A 

−1 / 2 BA 

−1 / 2 ) ‖ 2 for any A, B ∈ P 

o . Our computational results showed that the affine-invariant distance is slightly better

than other distances. In this article, we mainly use the Affine-invariant metric. However, since the moment matrix for a

graph with few vertices can be possibly singular positive semidefinite, we alternatively use the Frobenius distance in such

case. It is questionable which distance is the best in some sense. We remain for the future work. 

Theorem 3.16. For graphs G, ˜ G , ˆ G , 

(a) (Nonnegativity) d(G, ˜ G ) ≥ 0 , 

(b) (Identification) d(G, ˜ G ) = 0 if G = 

˜ G , 

(c) (Symmetry) d(G, ˜ G ) = d( ̃  G , G ) , 

(d) (Triangle Inequality) d(G, ˆ G ) ≤ d(G, ˜ G ) + d( ̃  G , ˆ G ) . 

Definition 3.17. A property of graphs is called sub-structure invariant if the property of G holds for G �G �����G . 

Note that k th moments of adjacency matrices of G and G �G in ϕe are same for each k ∈ N , so their distributions are

identical. Then it is easy to show the following proposition. The proof is left to the reader. 

Proposition 3.18. Let A be the adjacency matrix of a given graph G. Then the moment matrix of A in ϕe is sub-structure invariant.

If a graph consists of identical subgraphs, then the moment matrix of a given graph is equal to one of its subgraph. In

other words, a moment matrix of graph can preserve information regardless of repetition of structure (see Figs. 3 and 4 ). 

4. Cospectral graphs and various examples 

The smallest pair of cospectral graphs is the graph union C 4 ∪ K 1 and star graph S 5 , illustrated in Fig. 1 . While the corre-

sponding adjacency matrices are different, both have the same graph spectrum, −2 , 0 , 0 , 0 , 2 . Let A and 

˜ A be the adjacency

matrix of C 4 ∪ K 1 and S 5 , respectively. If A and 

˜ A are considered as real algebraic random variables in (M 5 , ϕ tr ) , then it is

easy to check that they are moment equivalent. Thus, their spectral distributions in ϕ tr are identical (see Fig. 5 ). 
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Fig. 3. Graph G . 

Fig. 4. Graph ˜ G = G � G � G � G � G . 

Fig. 5. (a) and (b) are spectral distributions of G 1 and G 2 in ϕ tr ; (c) and (d) are spectral distributions of G 1 and G 2 in ϕe . It shows that (a) and (b) are 

identical while (c) and (d) are distinguishable. 
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Fig. 6. Four different graphs with the same number of vertices and edges are shown in [30] . 

Fig. 7. Four different graphs with the same number of vertices in [39] . 

Table 1 

To scale values of ‖M 2 (G i ) − M 2 (G j ) ‖ 2 we alternatively use the value of 

log (‖M 2 (G i ) − M 2 (G j ) ‖ 2 + 1) . Note that if d ( · , · ) is a distance function, then so is ψ( d 

( · , · )) for ψ(x ) = log (x + 1) . 

G 1 G 2 G 3 G 4 G 5 

G 1 0 2.5325 2.8009 4.4 4 49 11.3354 

G 2 2.5325 0 1.5889 4.2998 11.3355 

G 3 2.8009 1.5889 0 4.2473 11.3356 

G 4 4.4 4 49 4.2998 4.2473 0 11.3363 

G 5 11.3354 11.3355 11.3356 11.3363 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

However, If A and 

˜ A are considered as real algebraic random variables in ( M 4 , ϕe ), then they are not moment equivalent.

So, using the state ϕe allows us to distinguish two graphs. Indeed, the moment matrices 

M 1 (C 4 ∪ K 1 ) = 

(
1 1 . 6 

1 . 6 3 . 2 

)
, M 1 (S 5 ) = 

(
1 1 . 6 

1 . 6 4 

)

are different, implying that each spectral distributions are different (see Fig. 5 ). 

Fig. 6 is introduced in [30] . Three graphs have the same number of vertices and edges. Hamming distance and graph edit

distance do not capture relevant topological differences. However, our proposed measure perform a highly precise compar-

ison as the measure in [30] does. It shows that d(G 1 , G 2 ) = 14 . 0844 , d(G 1 , G 3 ) = 30 . 3974 , and d(G 2 , G 3 ) = 16 . 3209 . By the

sub-structure invariant property, d(G 2 , G 4 ) = 0 . 

