
3802 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 69, NO. 6, JUNE 2021

Reconfigurable Intelligent Surface Empowered
Downlink Non-Orthogonal Multiple Access

Min Fu , Student Member, IEEE, Yong Zhou , Member, IEEE, Yuanming Shi , Senior Member, IEEE,

and Khaled B. Letaief , Fellow, IEEE

Abstract— Power-domain non-orthogonal multiple access
(NOMA) has become a promising technology to exploit the new
dimension of the power domain to enhance the spectral efficiency
of wireless networks. However, most existing NOMA schemes rely
on the strong assumption that users’ channel gains are quite dif-
ferent, which may be invalid in practice. To unleash the potential
of power-domain NOMA, we propose a reconfigurable intelligent
surface (RIS)-empowered NOMA scheme to introduce desirable
channel gain differences among the users by adjusting the phase
shifts at the RIS. Our goal is to minimize the total transmit power
by jointly optimizing the beamforming vectors at the base station,
the phase-shift matrix at the RIS, and user ordering. To address
challenge due to the highly coupled optimization variables,
we present an alternating optimization framework to decompose
the non-convex bi-quadratically constrained quadratic problem
under a specific user ordering into two rank-one constrained
matrices optimization problems via matrix lifting. To accurately
detect the feasibility of the non-convex rank-one constraints
and improve performance by avoiding early stopping in the
alternating optimization procedure, we equivalently represent the
rank-one constraint as the difference between nuclear norm and
spectral norm. A difference-of-convex (DC) algorithm is further
developed to solve the resulting DC programs via successive
convex relaxation, followed by establishing the convergence of the
proposed DC-based alternating optimization method. We further
propose an efficient user ordering scheme with closed-form
expressions, considering both the channel conditions and users’
target data rates. Simulation results validate the ability of an
RIS in enlarging the channel-gain difference when the users’
original channel conditions are similar and the superiority of the
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proposed DC-based alternating optimization method in reducing
the total transmit power.

Index Terms— Reconfigurable intelligent surface, non-
orthogonal multiple access, joint beamformer and phase-shift
matrix design, difference-of-convex programming.

I. INTRODUCTION

W ITH the upsurge of diversified wireless services and
applications such as Internet of Things (IoT) and

mobile Internet, various innovative technologies are expected
to keep pace with the exponential growth of the mobile
data traffic generated by billions of connected devices in the
fifth generation (5G) networks and beyond [2]. Therein and
to meet the demand of enormous data traffic, the design
of appropriate multiple access techniques has been under
intense consideration in both academia and industry [3].
Power-domain non-orthogonal multiple access (NOMA) is
recognized as a key enabling technology that enables the base
station (BS) to simultaneously serve multiple users in the same
physical resource block (e.g., time and frequency), thereby
significantly improving the spectral efficiency and connection
density [3]–[5]. The main idea of downlink power-domain
NOMA is that the BS applies superposition coding at the trans-
mitter with the transmit powers as weight factors while each
user performing successive interference cancellation (SIC)
at the receiver to remove co-channel interference from the
received signal before decoding its own signal [6], [7].

However, most of the existing studies on NOMA assumed
that users’ channel gain are quite different [8]. For example,
the authors in [9] assumed the NOMA user pair includes a user
located close to the BS and the other far from the BS. The
BS allocates a higher transmit power to the user with worse
channel condition. As demonstrated in [10], an appropriate
users’ channel-gain difference is important to unleash the
potential of NOMA. In particular, the performance gain of
NOMA over orthogonal multiple access (OMA) is limited
if there are small channel gain differences among the users.
Unfortunately, the simultaneously served users in NOMA
networks may not always have diverse channel conditions in
practical scenarios because this depends on the propagation
environment (e.g., path loss), which are uncontrollable. For
instance, in the Internet of vehicles scenarios [11], multiple
users with diversified quality of service (QoS) requirements
need to be simultaneously served by the BS even if their
channel conditions are similar.
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Fortunately, with the theoretical and experimental
breakthroughs in micro electromechanical systems and
metamaterials (e.g., metasurface) [12], reconfigurable
intelligent surface (RIS), as an emerging cost-effective
technology, has recently been proposed as a powerful solution
to enhance the spectrum-efficiency and energy-efficiency
of wireless networks [13], [14]. In particular, the RIS is
implemented as an array of low-cost scattering elements,
each of which being able to induce an adjustable phase shift
to the incident signal to be reflected, thereby reconfiguring
the reflected signal propagations [15]. Different from
amplify-and-forward (AF) relay, backscatter communication,
and active intelligent surface based massive multiple-input
multiple-output (MIMO), the RIS operates in full-duplex
mode and only reflects the received signals as a passive
array without the need of any transmit radio-frequency
(RF) chains to provide spectrum-efficient and cost-effective
communications [14], [15]. This, thus, motivates the study
of RIS-empowered downlink NOMA transmission, where
the RIS is capable of inducing desirable channel differences
among the users to enhance the performance of NOMA.

Energy-efficient communication is a critical design aspect
for future wireless networks [16]. Besides, user ordering
has a significant impact on power consumption in NOMA
networks. In this paper, we will focus on the power mini-
mization problem for an RIS-empowered downlink multi-user
multiple-input single-output (MISO) NOMA network by
jointly optimizing both the transmit beamforming vectors at
the BS, the phase-shift matrix at the RIS, and user order-
ing by taking into account the users’ target data rates. The
unique challenges of the power minimization problem arise
from the non-convex bi-quadratic QoS constraints (due to
the highly coupled transmit beamforming vectors and the
phase-shift matrix), the non-convex modulus constraints (due
to the RIS hardware setup), and the challenging user ordering
design in RIS-empowered multi-user MISO NOMA networks.
Generally, in NOMA networks without RIS, the users are
usually ordered based on their channel conditions with respect
to the BS. However, in RIS-empowered NOMA networks,
the RIS-related channels and the RIS configuration based
phase-shift matrix are coupled with each other. Due to the
diverse data rate requirements as well as the combined channel
conditions among users, the design of user ordering becomes
much more complicated.

A. Contributions

To address the aforementioned unique challenges, we shall
develop an effective optimization framework for the total
power minimization problem, followed by proposing a
low-complexity user ordering method in the RIS-empowered
multi-user MISO NOMA networks. The main contributions of
this paper are summarized as follows.

• This paper is one of the early attempts to study the
transmit power minimization problem in RIS-empowered
multi-user MISO NOMA networks, where an RIS is
deployed to introduce appropriate channel gain differ-
ences among users, thereby unleashing the potential of
NOMA without relying on the assumption of the users’

diverse channel conditions. Moreover, we propose an
efficient user ordering scheme with a closed-form order-
ing criterion by taking into account both the combined
channel conditions and the target data rates.

• To support efficient algorithm design, we adopt the
alternating optimization method to decompose the orig-
inal bi-quadratically constrained quadratic problem into
two subproblems with non-convex quadratic constraints,
i.e., a non-convex quadratically constrained quadratic pro-
gramming (QCQP) subproblem for optimizing transmit
beamforming vectors and a non-convex QCQP feasibility
subproblem for optimizing the phase-shift matrix.

• We develop a unified difference-of-convex (DC) method
to solve the aforementioned subproblems with the capa-
bility of accurately detecting the feasibility of non-convex
quadratic constraints for the transmit beamforming vec-
tors and phase-shift matrix design, which can avoid
early stopping in the alternating optimization proce-
dure, thereby considerably improving the performance
compared with the state-of-the-art methods. The main
idea is to reformulate the resultant non-convex QCQP
subproblems as multiple rank-one constrained matrices
optimization problems via matrix lifting, followed by
equivalently representing the rank-one constraint as the
difference between the nuclear norm and the spectral
norm.

• We further present an efficient DC algorithm for the
resulting non-convex DC programs via successive convex
relaxation. By representing the objective functions of the
resultant DC programs as the difference of two strongly
convex functions, we prove that the DC algorithm con-
verges to the stationary solution for DC programs and that
the DC-based alternating optimization method (namely,
alternating DC method) always converges.

Simulation results demonstrate the ability of an RIS in
enlarging the channel-gain difference when the users’ original
channel conditions are similar, leading to transmit power
reduction. Simulation results still validate the superiority of the
proposed alternating DC method in reducing the total transmit
power. Besides, the proposed user ordering criterion is a good
option for large-size networks, which provides comparable
performance to the exhaustive search.

B. Related Works

1) RIS-Empowered OMA Networks: The research on
RIS-empowered wireless networks has recently received con-
siderable attention in vast applications, e.g., coverage exten-
sion [17], energy-efficient beamforming [18]–[20], physical
layer security [21], [22], and massive connectivity [23]. For
coverage extension, the objective of RIS is to create indirect
links with the BS and user, in the scenario where there is
no direct link between the BS and users, or the direct link
is severely blocked by obstacles. Therein, [17] demonstrated
that RIS-based networks achieved higher energy efficiency
than conventional AF relays. The RIS is deployed to assist
the efficient beamforming design that compensates for the
signal attenuation from the BS or co-channel interference from
neighboring BS by jointly optimizing the active beamformer
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at BS and the phase-shift matrix at RIS. In particular, [18]
showed that an RIS-empowered MISO system significantly
reduced the transmit power consumption compared with the
system without using an RIS, and achieved the same rate
performance as a conventional massive MIMO system, but
with considerably decreased active antennas/RF chains. [19]
also showed that the RIS-empowered network outperformed
the system without using RIS in terms of the weighted sum
rate. Besides, the author in [20] applied RIS to reduce the
distortion between the decoding signal and the ground-truth
signal for over-the-air computation. The use of RIS for improv-
ing physical layer security aims to cancel out the signal from
the BS at the eavesdropper. Specifically, [21] validated that
deploying large-scale RISs achieved higher significant perfor-
mance gains than increasing the number of the antenna at the
transmitter in terms of secrecy rate and energy efficiency for
a simple scenario with one legitimate receiver and one eaves-
dropper. [22] further confirmed that the security enhancement
provisioning for RIS-empowered networks to keep the signals
secret from multiple eavesdroppers in a broadcast system. The
author in [23] considered an RIS-empowered IoT network
to support massive connectivity under the grant-free random
access protocol.

2) RIS-Empowered NOMA Networks: Upon the completion
of this work, the application of RIS in NOMA networks was
investigated in some parallel works [24]–[30]. Specifically,
the authors in [24] analyzed the transmission reliability of
RIS-aided NOMA transmission. For a multi-user NOMA
network, the authors in [25] optimized the transmit beam-
forming vectors at the BS and the phase shifts at RIS to
enhance the user fairness. In addition, the authors in [26]
considered an RIS-empowered downlink MISO NOMA net-
work to minimize the power consumption, where zero-forcing
precoding was employed at the BS to cancel the inter-pair
interference. In [27], the authors studied the power efficiency
of RIS-empowered MISO NOMA system under additional
quasi-degraded channels constraints with two users’ case.
In [28], the authors investigated the sum rate maximization
problem in RIS-empowered NOMA networks. The authors
in [29] focused on the maximization of the system throughput
over the channel assignment, power allocation, and ideal
reflection coefficient in a single-input single-output (SISO)
NOMA network. In [30], the author proposed a low com-
plexity machine learning approach to maximize the energy
efficiency of RIS-empowered systems by jointly designing
the deployment policy and phase shift policy of RISs while
considering the time-varying data demand of users.