Five graphs G 1 , G 2 , G 3 , G 4 on 18 vertices in Fig. 7 and G 5 = K 18 are considered in [39] to measure dissimilarity between

them. However, using the measure in [39] the graphs G 1 , G 2 , G 3 , G 5 are not distinguishable from G 4 with d(G j , G 4 ) = 18 ,

j = 1 , 2 , 3 , 5 . Table 1 shows that our proposed measure overcomes such drawbacks. Note that the spectral distributions

for the graphs G 1 , G 2 , G 3 , G 4 , G 5 are all different. It shows that the distance between two graphs among them follows

dissimilarities between the distributions. 

There are two non-isomorphic simple graphs with 2 vertices and four non-isomorphic simple graphs with 3 vertices. The

moment matrix distances ‖M 2 (G ) − M 2 ( ̃  G ) ‖ 2 between two graphs G and 

˜ G among them are shown in Table 2 . The spectral

distributions of their adjacency matrices for each graphs are shown as well. There are 11 non-isomorphic simple graphs

with 4 vertices. Their spectral distributions and their pairwise distances are shown as well in Tables 3 and 4 , respectively. 

5. Complexity and parallelism 

Our proposed method requires mainly two computational steps. Assume that we consider the moment matrix with fixed

degree n , i.e., (n + 1) × (n + 1) . The first step is to obtain the moment matrix M n whose entries consist of the moment

sequence { m k } 2 n k =0 
. In the second step, we use the affine-invariant distance between positive (semi)definite matrices to
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Table 2 

Dissimilarities between two graphs among non-isomorphic simple graphs with 2 or 3 vertices. 
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2 K 1 K 2 3 K 1 K 3 P̄ 3 P 3 

2 K 1 0 2.8284 0 20.9762 1.8856 6.7659 

K 2 2.8284 0 2.8284 18.7617 0.9428 4.2164 

3 K 1 0 2.8284 0 20.9762 1.8856 6.7659 

K 3 20.9762 18.7617 20.9762 0 19.4822 14.6211 

P̄ 3 1.8856 0.9428 1.8856 19.4822 0 5.0332 

P 3 6.7659 4.2164 6.7659 14.6211 5.0332 0 

Table 3 

Spectral distributions of 11 non-isomorphic simple graphs with 4 vertices. 

Name Graph Spectral distribution Name Graph Spectral distribution 
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Table 4 

The moment matrix distances ‖M 2 (G ) − M 2 ( ̃ G ) ‖ 2 between two graphs G and ˜ G among them are shown. 

4 K 1 K 4 co-diamond diamond co-paw paw 2 K 2 C 4 claw co-claw P 4 

4 K 1 0 90.9945 1.4142 49.8999 5.0744 26.2726 2.8284 20.9762 12.3693 15.7321 9.8742 

K 4 90.9945 0 90.0777 41.4970 86.6646 65.3854 89.1740 70.8802 79.4292 75.8650 82.0945 

co-diamond 1.4142 90.0777 0 48.9081 3.7749 25.1942 1.4142 19.8494 11.1803 14.6116 8.6313 

diamond 49.8999 41.4970 48.9081 0 45.3900 23.9322 47.9375 29.4279 38.0657 34.4891 40.7247 

co-paw 5.0744 86.6646 3.7749 45.3900 0 21.5754 2.5981 16.1787 7.4666 10.9659 4.8734 

paw 26.2726 65.3854 25.1942 23.9322 21.5754 0 24.1506 5.50 0 0 14.1863 10.6184 16.8300 

2 K 2 2.8284 89.1740 1.4142 47.9375 2.5981 24.1506 0 18.7617 10.0499 13.5462 7.4498 

C 4 20.9762 70.8802 19.8494 29.4279 16.1787 5.50 0 0 18.7617 0 8.7750 5.2440 11.3798 

claw 12.3693 79.4292 11.1803 38.0657 7.4666 14.1863 10.0499 8.7750 0 3.6742 2.7386 

co-claw 15.7321 75.8650 14.6116 34.4891 10.9659 10.6184 13.5462 5.2440 3.6742 0 6.2450 

P 4 9.8742 82.0945 8.6313 40.7247 4.8734 16.8300 7.4498 11.3798 2.7386 6.2450 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

compute the distance between two moment matrices. In the following, we will show the time complexity, space complexity,

and parallelism of each step and those of the overall algorithm. 

5.1. Complexity 

We consider comparing two graphs G 1 and G 2 . Let | V 1 |, | E 1 | and | V 2 |, | E 2 | denote the number of vertices and edges of

graph G 1 and G 2 respectively. Let | E| = max (| E 1 | , | E 2 | ) and | V | = max (| V 1 | , | V 2 | ) . The first step of the algorithm can be com-

puted in O(n | E| ) time and O(| E| ) space using sparse matrix-vector multiplication. The second step mainly involves eigen-

value decomposition, which can be computed in O(n 3 ) time and O(n 2 ) space. The time complexity of the total algorithm is

O(n | E| + n 3 ) and space complexity is O(| E| + n 2 ) . However, n is relatively small, say 4 or 5, in practical problems because

most of the information about a distribution is contained in the first few moments [17,20] . Thus the time complexity and

space complexity of proposed method are both O(| E| ) . 

5.2. Parallelism 

As we discussed before, the first step is sparse matrix-vector multiplication. This operation can be completely paralleled

on CPU or GPU. As n is small, the second step takes much less time than the first step. As a result, our algorithm can be

paralleled efficiently. 

6. Experiments 

6.1. Clustering random graphs 

We first demonstrate the efficacy of our method and other methods utilizing moment via clustering random

graphs. Specifically, we generates four sets of Erd ̋os-Rényi random graphs [15] . The parameters are �1 = {| V | =
10 0 0 , | E| = 10 0 0 0 , ρ = 0 . 1 } , �2 = {| V | = 10 0 0 , | E| = 20 0 0 0 , ρ = 0 . 1 } , �3 = {| V | = 10 0 0 , | E| = 10 , 0 0 0 , ρ = 0 . 9 } , �3 =
{| V | = 10 0 0 , | E| = 20 , 0 0 0 , ρ = 0 . 9 } , in which | V | denotes the number of vertices, | E | denotes the number of edges, ρ de-

notes the rewiring probability, i.e. randomness. For example, when ρ = 0 (resp. ρ = 1 ), the graph is a regular graph (resp.

a completely random graph). For each parameter setting, we generate 25 random graphs and label the graphs according to

their parameter settings. The benchmark algorithms are as following: 

• Cov [33] : Covariance method computes the covariance matrix of the vector 
[

A i e 
|| A i e || � 1 

]
n 
i =1 

, in which A is the adjacency

matrix and e is the vector of all ones. Then Bhattacharya similarity between the corresponding covariance matrices was

considered as the distance between two graphs. According to [33] , we take the size of moment matrix n = 4 , 5 , 6 and

choose the best one as the benchmark. 

• NCLM [27] : NCLM first computes the log moment vector [ log ( tr (A/n ) i )] 7 
i =2 

, where A is the adjacency matrix, and then

uses the Euclidean distance between two log moment vectors as a distance between corresponding graphs. 

• GK [31] : Graphlet kernel computes a distance between graphs by counting subgraphs with k vertices. For k = 3 (resp.

k = 4 ) we denote GK3 (resp. GK4). 

• EIGS-10 : The eigenvalues of the adjacency matrix contains much information about the graph, and the spectrum is graph

invariant. As a result, we take the biggest 10 eigenvalues for each graph. Then we employ the Euclidean distance between

the eigenvalues of corresponding adjacency matrices as a distance between two graphs. 

To compare Cov, NCLM, EIGS, GK3, GK4 with our proposed method, we first compute the distance matrix D , where D ij is

the distance between i th graph and j th graph. Then we construct the kernel matrix K = exp (−D) . Finally we apply kernel

K-means algorithm to get the clustering result. The clustering performance is shown in Table 5 . 



H. Choi, H. Lee and Y. Shen et al. / Applied Mathematics and Computation 358 (2019) 1–15 13 

Table 5 

Accuracy for our proposed method and covariance method in random graph clus- 

tering. 

Proposed Method Cov NCLM EIGS-10 GK3 GK4 

ACCURACY 1 1 1 0.76 0.5 0.5 

Table 6 

Accuracy for Proposed method and other benchmark methods in collaboration net- 

work classification. Best results marked in bold. 

HEP Vs CM HEP Vs ASTRO ASTRO Vs CM Full 

Proposed 0.991 0.913 0.904 0.905 

EIGS-10 0.981 0.879 0.861 0.820 

NCLM 0.982 0.850 0.865 0.804 

Covariance 0.976 0.857 0.861 0.819 

Covariance with SVM 0.987 0.889 0.887 0.849 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We see that our proposed method, Cov and NCLM perform best. The interesting point is that these methods all involves

moment values. GK3 and GK4 have trouble in separating the graphs the same number of vertices and same number of edges

which are generated by different randomness. It is shown that EIGS can not distinguish between the parameter setting �3

and �4 . This demonstrates that the methods based on moment values are able to capture the feature of edge distribution

and randomness of the graph. 