C. Organization and Notations

The remainder of this paper is organized as follows.
Section II describes the system model and problem formu-
lation. We present an alternating DC method to solve the
power minimization problem under a specific user ordering
in Section III. Section IV proposes a low-complexity user
ordering scheme with closed-form expressions. Section V
presents the numerical results and Section VI concludes this
paper.

Fig. 1. An RIS-empowered downlink MISO NOMA network with K users.
User Uk is allocated the k-th highest transmit power, and has to decode and
remove the signals intended for users U1, . . . , Uk−1 before decoding its own
signal.

Notations: E(·) denotes the statistical expectation. (·)H and
(·)T denote the conjugate transpose and transpose, respec-
tively. For a complex-valued vector x, ∥x∥ denotes its Euclid-
ean norm and diag(x) denotes a diagonal matrix with each
diagonal entry being the corresponding element in x. [x](1:N)

denotes the first N elements of vector x. For a matrix X ,
∥X∥F , ∥X∥∗, and ∥X∥2 denote its the Frobenius norm,
the nuclear norm and the spectral norm, respectively. j denotes
the imaginary unit. Finally, R(·) denotes the real part of a
complex number.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

As shown in Fig. 1, we consider an RIS-empowered
multi-user MISO power-domain NOMA system, where an RIS
with N passive reflecting elements is deployed to assist the
data transmission from an M -antenna BS to K single-antenna
users by providing additional channel paths to introduce
diverse channel conditions between the users and the BS. To
account for the increasing number of users and the limited
spectrum resource, we consider fully- and over-loaded scenar-
ios, where the number of users is not smaller than the number
of antennas at the BS, i.e., K ≥ M . We denote sk ∈ C
and wk ∈ CM as the signal and linear beamforming vector
at the BS for user Uk, respectively, where k ∈ K with K =
{1, 2, . . . , K}. Without loss of generality, signal sk is assumed
to have zero mean and unit variance, i.e., E[sksH

k ] = 1, ∀ k ∈
K. Under universal frequency reuse, the BS superimposes and
transmits the signals intended for K users. After the reflection
of the RIS, the signal received at user Uk is given by

yk =
(
hH

r,kΘG + hH
d,k

) K∑

j=1

wjsj + ek, ∀ k ∈ K, (1)

where hd,k ∈ CM , G ∈ CN×M , and hr,k ∈ CN denote
the channel responses from the BS to user Uk, from the
BS to the RIS, and from the RIS to user Uk, respectively.
Likewise, ek ∼ CN (0,σ2) is the additive white Gaussian
noise (AWGN) with σ2 being the noise power. Note that
quasi-static flat fading model is considered for all channels. In
addition, Θ = diag(βejθ1 , . . . ,βejθN ) ∈ CN×N denotes the
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diagonal phase-shift matrix of the RIS, where θn ∈ [0, 2π), ∀n
and β ∈ [0, 1] denote the phase shift of element n and
the amplitude reflection coefficient on the incident signal,
respectively. As each element on the RIS is designed to
boost the received signals, we assume β = 1 without loss of
generality, similar to [17]–[22], [24]–[28]. Due to the severe
path loss, the power of the signals that are reflected by the RIS
two or more times is assumed to be negligible [17]–[29]. In
this paper, to characterize the performance gain achieved by
RIS, we study the transmit power minimization problem and
under the assumption that the CSI of all channels is perfectly
known, as in most of the exiting studies on resource allocation
in RIS-assisted systems [17]–[22], [24]–[29]. Although it is
generally difficult to obtain perfect CSI, various efficient
channel estimation methods proposed for RIS-assisted wire-
less networks can be adopted to provide accurate CSI the
channels, e.g., brute-force method [31], compressive-sensing
based method [32], and deep learning based method [33].
Note that the proposed algorithm developed in this paper
with perfect CSI not only serves as the performance upper
bound for the practical scenarios with imperfect CSI,1 but
also provides useful insights on the design of RIS-empowered
NOMA schemes.

The SIC decoding order is an essential issue in NOMA
systems, where each user sequentially performs SIC to remove
the interference in a specific order before decoding its own
signal. It has been shown in [10] that the decoding order plays
a critical role in determining the overall system performance.
In SISO NOMA networks without RIS, the users are usually
ordered based on their channel conditions with respect to
the BS. In MISO NOMA networks without RIS, the user
ordering becomes more complicated and is determined by
the product of the channel gain and the beamforming gain of
each user [39]. Furthermore, in RIS-empowered MISO NOMA
networks, obtaining the optimal user ordering is further com-
plicated, as the concatenated channel response (hH

r,kΘG +
hH

d,k) depends not only on hr,k but also on the coupled matrix
(i.e., G, hd,k, and Θ) while the phase-shift matrix simultane-
ously affects the concatenated channel strengths of all users.
Compared to the traditional analog beamforming in mmWave
NOMA system, the reflection-dominated propagation and
the RIS configuration based phase-shift matrix are coupled
with each other in RIS-aided NOMA networks. Furthermore,
we study the transmit power minimization problem in NOMA
networks, taking into account both the constant-modulus con-
straint of phase shifters at the RIS and the QoS constraints of
all users, leading to a more complex phase-shifter design at the
RIS. Therefore, the traditional analog beamforming schemes
with a separate channel matrix and analog beamformer cannot
be applied. Therefore, the optimal user ordering may be any
one of the K! different decoding orders for K users. We denote
π as the decoding ordering operator. In particular, π(k) denotes
the user index whose signal is the k-th signal (i.e., sπ(k)) to be
decoded by users Uπ(l) for all 1 ≤ k ≤ l ≤ K . For instance,

1To account for the imperfect CSI in RIS-assisted systems, the worst-case
robust optimization [34]–[36] and the stochastic optimization [19], [37], [38]
are two main methods that can be adopted. Such an extension will be left as
our future work.

if π(k) = i, then the signal intended for user Ui is the k-th
signal to be decoded by users Uπ(l) for all l ≥ k. According
to the NOMA decoding strategy, user Uπ(l), ∀l > 1 needs to
sequentially decode and remove the co-channel interference
introduced by the signals intended for Uπ(j) for all j < l,
i.e., {sπ(1), . . . , sπ(l−1)}, before successfully decoding its own
signal, whereas the signals intended for other users are treated
as noise. Specifically, for 1 ≤ k ≤ l ≤ K , after removing
signals {sπ(1), . . . , sπ(k−1)}, the remaining signal at user Uπ(l)

can be expressed as

yπ(k)
π(l) =

(
hH

r,π(l)ΘG + hH
d,π(l)

) K∑

j=k

wπ(j)sπ(j) + eπ(l). (2)

According to (2), the achievable SINR for user Uπ(l) to
decode the signal intended for Uπ(k) can be expressed as

SINRπ(k)
π(l) =

|(hH
r,π(l)ΘG+hH

d,π(l))wπ(k)|2
∑K

j=k+1 |(h
H
r,π(l)ΘG+hH

d,π(l))wπ(j)|2+σ2
,

∀l ≥ k. (3)

In other words, to ensure successful SIC for a specific user
ordering π, the signal intended for user Uπ(k) should be suc-
cessfully decoded at user Uπ(l) for all l ≥ k. To successfully
decode signal sπ(k) at user Uπ(l) for all l ≥ k, the achievable
SINR of decoding signal sπ(k) at user Uπ(l) for all k ≤ l
should be no smaller than the predefined target SINR γπ(k) of
signal sπ(k), which can be mathematically expressed as

min
l∈[k,K]

SINRπ(k)
π(l) ≥ γπ(k), ∀k. (4)

This criterion is widely adopted in existing works investigating
the power minimization on NOMA [40]–[42]. Therefore,
the achievable rate Rπ(k) for user Uπ(k) can be expressed as

Rπ(k) = log2

(
1 + min

l∈[k,K]
SINRπ(k)

π(l)

)
, ∀k, (5)

where the channel bandwidth is normalized to 1.

B. Problem Formulation

In this subsection, we formulate a total transmit power
minimization problem by jointly optimizing the beamforming
vectors (i.e., {wk, k ∈ K}) at the BS, the phase-shift matrix
(i.e., Θ) at the RIS, and user ordering (i.e., π) by taking
into account the data rate requirements of all users and the
unit modulus constraints of all reflecting elements. The total
transmit power minimization problem is formulated as

P : minimize
{wπ(k)},Θ,π

K∑

k=1

∥wπ(k)∥2

subject to log2

(
1+ min

l∈[k,K]
SINRπ(k)

π(l)

)
≥Rmin

π(k), ∀ k,

(6)

|Θn,n| = 1, ∀n, (7)

π ∈ S, (8)

where π = {π(1), . . . ,π(K)} is the user ordering index
vector, ∥wπ(k)∥2 is the transmit power allocated to user Uπ(k),
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Rmin
π(k) denotes the target data rate of user Uπ(k), and S

denotes the combination set of all possible user orderings.
Constraints (6) represent the target data rate requirements of all
users and guarantees that SIC can be performed successfully.
Constraints (7) denote unit modulus’ phase shifters at the RIS.

However, the joint optimization of beamforming vectors,
the phase-shift matrix, and user ordering in P is much
more complicated than the power minimization problem
in [18], [41] due to the non-convex constraints (6) with highly
coupled optimization variables and minimization operator,
non-convex unit-modulus constraints (7), and highly challeng-
ing user ordering design controlled by the phase-shift matrix.
In the following, we will analyze and reformulate P .

C. Problem Analysis

Since the total number of user ordering combinations is a
finite value and known via permutation, the required transmit
power consumption can be obtained by first solving Prob-
lem P for all possible decoding orders and then selecting
the user ordering that minimizes the objective function’s
value. Therefore, to make Problem P tractable, we solve
this problem in two steps, i.e., obtaining the decoding order
and solving a power minimization problem given the obtained
decoding order. In particular, we first consider the transmit
power minimization problem with a given user ordering π. To
assist an efficient algorithm design, we rewrite constraints (6)
as

min
l∈[k,K]

SINRπ(k)
π(l) ≥ γmin

π(k), ∀ k, (9)

where γmin
π(k) = 2Rmin

π(k) − 1 is the minimum SINR required to
successfully decode signal sπ(k). To eliminate the minimiza-
tion operator, constraints (9) can be further rewritten as

γmin
π(k)

(
K∑

j=k+1

∣∣∣(hH
r,π(l)ΘG+hH

d,π(l))wπ(j)

∣∣∣
2
+σ2

)

≤
∣∣∣(hH

r,π(l)ΘG+hH
d,π(l))wπ(k)

∣∣∣
2
, ∀k, l ≥ k. (10)

Therefore, given the user ordering π, the transmit power
minimization problem is given by

P1 : minimize
{wπ(k)},Θ

K∑

k=1

∥wπ(k)∥2

subject to constraints (7), (10), (11)

with the optimal solution denoted by P ⋆(π).
As a result, the transmit power minimization problem P

can be solved by searching over all possible user orderings in
set S, i.e., P ⋆ = minπ∈S P ⋆(π).

However, Problem P1 is still highly intractable due to
the non-convex bi-quadratic constraints (10), in which the
beamforming vectors and the phase-shift matrix are highly
coupled, and the non-convex unit modulus constraints (7).
To address these unique challenges, we present an efficient
method with algorithmic advantages to solve Problem P1 in
Section III.

Unfortunately, the exhaustive search method needs to solve
K! power minimization problems, each of which is for a par-
ticular user ordering. This method is exponential in the num-
ber of users and is computationally prohibitive for practical
applications. To further reduce the computational complexity
of the exhaustive search method, we develop an efficient user
ordering method in a closed-form by taking into account both
the combined channel conditions and the target data rates
in Section IV. The required transmit power consumption can
be obtained by solving the power minimization Problem P1

under the proposed user ordering strategy.
We will demonstrate the superiority of the proposed algo-

rithm for the power minimization problem and effectiveness
of the proposed user ordering along with the deployment of
RIS in NOMA networks in Section V.

III. ALTERNATING DC METHOD FOR

BEAMFORMERS DESIGN

In this section, we develop efficient an algorithm to solve
Problem P1, namely alternating DC method. The main moti-
vation is to employ alternating optimization to decompose the
joint optimization Problem P1 into two non-convex QCQP
subproblems to address the highly coupled optimization vari-
ables, followed by reformulating the subproblems into DC
programmings to avoid early stopping in alternating procedure,
thereby achieving performance improvement.

A. Alternating Optimization Framework

Recently, most the existing works, e.g., [17]–[19] applied a
powerful alternating optimization to design the active beam-
forming at the BS and the phase-shift matrix at the RIS,
which always yields convex constraints given the phase-shift
matrix (i.e., affine constraints [17], second-order cone (SOC)
constraints [18], and quadratic constraints [19]). Inspired by
this, in this subsection, to decouple the optimization variables,
we shall employ alternating optimization to decompose the
joint optimization Problem P1 into two subproblems but with
non-convex constraints, i.e., a non-convex QCQP subproblem
for transmit beamforming vectors and a non-convex QCQP
feasibility subproblem for the phase-shift matrix. For nota-
tional ease, we omit the user ordering index π in the sequel.
Let k denote the user index whose signal is the k-th signal to
be decoded by users Ul for all l ≥ k.

1) Transmit Beamforming Vectors Optimization: For a given
phase-shift matrix Θ, the concatenated channel response hH

l =
hH

r,lΘG + hH
d,l ∈ C1×M is fixed, and hence P1 is simplified

as the following non-convex QCQP problem

P1.1 : minimize
{wk}

K∑

k=1

∥wk∥2

subject to γmin
k

(
K∑

j=k+1

|hH
l wj |2 + σ2

)
≤ |hH

l wk|2,

∀ k, l = k, . . . , K. (12)

While problem (12) appears similar to the beamforming
design in [18], it cannot be equivalently transformed into a
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second-order cone program (SOCP) since it is impossible to
have a phase rotation to simultaneously satisfy R(hH

k wk) =
R(hH

l wk) = 0, k < l ≤ K .
2) Phase-Shift Matrix Optimization: Given the beamform-

ing vectors {wk}, we denote bl,k = hH
d,lwk and al,k =

diag(hH
r,l)Gwk, ∀ k, l ≥ K . Hence, we have (hH

r,lΘG +
hH

d,l)wk = vHal,k + bl,k, where v = [ejθ1 , . . . , ejθN ]H. Thus,
Problem P1 is simplified as the following homogeneous fea-
sibility detection problem by introducing an auxiliary variable
t, given by

P1.2 : Find ṽ

subject to γmin
k

(
K∑

j=k+1

(
ṽHRl,j ṽ+|bl,j|2

)
+σ2

)

≤ ṽHRl,kṽ+|bl,k|2, ∀ k, l = k, . . . , K,

(13)

|ṽn| = 1, ∀n = 1, . . . , N + 1, (14)

where Rl,k =
[
al,kaH

l,k al,kbH
l,k

bl,kaH
l,k 0

]
∈ C(N+1)×(N+1) and ṽ =

[
vH, tH

]H
. If we obtain a feasible solution, denoted as ṽ⋆,

by solving Problem P1.2, then a feasible solution for phase
shifter vector can immediately be obtained by setting v⋆ =
[ṽ⋆/ṽ⋆N+1](1:N).

3) Discussion: In the subsection, we provide some dis-
cussions on the impact of the solution about the above two
subproblems.

For Problem P1.1, there exists two state-of-the-arts meth-
ods. One exploits the successive convex approximation (SCA)
technique to relax the optimization problem as an SOCP
problem, which, however, results in a suboptimal solution
with performance degradation [41]. To further improve the
performance, the semidefinite relaxation (SDR) technique [43]
can be exploited by formulating the optimization problem as
a semidefinite programming (SDP) form by lifting wk into
a positive semidefinite (PSD) matrix W k ∈ CM×M , where
W k = wkwH

k and rank(W k) = 1, ∀k, followed by dropping
rank-one constraints [41], [42]. The optimal beamforming
vectors of the Problem P1.1 can be obtained from the SDR
method if it yields rank-one solutions.

For Problem P1.2, the state-of-the-art method is to formu-
late P1.2 as an SDP optimization problem by lifting ṽ into
a PSD matrix V ∈ C(N+1)×(N+1), where V = ṽṽH and
rank(V ) = 1, followed by dropping the rank-one constraint
via the SDR technique, similar to [18].

To solve problems P1.1 and P1.2 with good performance,
both subproblems shall be solved by the SDR method in
alternating procedure (namely, alternating SDR method). How-
ever, such an SDR technique often yields a solution which
fails to satisfy the rank-one constraint, especially in the cases
where either the dimension of the optimization variable or
the number of users is large, as demonstrated in [44], [45].
If so, an optimal beamforming vector cannot be obtained
which leads to performance degradation. Furthermore, for the
phase-shifter vector, if the SDR method turn out not to be
rank-one, the suboptimal solution obtained by the Gaussian
randomization technique [43] may not guarantee meeting the

original quadratic constraints (14) in P1.2, and thus results in
early stopping in the alternating procedure. It is also equally
important to note that the existing methods fail to accurately
detect the feasibility of rank-one constraints, which may
yield performance degradation as suboptimal beamforming
vectors and the early stopping in the procedure of alternating
optimization.

Based on the above discussions and different from previous
works [17]–[19] here we endeavour to address the following
coupled challenges to solve the total transmit power minimiza-
tion problem for RIS-empowered multi-user MISO NOMA
networks:

• For the transmit beamforming vectors optimization,
we need to efficiently solve a non-convex QCQP opti-
mization problem with the capability of accurately detect-
ing the feasibility of multiple rank-one constraints in the
lifted matrix space to obtain the high-quality beamform-
ing vectors, thereby achieving the performance gains;

• For the phase-shift matrix optimization, we need to accu-
rately detect the feasibility of a non-convex quadratically
constrained problem, which can avoid the early stopping
of the alternating optimization procedure, thereby enhanc-
ing the performance compared with the state-of-the-art
methods.

In summary, we shall develop an efficient method to accu-
rately detect the feasibility of the non-convex quadratic con-
straints to push the alternating optimization procedure for the
transmit beamforming design and phase shifters design. In the
next subsection, to address the limitations of existing methods,
we present a unified DC method to solve the aforementioned
subproblems.

B. A Unified Difference-of-Convex Programming Method

In this subsection, we propose a unified DC method to
the non-convex QCQP subproblems to accurately detect the
feasibility of non-convex quadratic constraints for the trans-
mit beamforming vectors optimization and the phase-shift
matrix optimization while avoiding the alternative pro-
cedure to stop early, thereby achieving the performance
improvement.

1) DC Representation for Rank-One Constraint: Firstly,
we present an exact DC representation for the rank-one
constraint. For a matrix X ∈ CN×N , the rank-one constraint
can be rewritten as

∥∥[σ1(X), . . . ,σi(X) . . . ,σN (X)]
∥∥

0
= 1,

where σi(X) is the i-th largest singular value of matrix X ,
and ∥ · ∥0 is the l0-norm of a vector. It is noteworthy that the
rank function is a discontinuous function. To reformulate a
continuous function, we introduce an exact DC representation
for the rank-one constraint in Proposition 1.

Proposition 1: For a PSD matrix X ∈ CN×N with
Tr(X) > 0, we have rank(X) = 1 ⇔ ∥X∥∗ − ∥X∥2 = 0.
Proof. Please refer to Appendix VI-A. !

It is noteworthy that the DC representation is a continuous
function.

2) Proposed Unified DC Programming Method: The main
idea of our proposed DC method is to first reformulate
Problems P1.1 and P1.2 into matrices optimization problems
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via the matrix lifting technique, then apply the DC presentation
to accurately detect the rank-one constraints.

Given the phase-shift matrix Θ, by lifting wk into a
PSD matrix W k ∈ CM×M , where W k = wkwH

k and
rank(W k) = 1, ∀k, we reformulate Problem P1.1 into the
following DC program to obtain K rank-one matrices

P1.3 : minimize
{W k}

K∑

k=1

Tr(W k) + ρ
K∑

k=1

(
∥W k∥∗ − ∥W k∥2

)

subject to γmin
k

(
K∑

j=k+1

Tr(HH
l W j) + σ2

)

≤ Tr(HH
l W k), ∀ k, l = k, . . . , K, (15)

W k " 0, ∀ k, (16)

where ρ > 0 is a penalty parameter and H l = hlh
H
l ∈

CM×M . By enforcing the penalty term to be zero, Prob-
lem P1.3 induces K rank-one matrices. After solving P1.3,
we can recover the beamforming vectors wk for Problem P1.1

through the SVD, i.e., W ⋆
k = wkwH

k , ∀ k ∈ K, where
{W ⋆

k, k ∈ K} denotes the solution of Problem P1.3.
Similarly, given the beamforming vectors {wk, k ∈ K},

we minimize the difference between the nuclear norm and the
spectral norm by lifting ṽ into a PSD matrix V ∈ CN+1×N+1,
where V = ṽṽH, rank(V ) = 1. That is,

P1.4 : minimize
V

∥V ∥∗ − ∥V ∥2

subject to γmin
k

(
K∑

j=k+1

(
Tr(Rl,jV ) + |bl,j |2

)
+ σ2

)

≤Tr(Rl,kV )+|bl,k|2, ∀k, l=k,. . . ,K,

(17)

V n,n = 1, ∀n = 1, . . . , N + 1, (18)

V " 0. (19)

Specifically, when the objective value of Problem P1.4

becomes zero, we obtain an exact rank-one feasible solution,
denoted as V ⋆. Using the SVD operator V ⋆ = ṽṽH, we then
obtain a feasible solution ṽ to Problem P1.2.

Although the above DC programs are still non-convex,
they have the algorithmic advantage. In the next subsection,
we will develop the DC algorithm for problems P1.3 and P1.4

via successive convex relaxation and prove that the sequence
solutions of the algorithm converges to the stationary point.
The superior performance has been shown in vast applications,
e.g., degrees-of-freedom maximization for data shuffling in
wireless distributed computing [46] and model aggregation via
over-the-air computation for federated learning [47].

C. Alternating DC Algorithm

In this subsection, we shall propose an efficient alternating
DC algorithm to obtain high-quality solutions for the beam-
forming vectors and the phase-shift matrix.