6.2. Classifying networks 

We apply our method to classify networks. We adopt the setting in [33] . Specifically, we classify one’s research area

using the information of the graph structure of one’s collaboration network. Because researchers in one area usually tightly

connected with researchers in that area compared to other areas, it is possible to determine to which area a researcher

belongs considering one’s collaboration networks. Thus, social network classification can be used for recommendations such

as job recommendations and citation recommendations. 

Three datasets from Rossi and Ahmed [29] are considered: high energy physics collaboration network(HEP), condensed

matter collaboration network(CM), and astro physics collaboration network(ASTRO). In the network, an undirected edge

from u to v means that the author u and the author v are co-authored. We use the method from Shrivastava and Li [33] to

generate subgraphs and obtain 415 subgraphs for CM and 10 0 0 subgraphs for HEP and ASTRO, respectively. Then we label

each sub-graph according to the dataset which it belongs to. The tasks are classifications between each two datasets and

among three datasets. For each task, we first split the dataset into 10 folds of the same size. We then combine 9 of the folds

as the training set, the left 1 fold as the test set. We repeat this 10 times to compute the average accuracy. 

In the classification tasks, we use k -nearest-neighbor(KNN) classifier. We set the degree of moment matrix n from 2 to 7

and k in KNN from 1 to 10 and choose the best one. The first three benchmark algorithms are Cov, NCLM, and EIGS-10. In

addition, we add the state-of-art method in collaboration network classification, Cov with SVM [33] , which employs SVM as

the classifier, as the last benchmark algorithm. The performance of our method and the benchmark algorithm is shown in

Table 6 . 

From the table, we see that with KNN classifier, Covariance, EIGS, and NCLM have similar performance in each task. We

also notice that Covariance with SVM performs better than Covariance with KNN. This shows that SVM classifier is more

suitable to Covariance method. On top of that, our proposed method not only outperforms various of benchmarks with KNN

classifier, but also performs better than Covariance with SVM, the state-of-art method in collaboration classification task

in every classification task. This demonstrates the effectiveness of proposed method. This also shows that a few moments

can provide enough information for collaboration classification. Besides, proposed method has a significant improvement

over the state-of-art method in three collaboration network classification task. This shows proposed method is suitable to

classification tasks for sophisticated networks. 

6.3. Time comparison 

In this section, we show the efficiency of our algorithm by comparing the running time of proposed method and other

methods via a set of experiments. Specifically, in each experiment, we generate 100 Erd ̋os-Rényi random graphs with the

same number of vertices and edges. Then we employ the proposed method and other methods to get pairwise distances

among all possible pairs. For each method, we run 10 times and take the average running time. The number of vertices,

number of edges, and the time consumed by different methods are shown in Table 7 . Here, we use 4 × 4 moment matrix in

the proposed method, 4 × 4 covariance matrix in Covariance and 6 moments in NCLM. All of these experiments are done in

MATLAB on the server with an Intel Xeon 2.80 Ghz CPU and 64 GB RAM. 
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Table 7 

Running time for computing pairwise distance among 100 random graphs (in 

seconds). Fastest method is marked in bold. 

| V | | E | Proposed Cov EIGS-10 NCLM GK3 

2,0 0 0 2,0 0 0,0 0 0 7.31 7.32 18.92 39.92 99.63 

5,0 0 0 1,0 0 0,0 0 0 1.38 1.48 85.88 533 797 

10,0 0 0 2,0 0 0,0 0 0 3.9 4.7 353.5 27340 1757 

50,0 0 0 15,0 0 0,0 0 0 50 68 11687 N/A N/A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As shown in the table, the time cost of proposed method is cheaper than all the comparing methods. For example, it

can compute pairwise distances of 100 random graphs with 50,0 0 0 vertices and 15,0 0 0,0 0 0 edges in 50 sec, which has

1.36 times speed up to Covariance method and 233 times speed up to EIGS-10. Besides, the computational cost of proposed

method is almost linear in terms of the number of edges as shown in Table 7 . This demonstrates our proposed method is

scalable to large-scale graphs. 

7. Discussion and conclusions 

We considered the adjacency matrix of a graph as a real random variable and proposed a new similarity measure

for graphs with a distance between corresponding moment matrices of their spectral distributions. Our proposed method

demonstrated state-of-art results in collaboration network classification and turned out to be scalable to large-scale graphs.

In the future, our main work is to study the proposed distance between different random graphs. Further work would also

be to extend the proposed distance from undirected to directed graphs. 
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