1) Difference of Strongly Convex Functions Representation:
Although the DC programs P1.3 and P1.4 are non-convex,
they have a good structure that can be exploited to develop

an efficient algorithm by using successive convex approxima-
tion [48]. In order to establish some important properties of the
algorithm, we represent the objective function as the difference
of two strongly convex functions. Specifically, we rewrite
P1.3 as

minimize
{W k}

f1 =
K∑

k=1

Tr(W k) + ρ
K∑

k=1

(
∥W k∥∗ − ∥W k∥2

)

+IC1({W k}), (20)

and Problem P1.4 as

minimize
V

f2 = ∥V ∥∗ − ∥V ∥2 + IC2(V ), (21)

where C1 and C2 denote the PSD cones that satisfy the
constraints in problems P1.3 and P1.4, respectively, and both
IC1({W k}) and IC2(V ) is the indicator functions. We rewrite
the DC functions f1 and f2 as the difference of two strongly
convex functions, i.e., f1 = g1 − h1 and f2 = g2 − h2,
where g1 =

∑K
k=1 Tr(W k)+ρ

∑K
k=1 ∥W k∥∗+IC1({W k})+

η
2

∑K
k=1 ∥W k∥2

F , h1 = ρ
∑K

k=1 ∥W k∥2 + η
2

∑K
k=1 ∥W k∥2

F ,
g2 = ∥V ∥∗ + IC2(V ) + η

2∥V ∥2
F , h2 = ∥V ∥2 + η

2∥V ∥2
F .

Because of the additional quadratic terms (i.e.,
η
2

∑K
k=1 ∥W k∥2

F and η
2∥V ∥2

F ), g1, h1, g2, and h2 are
all η-strongly convex functions. It turns out that problems
(20) and (21) have the unified structure of minimizing the
difference of two strongly convex functions, i.e.,

minimize
Z∈Cm×m

fi = gi(Z) − hi(Z), i = 1, 2. (22)

To solve the non-convex DC program, we present a DC
algorithm to construct a sequence of candidates to the primal
and dual solutions via successive convex relaxations in the
sequel.

2) DC Algorithm for Problem (22): According to the
Fenchel’s duality [49], the dual problem of Problem (22) is
equivalent to

minimize
Y ∈Cm×m

h∗
i (Y ) − g∗i (Y ), i = 1, 2, (23)

where g∗i and h∗
i are the conjugate functions of gi and hi,

respectively. The conjugate function h∗
i (Y ) is defined as

h∗
i (Y ) = supY {⟨Z, Y ⟩ − hi(Z) : Z ∈ Z}, i = 1, 2,

where the inner product is given by ⟨X, Y ⟩ = R(Tr(XHY ))
according to Wirtinger calculus [49] in the complex domain
and Z denotes Z’s feasible solution region. Since the primal
problem (22) and its dual problem (23) are non-convex,
the DC algorithm iteratively updates both the primal and dual
variables via successive convex approximations. Specifically,
in the r-th iteration, we have

Y r = arg inf
Y

h∗
i (Y ) −

[
g∗i (Y r−1) + ⟨Y − Y r−1, Zr⟩

]
,

(24)

Zr+1 = arg inf
Z

gi(Z) −
[
hi(Zr) + ⟨Z − Zr, Y r⟩

]
. (25)

Based on the Fenchel bi-conjugation theorem [49], the solution
to Problem (25) can be written as Y r ∈ ∂Zrhi, where ∂Zrhi

is the sub-gradient of hi with respect to Z at Zr. Thus,
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Algorithm 1: Proposed Alternating DC Algorithm for
Solving Problem P1

1: Input: {hr,k}, {hd,k}, G, {Rmin
k }, σ, ϵ, and π.

2: Initialize: Θ0 = Θinitial.
3: repeat
4: Given Θt−1, solve Problem P1.3, set r = 1.
5: while penalty component of P1.3 is not zero do
6: Compute subgradient ∂Wk

r−1∥Wk∥2, k ∈ K,
obtain solution {W r

k} by solving (26).
7: end while
8: Obtain {wt

k, k∈K} via SVD where
W r

k =wt
k(w

t
k)H.

9: Given {wt
k, k ∈ K}, solve P1.4, set r = 1.

10: while objective value of P1.4 is non-zero do
11: Compute subgradient ∂V r−1∥V ∥2, obtain

solution {V r} by solving (27).
12: end while
13: Obtain ṽt via SVD where V r = ṽt(ṽt)H,

vt = [ṽt/ṽt
N+1](1:N), Θt = diag((vt)H)

14: until Decrease of the transmit power is below ϵ or
Problem P1.2 becomes infeasible.

15: Output: {wk} and Θ

{W r
k, k ∈ K} at the r-th iteration for P1.3 can be obtained

by solving the following convex problem

minimize
{W k}

g1 −
K∑

k=1

⟨Wk, ∂Wk
r−1h1⟩

subject to constraints (15), (16). (26)

Similarly, V r at the r-th iteration for P1.4 can be obtained
by solving the following convex optimization problem

minimize
V

g2 − ⟨V , ∂V r−1h2⟩
subject to constraints (17), (18), (19). (27)

Problems (26) and (27) are convex and can be efficiently
solved by using CVX [50]. Note that ∂Wk

r−1h1 and ∂V r−1h2

are ∂Wk
r−1h1 = ρ∂Wk

r−1∥W k∥2 + ηW r−1
k , ∂V r−1h2 =

∂V r−1∥V ∥2 +ηV r−1, respectively. It is worth noting that the
sub-gradient of ∥X∥2 at Xr ∈ CN×N (i.e., ∂Xr∥X∥2) can
be efficiently computed according to the following proposition.

Proposition 2: For a PSD matrix X , the sub-gradient of
∥X∥2 at Xr can be efficiently computed as u1uH

1 , where
u1 ∈ CN is the eigenvector corresponding to the largest
eigenvalue σ1(Xr).

The efficient DC algorithm is developed by successively
solving the convex relaxation of the primal and dual problems
of DC programming. The overall algorithm, solving problems
P1.3 and P1.4 in an alternative approach, which is referred to
as the alternating DC algorithm as presented in Algorithm 2.
Specifically, Algorithm 1 optimizes {wk, k ∈ K} and Θ
alternatively, where the presented DC algorithm is adopted
to obtain the beamforming vectors and the phase shifts in the
lifted matrix space that satisfy the rank-one constraints. For
a fair comparison, the alternating DC algorithm terminates
when the decrease of the objective value of Problem P1

Algorithm 2: User Ordering Optimization Algorithm

1: Input: {hr,k}, {hd,k}, G, {Rmin
k }, and σ.

2: Calculate the eigenvectors {uk} corresponding to the
largest eigenvalue of matrix {Qk}.

3: Calculate all users’ required minimal transmit power
{p̂k} according to (34)
and sort them in the descending order:
p̂π(1) ≥ . . . ≥ p̂π(K).

4: Output: user ordering vector π = {π(1), . . . ,π(K)}.

is smaller than ϵ, which is a predetermined convergence
threshold, or Problem P1.2 becomes infeasible. We shall
prove the convergence of Algorithm 2 in the sequel.

D. Alternating DC Algorithm Convergence Analysis

Before proving the convergence of the proposed alternating
DC algorithm, we present some important properties of the
solutions obtained by solving the convex relaxation of the
primal and dual problems of DC programming in the following
proposition.

Proposition 3: For any r = 0, 1, . . . , the sequence
{W r

k, k ∈ K} generated by iteratively solving Problem (26)
has the following properties:

(i) The sequence {W r
k, k ∈ K} converges to a stationary

point of f1 in Problem (20) from an arbitrary initial point, and
the sequence {f r

1} is strictly decreasing and convergent.
(ii) For any r = 0, 1, . . . , we have

Avg
(∥∥W r

k − W r+1
k

∥∥
)
≤ f0

1 − f⋆1
η(r + 1)

, ∀ k = 1, . . . , K, (28)

where f⋆1 is the global minimum of f1 and Avg
(∥∥W r

k −
W r+1

k

∥∥) denotes the average of the sequence {∥W i
k −

W i+1
k ∥2

F }r
i=0.

Likewise, for any r = 0, 1, . . ., the sequence {V r} gen-
erated by iteratively solving Problem (27) has the following
properties:

(iii) The sequence {V r} converges to a stationary point of
f2 in Problem (21) from an arbitrary initial point, and the
sequence of {f r

2} is strictly decreasing and convergent.
(iv) For any r = 0, 1, . . . , we have

Avg
(∥∥V r − V r+1

∥∥
)
≤ f0

2 − f⋆2
η(r + 1)

, (29)

where f⋆2 is the global minimum of f2.
Proof: Please refer to Appendix A. !

Based on Proposition 3, the convergence analysis of Algo-
rithm 2 is given in proposition 4.

Proposition 4: The objective value of Problem P1 in (11)
decreases as the number of iteration increases until conver-
gence by applying the proposed alternating DC algorithm.

Proof: Please refer to Appendix B. !

IV. LOW-COMPLEXITY USER ORDERING SCHEME

The optimal decoding order will be any one of the K!
different decoding orders and P1 must be solved K! times.
Therefore, an exhaustive search is needed over all the decoding

Authorized licensed use limited to: ShanghaiTech University. Downloaded on August 03,2021 at 03:52:38 UTC from IEEE Xplore.  Restrictions apply. 



3810 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 69, NO. 6, JUNE 2021

orders which is computationally prohibitive when K is large.
To address this issue, we shall develop a low-complexity user
ordering scheme to determine the decoding order of the users
for RIS-empowered MISO NOMA networks. The existing
studies mainly focused on either the channel condition [10] or
QoS [51] based user ordering scheme for NOMA transmission.
In contrast to the existing studies, to decouple the users’
influence on each other, we order the users in the descending
order of all users’ minimum required transmit power, each of
which is obtained by optimizing the phase-shift matrix at RIS
and corresponding transmit beamforming without intra-cell
interference. Note that the proposed user ordering strategy
takes both the combined channel conditions and the target data
rates into account. With the proposed strategy, the required
transmit power can be obtained by only solving the power
minimization problem once.

A. Proposed User Ordering Optimization

Specifically, the minimum transmit power required at the
BS to serve user Uk can be obtained by solving the following
problem

minimize
wk,Θ

∥wk∥2

subject to ∥(hH
r,kΘG + hH

d,k)wk∥2 ≥ γmin
k σ2,

|Θn,n| = 1, ∀n. (30)

Although [18] has provided a SDR-based alternating opti-
mization approach to solve (30), this user ordering scheme
needs to solve K SDP problems and suffers from a very
high computation complexity. To reduce this computation
complexity, we propose a method to derive solutions for wk

and Θ with closed-form expressions in this following.
For a given Θ, it is well-known that the maximum-ratio

transmission (MRT) is the optimal transmit beamforming
solution to Problem (30) [18], i.e., w⋆

k = √
pk

(hH
r,kΘG+hH

d,k)H

∥hH
r,kΘG+hH

d,k∥
,

where pk is the transmit power of the AP for user Uk.
Furthermore, the optimal transmit power p⋆k satisfies p⋆k =

γmin
k σ2

∥hH
r,kΘG+hH

d,k∥2 , which is determined by the target data rate
and combined channel gains. Therefore, minimizing the trans-
mit power is equivalent to maximizing the combined channel
power gain, which is given by

maximize
Θ

∥hH
r,kΘG + hH

d,k∥2

subject to |Θn,n| = 1, ∀n. (31)

Similar to Problem P1.2, by introducing ṽ, Problem (31)
can be rewritten as

maximize
ṽ∈CN+1

ṽHQkṽ

subject to |ṽ|n = 1, ∀n = 1, . . . , N + 1, (32)

where Qk =
[

diag(hH
r,k)GGHdiag(hr,k) diag(hH

r,k)Ghd,k

hH
d,kGHdiag(hr,k) hH

d,khd,k

]
.

Problem (32) has a concave objective function with
non-convex unit modulus constraints. The authors [25] applied
the SDR technique to reformulate Problem (32) into a convex
SDP problem. To further reduce the computational complexity,

we relax the unit modulus constraints in Problem (32) as a
norm constraint, i.e., ∥ṽ∥2 = N + 1. Such a relaxation yields
a closed-form expression of Θ for Problem (32). The relaxed
optimization problem is given by

maximize
ṽ∈CN+1

ṽHQkṽ

subject to ∥ṽ∥2 = N + 1. (33)

Problem (33) is an eigenvalue problem and its optimal solu-
tion is

√
N + 1uk, where uk ∈ CN+1 is the eigenvector

corresponding to the largest eigenvalue of matrix Qk. Then,
we perform a phase extraction of this solution to form a unit
modulus vector v⋆k = [unit(uk)/unit(uk(N + 1))](1:N). The
objective value of Problem (30) is approximated by

p̂k =
γmin

k σ2

∥hH
r,kdiag((v⋆k)H)G + hH

d,k∥2
, (34)

which depends on the target data rate and the channel condi-
tion. We order K users in the descending order of power p̂k.
Specifically, the user with the largest value of p̂k decodes its
own signal first, while the user with the smallest value of p̂k

needs to decode all other users’ signals before decoding its
own signal, and the corresponding algorithm is presented in
Algorithm 2.

B. Complexity Analysis

The computational complexity of the proposed closed-form
user ordering algorithm is O(KN3) due to the SVD operator.
In contrast, to solve the SDP optimization problem resulted
from the state-of-the-art SDR approach [43], the computational
complexity of the interior-point method is O(KN6.5log(1/ϵ))
with accuracy ϵ > 0, which is much higher than the proposed
algorithm. The effectiveness of the proposed user ordering
scheme will also be shown in the next section.

V. NUMERICAL RESULTS

In this section, we present sample numerical results to
demonstrate the ability of an RIS in enlarging the channel-gain
difference and the effectiveness of the proposed alternating
DC method. We consider a three-dimensional (3D) Cartesian
coordinate system, where the BS is assumed to be equipped
with a uniform linear array (ULA) located on the y-axis while
the RIS is assumed to be equipped with a uniform planar
array (UPA) located parallel to the x − z plane. The number
of RIS elements is set to be N = NxNz , where Nx and Nz

are the number of RIS elements along the x-axis and z-axis,
respectively. We set Nx = 5 and increase Nz linearly with
N . The antenna spacing is a half wavelength. We consider
an RIS-empowered network, whose horizontal projections
are illustrated in Fig. 2, where K single-antenna users are
uniformly and randomly distributed in a circle centered at
(60, 0, 0) meter with a radius of 15 meters. At the same
time, the RIS and BS are fixed at (50, 15,10) meter and (0,
0, 10) meter, respectively. We denote dk

BU, dk
IU, and dIB as

the distances between user Uk and the BS, between user Uk

and the RIS, and between the BS and the RIS, respectively.
The distance-dependent path loss for all channel is modeled
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TABLE I

SUMMARY OF SIMULATION PARAMETERS

Fig. 2. Simulation setup.

as L(d) = T0d−α, where T0 = −30 dB is the path loss
at reference distance one meter, d is the link distance, and
α is the path loss exponent. To account for the small-scale
fading, we assume Rician fading for all RIS-related channels
since the RIS can be predeployed on tall buildings and in the
vicinity of users. Due to the relatively large distance resulting
in severe blockages and rich random scattering between BS
and users, the BS-user channel is assumed to follow Rayleigh
fading, which are almost the same as those in [18], [19].
In addition, the path loss exponents for the BS-user link,
the BS-RIS link, and the RIS-user link are set to 3.67, 2.2, and
2.2, respectively, according to the 3GPP propagation environ-
ment [52]. Channels including pathloss and small-scale fading
are denoted as G =

√
L(dIB)

(√
βBR

1+βBR
GLOS +

√
1

1+βBR
G̃
)

,

hr,k =
√

L(dk
IU)
(√

βRU

1+βRU
hLOS

r,k +
√

1
1+βRU

h̃r,k

)
, hd,k =

√
L(dk

BU)h̃d,k, where βBR and βRU are the corresponding

Rician factors, G̃, h̃r,k, and h̃d,k denote Rayleigh fading com-
ponents whose elements are generated according to CN (0, 1),
and GLOS and {hLOS

r,k } denote the deterministic line-of-sight
(LoS) components of the BS-RIS and RIS-user, respectively.
In particular, the LoS component is modeled as the product of
the array responses at two sides. For ULA at the BS, the array
response is modeled as aT(θ) ∈ CM , with [aT(θ)]m =
ejπ(m−1) sin θ, ∀m, where θ ∈ [0, 2π] denotes the angle-
of-arrival (AoA) or angle-of-departure (AoD). For UPA at
RIS, the array response is modeled as aI(θ,ψ) ∈ CN×1 with
[aI(θ,ψ)]n = ejπ(⌊ n

Nx
⌋ sinψ sin θ+(n−⌊ n

Nx
⌋Nx) sinψ cos θ), ∀n,

where θ ∈ [0, 2π) and ψ ∈ [−π/2,π/2) denote the azimulth
AoA or AoD and elevation AoA or AoD [53], respectively
and ⌊x⌋ denotes the maximum integer no larger than a real
number x. The AoA or AoD for RIS-related channels and their
corresponding LoS components are summarized in Table II.

Unless specified otherwise, we set Rmin
k = 1.5 bits per

channel use, ∀ k ∈ K, ρ = 10, ϵ = 10−4, channel bandwidth

Fig. 3. Channel-gain difference versus N .

of 10 MHz, the noise power density of −174 dBm/Hz, Rician
factor of βBR = βRU = 3. In spite of the Fig. 4 and Fig. 9,
all curves in others are obtained by adopting the proposed
user ordering design according to Algorithm 2 in Section IV,
wherein the phase-shift matrix Θ is a zero matrix in the
scenario without RIS. All results in Figs. 3-4 and Figs. 6-10
are obtained by averaging over 100 random small-scale fading
realizations.

A. Effect of Introducing RIS in NOMA Networks

In the following, we conduct numerical experiments to jus-
tify our motivation of the proposed RIS-empowered NOMA.
We consider two users in the NOMA networks. In the sim-
ulations, we fix user U1’s location (i.e., (60, 10, 0) meter)
and M = 2. The coordinate of user U2 is (x2, 0, 0) meter.
We study the ability of an RIS in enlarging the channel-gain
difference in MISO-NOMA networks when the original users’
channel conditions are similar, i.e., user U2’s x-coordinate is
equal to 70. The channel-gain difference is defined as the
absolute value of the difference between the norm of the
effective channel coefficient vectors (i.e.,

∣∣∥h̃i∥2 − ∥h̃j∥2

∣∣).
Note that both the effective channel gains ∥h̃i∥2 and ∥h̃j∥2

incorporate the impact of the phase-shift matrix at the RIS.
Fig. 3 illustrates the channel-gain difference between two
users introduced by deploying an RIS for different number of
RIS elements. Note that the order of the channel magnitude
of each user is about 10−6, which can be viewed as a
reference for the average channel-gain difference. As shown
in Fig. 3, the average channel-gain difference goes up as
N increases in the scenario with RIS. In particular, when
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Fig. 4. Performance comparison of NOMA and OMA.

deploying an RIS, although N is relatively small (e.g., 60),
the average channel-gain difference increases 23% compared
to that without RIS.

In Fig. 4, we compare the performance of NOMA and OMA
(i.e., TDMA and OFDMA) in an RIS-assisted system when
K = 2, M = 2, and N = 50. We set the target data rate of
all the users to be the same (i.e., Rmin

1 = Rmin
2 ). In addition,

the user ordering in NOMA adopts the optimal user ordering.
As expected, the transmit power of the BS is significantly
reduced with the assistance of RIS. Furthermore, the transmit
power of the BS with RIS-assisted NOMA is always lower
than that with RIS-assisted TDMA and RIS-assisted OFDMA
since NOMA achieves higher spectrum efficiency than OMA.

B. Performance Comparison of Different Methods

We compare the following algorithms: 1) Alternating SDR:
This method leverages the SDR technique to solve problems
P1.1 and P1.2 alternatively. 2) Random phase shift: With
this method, the phase for each reflection element is uniformly
and independently generated from [0, 2π] and kept fixed when
solving the transmit power minimization problem P1.3; 3)
Without RIS: With this method, the phase-shift matrix Θ is
set to zero matrix when solving the transmit power minimiza-
tion problem P1.3.

Fig. 5 illustrates the convergence behaviors of the proposed
alternating DC method and the alternating SDR method when
K = 5, M = 4, and N = 60. The transmit power obtained
by the alternating SDR method is higher than that obtained by
the alternating DC method at the first iteration when the same
initial phase-shift matrix is given. This is because removing
the rank-one constraints incurs performance degradation, while
the proposed alternating DC method ensures that the rank-one
constraints hold. Furthermore, it can be observed that the
alternating SDR method with Gaussian randomization fails
to return a feasible solution to Problem P1.2 after the fifth
iteration and thus early terminates the alternating optimization
procedure. In contrast, the proposed alternating DC method
is able to induce exact rank-one solutions, and hence accu-
rately detects the feasibility of Problem P1.3, which avoids

Fig. 5. Convergence behaviors of difference algorithms.

Fig. 6. Transmit power versus M (N = 60, K = 7).

the early stopping in the alternating optimization procedure,
thereby considerably reducing the transmit power consumption
compared with alternating SDR method.

Fig. 6 shows the impact of the number of BS antennas (i.e.,
M ) on the total transmit power when N = 60 and K = 7.
The total transmit power of the BS decreases as the value of
M increases, which indicates that more antennas at the BS
lead to a better performance by achieving a higher diversity
gain. As shown in the figure, the RIS-empowered network
outperforms the network without RIS, which demonstrates
the effectiveness of deploying RIS in cellular networks. In
addition, both the proposed alternating DC method and the
alternating SDR method significantly outperform the random
phase shift method. Hence demonstrating the necessity of
jointly optimizing the beamforming vectors at the BS and
the phase-shift matrix at the RIS. Furthermore, due to the
superiority of the proposed DC representation, the proposed
alternating DC method consumes much less transmit power
than the alternating SDR method.

Fig. 7 illustrates the impact of the number of passive
reflecting elements at the RIS (i.e., N ) on the total transmit
power when M = 6 and K = 6. For alternating DC and
alternating SDR, the total transmit power decreases quickly
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Fig. 7. Transmit power versus N ( M = 6 and K = 6).

Fig. 8. Transmit power versus K ( M = 4 and N = 80).

as the value of N increases by jointly optimizing transmit
beamforming vector at the BS and phase-shift matrix at
RIS. This is because an RIS with more reflecting elements
significantly can enhance the receiving power at the users by
optimizing the phase-shift matrix and introduces more channel
differences among the users. Therefore, a larger number of
passive reflecting elements leads to a higher energy-efficiency.
Furthermore, as shown in the figure, the performance gap of
alternating DC over alternating SDR goes up as N increases.
This is because SDR method hardly return a feasible solution
for Problem P1.2 as the dimension of phase shifter (i.e., N )
increase and thus early terminates the alternating optimization
procedure.

Fig. 8 shows the performance of downlink NOMA networks
with and without RIS when M = 4 and N = 80. The total
transmit power of the BS quickly increases as the value of K
increases. Furthermore, we observe that the performance gap
of alternating DC over alternating SDR goes up as K increases
since the rank-one probability of SDP solution by using SDR
method for the transmit beamforming optimization gradually
becomes low and thus incurs performance degradation as the
number of users increases.

Fig. 9. Transmit power versus K for different user ordering schemes.

C. Performance Comparison of Different User Ordering
Schemes

We compare the performance of the proposed user ordering
scheme with following schemes: 1) Random user ordering:
The users ordering is randomly selected from user ordering
set S; 2) Exhaustive search based user ordering: This user
ordering scheme finds the optimal decoding order that achieves
the best performance by exhaustively searching over all K!
possible decoding orders; 3) Proposed user ordering: The
proposed user ordering scheme with closed-form solutions
is presented in Algorithm 2; 4) SDR-based user ordering:
Different from the proposed scheme, this user ordering scheme
obtains the ordering criterion by solving Problem (31) using
the SDR technique [43].

Fig. 9 compares the performance of our proposed user
ordering scheme with three benchmarks when N = 60 and
M = 2. It is observed that the user ordering has a significantly
impact on the transmit power consumption in RIS-empowered
NOMA networks. In particular, the performance gaps between
the optimal user ordering scheme and other three user ordering
schemes increase as the number of users increases. How-
ever, the optimal user ordering scheme needs to exhaustively
search all K! possible decoding orders, and its computational
complexity is extremely high. Although the random user
ordering scheme has the lowest complexity, it suffers from
a larger performance degradation than the proposed and the
SDR-based user ordering schemes. This is because the last
two schemes capture the effects of users’ target data rates
and combined channels which have an impact on the transmit
power at BS for the each user. When K = 5, the transmit
powers of the random, the proposed, and the SDR-based user
ordering schemes are 3.27 dBm, 0.84 dBm, and 0.81 dBm
higher than the optimal user ordering scheme, respectively.
It shows that the proposed user ordering provides comparable
performance to the optimal user ordering. Moreover, as shown
in Fig. 9, the proposed user ordering scheme achieves almost
the same performance as the SDR-based user ordering scheme.
However, the SDR-based user ordering scheme needs to solve
K SDP problems for K users, the complexity of which is
much higher than the proposed user ordering scheme with
closed-form solutions.

Authorized licensed use limited to: ShanghaiTech University. Downloaded on August 03,2021 at 03:52:38 UTC from IEEE Xplore.  Restrictions apply. 



3814 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 69, NO. 6, JUNE 2021

Fig. 10. Transmit power versus N with discrete and continuous phase shifts.

D. Performance Comparison of Discrete and Continuous
Phase Shifts

In practical systems, the RIS with a large number of passive
elements has a finite phase resolution, which depends on
the number of quantization bits, denoted as B [54], [55].
We numerically investigate the effect of RIS’s finite phase
resolution on the total transmit power consumption at the
BS by the alternating DC algorithm. Specifically, at the t-th
iteration, the optimized continuous phase shifts are quantized
to their nearest discrete values denoted by vΦ in the set{
0, 2π

2B , . . . , 2π×(2B−1)
2B

}
. Although the quantized phase shifts

vΦ may not satisfy the QoS constraints, we can optimize
the active beamforming {w̃k} to satisfy the QoS constraints
by solving P1.3 given vΦ. To make the objective value
to be non-increasing after each iteration for discrete phase
shifts, we update vt and {wt

k} only when
∑K

k=1 ∥w̃k∥2 ≤∑K
k=1 ∥w

t−1
k ∥2.

Fig. 10 plots the total transmit power consumption of the
proposed alternating DC method versus the number of RIS
elements for different phase quantization bits when K = 6,
M = 6. We observe that the total transmit power con-
sumption of the network with a discrete phase-shift RIS is
greater than that of the network with a continuous phase-shift
RIS. As the value of B increases, the total transmit power
consumption decreases. With 1-3-bit phase shifters, the per-
formance gap between the continuous and discrete phase
shifts increases as the number of passive elements increases.
Moreover, 4-bit phase shifters is practically sufficient to
achieve almost the same performance as the continuous phase
shifters.

VI. CONCLUSION

In this paper, we studied an RIS-empowered NOMA net-
work to minimize the total transmit power by jointly opti-
mizing the beamforming vectors at the BS and phase-shift
matrix at RIS, where the RIS is capable of inducing desirable
channel differences among the users to enhance the perfor-
mance of NOMA. To address the unique challenges of highly
coupled optimization variables and non-convex quadratic con-
straints, we proposed an alternating DC method to solve the

non-convex bi-quadratically constrained quadratic problem.
This is achieved by introducing an exact DC representation
for the rank-one constraints in the lifted non-convex QCQP
problems to accurately detect the feasibility of non-convex
quadratic constraints for the transmit beamforming vectors and
phase-shift matrix design. Therefore, early stopping can be
avoided in the procedure of alternating optimization, thereby
considerably improving the performance. We also developed
an efficient DC algorithm with convergence guarantee to
solve the resulting DC programming problems via successive
convex relaxation. We further proposed a low-complexity user
ordering scheme, which achieves a comparable performance
to the exhaustive search method. Simulation results demon-
strated that the proposed alternating DC method outperforms
the state-of-the-art methods in terms of total transmit power
minimization.

This initial investigation demonstrated the effectiveness of
deploying an RIS in NOMA networks for energy efficiency
enhancement. Numerical results also showed that RIS with low
phase resolution can achieve almost the same performance as
RIS with continuous phase shifts. More works are needed to
fully exploit the benefits of RIS-empowered NOMA systems,
including theoretical analysis, channel estimation, large-scale
optimization. For future studies, the resource allocation frame-
work developed in this paper will be extended to the scenario
with multiple BSs, while taking into account imperfect CSI
for practical implementations.

APPENDIX

A. Proof of Proposition 1

If matrix X is a rank-one PSD matrix, the nuclear norm
is equal to the spectral norm since σi(X) = 0 for all
i ≥ 2. Hence, ∥X∥∗ − ∥X∥2 =

∑N
i=2 σi(X) = 0 implies

that
∥∥[σ1(X), . . . ,σN (X)]

∥∥
0
≤ 1. Because of Tr(X) > 0,

we have σ1(X) > 0. Therefore, rank(X) = 1 is equivalent
to ∥X∥∗ − ∥X∥2 = 0. !

B. Proof of Proposition 3

Without loss of generality, we shall only present the proofs
of properties (i) and (ii), while properties (iii) and (iv) can be
proved similarly.

We first present the proof of property (i). For the sequence
{W r

k, k ∈ K} generated by iteratively solving problem (26),
we denote the dual variables as Y r

k ∈ ∂Wk
rh1. Due to the

strong convexity of h1, we have

hr+1
1 ≥ hr

1 +
K∑

k=1

⟨∆rW k, Y r
k⟩

+
η

2

K∑

k=1

∥∆rW k∥2
F , (35)

K∑

k=1

⟨W r
k, Y r

k⟩ = hr
1 + (h∗

1)
r, (36)
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where ∆rW k = W r+1
k −W r

k. By adding gr+1
1 to both sides

of (35), we obtain

f r+1
1 ≤ gr+1

1 −hr
1−

K∑

k=1

⟨∆rW k, Y r
k⟩−

η

2

K∑

k=1

∥∆rW k∥2
F ,

(37)

For the update of primal variable {W k, k ∈ K} according
to (25), we have Y r

k ∈ ∂Wk
r+1g1, which implies that

gr
1 ≥ gr+1

1 +
K∑

k=1

⟨−∆rW k, Y r
k⟩

+
η

2

K∑

k=1

∥∆rW k∥2
F , (38)

K∑

k=1

⟨W r+1
k , Y r

k⟩ = gr+1
1 + (g∗1)r. (39)

Similarly, by subtracting hr
1 from both sides of (38), we have

f r
1 ≥ gr+1

1 −hr
1+

K∑

k=1

⟨−∆rW k, Y r
k⟩+

η

2

K∑

k=1

∥∆rW k∥2
F .

(40)

By subtracting (39) from (36), we have

(f∗
1 )r =(h∗

1)
r−(g∗1)

r =gr+1
1 − hr

1+
K∑

k=1

⟨−∆rW k, Y r
k⟩, (41)

After combining (37) and (41), we have

(f∗
1 )r ≥ f r+1

1 +
η

2

K∑

k=1

∥∆rW k∥2
F . (42)

Similarly, after combining (40) and (41), we have

f r
1 ≥ (f∗

1 )r +
η

2

K∑

k=1

∥∆rW k∥2
F . (43)

Based on (42) and (43), we conclude that

f r
1 ≥ f r+1

1 + η
K∑

k=1

∥∆rW k∥2
F . (44)

Therefore, the sequence {f r
1} is non-increasing.

Since f1 ≥ 0 always holds, we conclude that the
sequence {f r

1} is strictly decreasing until convergence,
i.e., limr→∞

∑K
k=1 ∥∆rW k∥2

F = 0.
When the sequence {f r

1} converges at the limit point(
{W k, k ∈ K}

)
, for every limit point, the distances between

W r+1
k and W r

k satisfy ∥W r+1
k −W r

k∥2
F = 0, ∀ k = 1, . . . , K .

Based on inequalities (43) and (44), the equalities f r+1
1 =

f r
1 = (f∗

1 )r hold.
Based on the definitions of f1 and f∗

1 , we have f r+1
1 =

gr+1
1 −hr+1

1 and (f∗
1 )r = (h∗

1)r − (g∗1)r . Therefore, it follows
that

(h∗
1)

r + hr+1
1 = (g∗1)r + gr+1

1 . (45)

By combining (39) and (45), we obtain (h∗
1)r + hr+1

1 =∑K
k=1⟨W

r+1
k , Y r

k⟩. Since h1 is a convex function, we have

Y r
k ∈ ∂Wk

r+1h1, ∀k = 1, . . . , K . Therefore, we have Y r
k ∈

∂Wk
r+1g1 ∩ ∂Wk

r+1h1, ∀k = 1, . . . , K . It is concluded that(
{W r+1

k }
)

is a critical point of f1 = g1 − h1.
We now present the proof of property (ii). Based on the

above analysis, we have

Avg
( K∑

k=1

∥∥W r
k − W r+1

k

∥∥2

F

)
≤

r∑

i=0

1
η(r + 1)

(f i
1 − f i−1

1 )

≤ 1
η(r + 1)

(f0
1 −f r+1

1 ). (46)

We denote the optimal value of f1 as f⋆1 . Since inequality
f⋆1 ≤ f r+1

1 holds, we have

1
η(r + 1)

(f0
1 − f r+1

1 ) ≤ 1
η(r + 1)

(f0
1 − f⋆1 ). (47)

According to (46) and (47), we conclude that property (ii)
holds, i.e.,

Avg
(∥∥W r

k − W r+1
k

∥∥2

F

)
≤ f0

1 − f⋆1
η(r + 1)

, ∀ k = 1, . . . , K.

(48)

This completes the proof.

C. Proof of Proposition 4

We denote f
(
{wk},Θ

)
as the objective value of P1

for a feasible solution
(
{wk},Θ

)
. We denote

(
{wt

k},Θ
t
)

as a feasible solution of P1 at the t-th iteration. For a
given Θt, we apply the presented DC algorithm to obtain
a solution {W r

k} for problem P1.3, based on which we
obtain

(
{wt

k(wt
k)H}

)
as the initial point for the (t + 1)

iteration. Because the DC algorithm can accurately detect
the feasibility of rank-one constraints, the solution {wt+1

k }
can be obtained via cholesky decomposition, where W r

k =
wt+1

k (wt+1
k )H. Hence, we have f1

(
{wt+1

k (wt+1
k )H},Θt

)
=

f
(
{wt+1

k },Θt
)

and f1

(
{wt

k(wt
k)H},Θt

)
= f

(
{wt

k},Θ
t
)
.

According to Proposition 3, the object value of P1.3

is strictly decreasing over the iterations. Hence, we have
f1

(
{wt+1

k (wt+1
k )H},Θt

)
< f1

(
{wt

k(wt
k)H},Θt

)
. Based on

Algorithm 2, we have

f
(
{wt+1

k },Θt
)

< f
(
{wt

k},Θt
)
. (49)

For a given {wt+1
k , k ∈ K}, we also apply the duality-based

DC algorithm to solve problem P1.4. Based on Algorithm 2,
if there exists a feasible solution V t+1 to problem P1.4, it is
also feasible to problem P1.2, i.e.,

(
{wt+1

k },Θt+1
)

exists.
It follows that

f
(
{wt+1

k },Θt
)

= f
(
{wt+1

k },Θt+1
)
, (50)

where the equality holds as the value of f is independent of
Θ but only depends on {wk, k ∈ K}. Based on (49) and (50),
we further have f

(
{wt+1

k },Θt+1
)

< f
(
{wt

k},Θ
t
)
, which

demonstrates that the objective value of problem P1 is always
decreasing over iterations. Therefore, the proposed alternating
DC algorithm converges. This completes the proof.

Authorized licensed use limited to: ShanghaiTech University. Downloaded on August 03,2021 at 03:52:38 UTC from IEEE Xplore.  Restrictions apply. 



3816 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 69, NO. 6, JUNE 2021

REFERENCES

[1] M. Fu, Y. Zhou, and Y. Shi, “Intelligent reflecting surface for downlink
non-orthogonal multiple access networks,” in Proc. IEEE Global Com-
mun. Conf. (Globecom) Workshops, Waikoloa, HI, USA, Dec. 2019,
pp. 1–6. [Online]. Available: https://arxiv.org/abs/1906.09434.

[2] K. B. Letaief, W. Chen, Y. Shi, J. Zhang, and Y.-J.-A. Zhang, “The
roadmap to 6G: AI empowered wireless networks,” IEEE Commun.
Mag., vol. 57, no. 8, pp. 84–90, Aug. 2019.

[3] Y. Liu, Z. Qin, M. Elkashlan, Z. Ding, A. Nallanathan, and L. Hanzo,
“Nonorthogonal multiple access for 5G and beyond,” Proc. IEEE,
vol. 105, no. 12, pp. 2347–2381, Dec. 2017.

[4] L. Dai, B. Wang, Y. Yuan, S. Han, I. Chih-Lin, and Z. Wang, “Non-
orthogonal multiple access for 5G: Solutions, challenges, opportunities,
and future research trends,” IEEE Commun. Mag., vol. 53, no. 9,
pp. 74–81, Sep. 2015.

[5] Y. Zhou, V. W. S. Wong, and R. Schober, “Coverage and rate analysis
of millimeter wave NOMA networks with beam misalignment,” IEEE
Trans. Wireless Commun., vol. 17, no. 12, pp. 8211–8227, Dec. 2018.

[6] S. M. R. Islam, N. Avazov, O. A. Dobre, and K.-S. Kwak, “Power-
domain non-orthogonal multiple access (NOMA) in 5G systems: Poten-
tials and challenges,” IEEE Commun. Surveys Tuts., vol. 19, no. 2,
pp. 721–742, 2nd Quart., 2017.

[7] Z. Ding et al., “Application of non-orthogonal multiple access in LTE
and 5G networks,” IEEE Commun. Mag., vol. 55, no. 2, pp. 185–191,
Feb. 2017.

[8] Z. Ding, L. Dai, and H. V. Poor, “MIMO-NOMA design for small
packet transmission in the Internet of Things,” IEEE Access, vol. 4,
pp. 1393–1405, Apr. 2016.

[9] Y. Zhou, V. W. S. Wong, and R. Schober, “Dynamic decode-and-forward
based cooperative NOMA with spatially random users,” IEEE Trans.
Wireless Commun., vol. 17, no. 5, pp. 3340–3356, May 2018.

[10] Z. Ding, P. Fan, and V. Poor, “Impact of user pairing on 5G non-
orthogonal multiple access downlink transmissions,” IEEE Trans. Veh.
Technol., vol. 65, no. 8, pp. 6010–6023, Sep. 2016.

[11] N. Lu, N. Cheng, N. Zhang, X. Shen, and J. W. Mark, “Connected
vehicles: Solutions and challenges,” IEEE Internet Things J., vol. 1,
no. 4, pp. 289–299, Aug. 2014.

[12] T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding
metamaterials, digital metamaterials and programmable metamaterials,”
Light Sci. Appl., vol. 3, no. 10, p. e218, Oct. 2014.

[13] M. D. Renzo et al., “Smart radio environments empowered by recon-
figurable AI meta-surfaces: An idea whose time has come,” EURASIP
J. Wireless Commun. Netw., vol. 2019, no. 1, May 2019.

[14] C. Huang et al., “Holographic MIMO surfaces for 6G wireless networks:
Opportunities, challenges, and trends,” IEEE Wireless Commun., vol. 27,
no. 5, pp. 118–125, Oct. 2020.

[15] Q. Wu and R. Zhang, “Towards smart and reconfigurable environment:
Intelligent reflecting surface aided wireless network,” IEEE Commun.
Mag., vol. 58, no. 1, pp. 106–112, Jan. 2020.

[16] Y. Shi, J. Zhang, and K. B. Letaief, “Group sparse beamforming for
green cloud-RAN,” IEEE Trans. Wireless Commun., vol. 13, no. 5,
pp. 2809–2823, May 2014.

[17] C. Huang, A. Zappone, G. C. Alexandropoulos, M. Debbah, and
C. Yuen, “Reconfigurable intelligent surfaces for energy efficiency in
wireless communication,” IEEE Trans. Wireless Commun., vol. 18, no. 8,
pp. 4157–4170, Aug. 2019.

[18] Q. Wu and R. Zhang, “Intelligent reflecting surface enhanced wireless
network via joint active and passive beamforming,” IEEE Trans. Wireless
Commun., vol. 18, no. 11, pp. 5394–5409, Nov. 2019.

[19] H. Guo, Y.-C. Liang, J. Chen, and E. G. Larsson, “Weighted sum-rate
maximization for reconfigurable intelligent surface aided wireless net-
works,” IEEE Trans. Wireless Commun., vol. 19, no. 5, pp. 3064–3076,
May 2020.

[20] T. Jiang and Y. Shi, “Over-the-air computation via intelligent reflect-
ing surfaces,” in Proc. IEEE Global Commun. Conf. (GLOBECOM),
Waikoloa, HI, USA, Dec. 2019, pp. 1–6.

[21] X. Yu, D. Xu, and R. Schober, “Enabling secure wireless communica-
tions via intelligent reflecting surfaces,” in Proc. IEEE Global Commun.
Conf. (GLOBECOM), Waikoloa, HI, USA, Dec. 2019, pp. 1–6.

[22] J. Chen, Y.-C. Liang, Y. Pei, and H. Guo, “Intelligent reflecting surface:
A programmable wireless environment for physical layer security,” IEEE
Access, vol. 7, pp. 82599–82612, Jun. 2019.

[23] S. Xia and Y. Shi, “Intelligent reflecting surface for massive device
connectivity: Joint activity detection and channel estimation,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Barcelona,
Spain, May 2020, pp. 5175–5179.

[24] Z. Ding and H. V. Poor, “A simple design of IRS-NOMA transmission,”
IEEE Commun. Lett., vol. 24, no. 5, pp. 1119–1123, May 2020.

[25] G. Yang, X. Xu, and Y.-C. Liang, “Intelligent reflecting surface assisted
non-orthogonal multiple access,” in Proc. IEEE Wireless Commun. Netw.
Conf. (WCNC), Seoul, South Korea, May 2020, pp. 1–6.

[26] Y. Li, M. Jiang, Q. Zhang, and J. Qin, “Joint beamforming design
in multi-cluster MISO NOMA reconfigurable intelligent surface-aided
downlink communication networks,” IEEE Trans. Commun., vol. 69,
no. 1, pp. 664–674, Jan. 2021, doi: 10.1109/TCOMM.2020.3032695.

[27] J. Zhu, Y. Huang, J. Wang, K. Navaie, and Z. Ding, “Power efficient IRS-
assisted NOMA,” IEEE Trans. Commun., vol. 69, no. 2, pp. 900–913,
Feb. 2021, doi: 10.1109/TCOMM.2020.3029617.

[28] X. Mu, Y. Liu, L. Guo, J. Lin, and N. Al-Dhahir, “Exploiting intelligent
reflecting surfaces in NOMA networks: Joint beamforming optimiza-
tion,” IEEE Trans. Wireless Commun., vol. 19, no. 10, pp. 6884–6898,
Oct. 2020.

[29] J. Zuo, Y. Liu, Z. Qin, and N. Al-Dhahir, “Resource allocation in
intelligent reflecting surface assisted NOMA systems,” IEEE Trans.
Commun., vol. 68, no. 11, pp. 7170–7183, Nov. 2020.

[30] X. Liu, Y. Liu, Y. Chen, and H. V. Poor, “RIS enhanced massive
non-orthogonal multiple access networks: Deployment and passive
beamforming design,” IEEE J. Sel. Areas Commun., early access,
Aug. 24, 2020, doi: 10.1109/JSAC.2020.3018823.

[31] Y. Yang, B. Zheng, S. Zhang, and R. Zhang, “Intelligent reflecting
surface meets OFDM: Protocol design and rate maximization,” IEEE
Trans. Commun., vol. 68, no. 7, pp. 4522–4535, Jul. 2020.

[32] H. Liu, X. Yuan, and Y.-J.-A. Zhang, “Matrix-calibration-based cas-
caded channel estimation for reconfigurable intelligent surface assisted
multiuser MIMO,” IEEE J. Sel. Areas Commun., vol. 38, no. 11,
pp. 2621–2636, Nov. 2020.

[33] A. Taha, M. Alrabeiah, and A. Alkhateeb, “Enabling large intelligent
surfaces with compressive sensing and deep learning,” in Proc. IEEE
Global Commun. Conf. (Globecom), Waikoloa, HI, USA, Dec. 2019,
pp. 1–6.

[34] G. Zhou, C. Pan, H. Ren, K. Wang, M. Di Renzo, and A. Nallanathan,
“Robust beamforming design for intelligent reflecting surface aided
MISO communication systems,” IEEE Wireless Commun. Lett., vol. 9,
no. 10, pp. 1658–1662, Oct. 2020.

[35] X. Lu, W. Yang, X. Guan, Q. Wu, and Y. Cai, “Robust and secure
beamforming for intelligent reflecting surface aided mmWave MISO
systems,” IEEE Wireless Commun. Lett., vol. 9, no. 12, pp. 2068–2072,
Dec. 2020.

[36] X. Yu, D. Xu, Y. Sun, D. W. K. Ng, and R. Schober, “Robust and secure
wireless communications via intelligent reflecting surfaces,” IEEE J. Sel.
Areas Commun., vol. 38, no. 11, pp. 2637–2652, Nov. 2020.

[37] Y. Han, W. Tang, S. Jin, C.-K. Wen, and X. Ma, “Large intel-
ligent surface-assisted wireless communication exploiting statistical
CSI,” IEEE Trans. Veh. Technol., vol. 68, no. 8, pp. 8238–8242,
Aug. 2019.

[38] W. Fang, M. Fu, K. Wang, Y. Shi, and Y. Zhou, “Stochastic beam-
forming for reconfigurable intelligent surface aided over-the-air compu-
tation,” in Proc. GLOBECOM IEEE Global Commun. Conf., Dec. 2020,
pp. 1–6.

[39] Y. Liu, H. Xing, C. Pan, A. Nallanathan, M. Elkashlan, and L. Hanzo,
“Multiple-antenna-assisted non-orthogonal multiple access,” IEEE Wire-
less Commun., vol. 25, no. 2, pp. 17–23, Apr. 2018.

[40] J. Choi, “Minimum power multicast beamforming with superposition
coding for multiresolution broadcast and application to NOMA systems,”
IEEE Trans. Commun., vol. 63, no. 3, pp. 791–800, Mar. 2015.

[41] F. Alavi, K. Cumanan, Z. Ding, and A. G. Burr, “Beamforming
techniques for nonorthogonal multiple access in 5G cellular net-
works,” IEEE Trans. Veh. Technol., vol. 67, no. 10, pp. 9474–9487,
Oct. 2018.

[42] J. Zhu, J. Wang, Y. Huang, K. Navaie, Z. Ding, and L. Yang, “On optimal
beamforming design for downlink MISO NOMA systems,” IEEE Trans.
Veh. Technol., vol. 69, no. 3, pp. 3008–3020, Mar. 2020.

[43] Z.-Q. Luo, W.-K. Ma, A. So, Y. Ye, and S. Zhang, “Semidefinite
relaxation of quadratic optimization problems,” IEEE Signal Process.
Mag., vol. 27, no. 3, pp. 20–34, May 2010.

[44] E. Chen and M. Tao, “ADMM-based fast algorithm for multi-group
multicast beamforming in large-scale wireless systems,” IEEE Trans.
Commun., vol. 65, no. 6, pp. 2685–2698, Jun. 2017.

[45] L. Chen, X. Qin, and G. Wei, “A uniform-forcing transceiver design
for over-the-air function computation,” IEEE Wireless Commun. Lett.,
vol. 7, no. 6, pp. 942–945, Dec. 2018.

Authorized licensed use limited to: ShanghaiTech University. Downloaded on August 03,2021 at 03:52:38 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TCOMM.2020.3032695
http://dx.doi.org/10.1109/TCOMM.2020.3029617
http://dx.doi.org/10.1109/JSAC.2020.3018823


FU et al.: RIS EMPOWERED DOWNLINK NOMA 3817

[46] K. Yang, Y. Shi, and Z. Ding, “Data shuffling in wireless distributed
computing via low-rank optimization,” IEEE Trans. Signal Process.,
vol. 67, no. 12, pp. 3087–3099, Jun. 2019.

[47] K. Yang, T. Jiang, Y. Shi, and Z. Ding, “Federated learning via over-
the-air computation,” IEEE Trans. Wireless Commun., vol. 19, no. 3,
pp. 2022–2035, Mar. 2020.

[48] P. D. Tao and L. T. H. An, “Convex analysis approach to DC pro-
gramming: Theory, algorithms and applications,” Acta Math. Vietnam.,
vol. 22, no. 1, pp. 289–355, 1997.

[49] R. T. Rockafellar, Convex Analysis. Princeton, NJ, USA: Princeton Univ.
Press, 2015.

[50] M. Grant and S. Boyd. (Mar. 2014). CVX: MATLAB Software for
Disciplined Convex Programming, Version 2.1. [Online]. Available:
http://cvxr.com/cvx

[51] Y. Zhou, V. W. S. Wong, and R. Schober, “Stable throughput regions
of opportunistic NOMA and cooperative NOMA with full-duplex relay-
ing,” IEEE Trans. Wireless Commun., vol. 17, no. 8, pp. 5059–5075,
Aug. 2018.

[52] Further Advancements for E-Utra Physical Layer Aspects (Release 9),
document 3GPP TS 36.814, Mar. 2010.

[53] S. Zhang and R. Zhang, “Capacity characterization for intelligent
reflecting surface aided MIMO communication,” IEEE J. Sel. Areas
Commun., vol. 38, no. 8, pp. 1823–1838, Aug. 2020.

[54] B. Di, H. Zhang, L. Song, Y. Li, Z. Han, and H. V. Poor,
“Hybrid beamforming for reconfigurable intelligent surface based multi-
user communications: Achievable rates with limited discrete phase
shifts,” IEEE J. Sel. Areas Commun., vol. 38, no. 8, pp. 1809–1822,
Aug. 2020.

[55] Q. Wu and R. Zhang, “Beamforming optimization for wireless network
aided by intelligent reflecting surface with discrete phase shifts,” IEEE
Trans. Commun., vol. 68, no. 3, pp. 1838–1851, Mar. 2020.

Min Fu (Student Member, IEEE) received the B.S.
degree in smart grid from the Nanjing University
of Science and Technology, Nanjing, China, 2017.
She is currently pursuing the Ph.D. degree with
the School of Information Science and Technol-
ogy, ShanghaiTech University, Shanghai, China. Her
research interests include optimization and recon-
figurable intelligent surfaces and their applications
to 6G.

Yong Zhou (Member, IEEE) received the B.Sc. and
M.Eng. degrees from Shandong University, Jinan,
China, in 2008 and 2011, respectively, and the Ph.D.
degree from the University of Waterloo, Waterloo,
ON, Canada, in 2015. From November 2015 to Janu-
ary 2018, he worked as a Postdoctoral Research Fel-
low with the Department of Electrical and Computer
Engineering, The University of British Columbia,
Vancouver, Canada. He is currently an Assistant
Professor with the School of Information Science
and Technology, ShanghaiTech University, Shang-

hai, China. His research interests include the Internet of Things, edge
computing, and reconfigurable intelligent surfaces.

Yuanming Shi (Senior Member, IEEE) received the
B.S. degree in electronic engineering from Tsinghua
University, Beijing, China, in 2011, and the Ph.D.
degree in electronic and computer engineering from
The Hong Kong University of Science and Tech-
nology (HKUST) in 2015. Since September 2015,
he has been with the School of Information Science
and Technology, ShanghaiTech University, where he
is currently a tenured Associate Professor. He visited
the University of California, Berkeley, CA, USA,
from October 2016 to February 2017. His research

areas include optimization, statistics, machine learning, signal processing, and
their applications to 6G, the IoT, and AI. He was a recipient of the 2016 IEEE
Marconi Prize Paper Award in Wireless Communications, and the 2016 Young
Author Best Paper Award by the IEEE Signal Processing Society. He is also
an Editor of IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS and
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS.

Khaled B. Letaief (Fellow, IEEE) received the
B.S. (Hons.), M.S., and Ph.D. degrees in electrical
engineering from Purdue University, West Lafayette,
IN, USA, in December 1984, August 1986, and
May 1990, respectively.

From 1990 to 1993, he was a Faculty Member with
the University of Melbourne, Australia. Since 1993,
he has been with The Hong Kong University of Sci-
ence and Technology (HKUST). While at HKUST,
he has held many administrative positions, including
the Dean of Engineering, the Head of the Electronic

and Computer Engineering Department, the Director of the Wireless IC
Design Center, the Founding Director of the Huawei Innovation Laboratory,
and the Director of the Hong Kong Telecom Institute of Information Tech-
nology. He also served as consultants for different organizations, including
Huawei, ASTRI, ZTE, Nortel, PricewaterhouseCoopers, and Motorola. He has
also been involved in organizing many flagship international conferences.
He is also an Internationally Recognized Leader in wireless communications
and networks with research interest in artificial intelligence, big data analytics
systems, mobile cloud and edge computing, tactile Internet, 5G systems and
beyond. In these areas, he has over 630 papers with over 38 600 citations and
an h-index of 87 along with 15 patents, including 11 US inventions.

Dr. Letaief is currently a member of the United States National Academy of
Engineering, fellow of The Hong Kong Institution of Engineers, and a member
of the Hong Kong Academy of Engineering Sciences. He is also recognized by
Thomson Reuters as an ISI Highly Cited Researcher and was listed among
the 2020 top 30 of AI 2000 Internet of Things Most Influential Scholars.
He was a recipient of many distinguished awards and honors, including
the 2019 Distinguished Research Excellence Award by the HKUST School
of Engineering (Highest research award and only one recipient/3 years is
honored for his/her contributions), the 2019 IEEE Communications Society
and Information Theory Society Joint Paper Award, the 2018 IEEE Signal
Processing Society Young Author Best Paper Award, the 2017 IEEE Cognitive
Networks Technical Committee Publication Award, the 2016 IEEE Signal
Processing Society Young Author Best Paper Award, the 2016 IEEE Marconi
Prize Paper Award in Wireless Communications, the 2011 IEEE Wireless
Communications Technical Committee Recognition Award, the 2011 IEEE
Communications Society Harold Sobol Award, the 2010 Purdue University
Outstanding Electrical and Computer Engineer Award, the 2009 IEEE Marconi
Prize Award in Wireless Communications, the 2007 IEEE Communica-
tions Society Joseph LoCicero Publications Exemplary Award, and over
16 IEEE best paper awards. He is also well recognized for his dedicated
service to professional societies and IEEE, where he has served in many
leadership positions, including a Treasurer for the IEEE Communications
Society, the IEEE Communications Society Vice-President for Conferences,
the Chair of IEEE Committee on Wireless Communications, the elected
member of IEEE Product Services and Publications Board, and the IEEE
Communications Society Vice-President for Technical Activities. He also
served as a President of the IEEE Communications Society from 2018 to
2019, the world’s leading organization for communications professionals
with headquarter in New York and members in 162 countries. He is also
the Founding Editor-in-Chief of the prestigious IEEE TRANSACTIONS ON
WIRELESS COMMUNICATIONS and has served on the editorial board of
other premier journals, including the Editor-in Chief for IEEE JOURNAL ON
SELECTED AREAS IN COMMUNICATIONS—WIRELESS SERIES.

Authorized licensed use limited to: ShanghaiTech University. Downloaded on August 03,2021 at 03:52:38 UTC from IEEE Xplore.  Restrictions apply. 


