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Social Internet of Things has recently become a promising paradigm for augmenting the capability of humans

and devices connected in the networks to provide services. In social Internet of Things network, crowdsourc-

ing that collects the intelligence of the human crowd has served as a powerful tool for data acquisition and

distributed computing. To support critical applications (e.g., a recommendation system and assessing the in-

equality of urban perception), in this article, we shall focus on the collaborative ranking problems for user

preference prediction from crowdsourced pairwise comparisons. Based on the Bradley–Terry–Luce (BTL)

model, a maximum likelihood estimation (MLE) is proposed via low-rank approach in order to estimate the

underlying weight/score matrix, thereby predicting the ranking list for each user. A novel regularized formu-

lation with the smoothed surrogate of elementwise infinity norm is proposed in order to address the unique

challenge of the coupled the non-smooth elementwise infinity norm constraint and non-convex low-rank

constraint in the MLE problem. We solve the resulting smoothed rank-constrained optimization problem

via developing the Riemannian trust-region algorithm on quotient manifolds of fixed-rank matrices, which

enjoys the superlinear convergence rate. The admirable performance and algorithmic advantages of the pro-

posed method over the state-of-the-art algorithms are demonstrated via numerical results. Moreover, the

proposed method outperforms state-of-the-art algorithms on large collaborative filtering datasets in both

success rate of inferring preference and normalized discounted cumulative gain.

CCS Concepts: • Human-centered computing → Collaborative and social computing; Social recom-

mendation;

Additional Key Words and Phrases: Ranking, pairwise comparison, crowdsourced data, social Internet of

Things, low-rank optimization, smoothed matrix manifold optimization

ACM Reference format:

Jialin Dong, Kai Yang, and Yuanming Shi. 2020. Ranking from Crowdsourced Pairwise Comparisons via

Smoothed Riemannian Optimization. ACM Trans. Knowl. Discov. Data 14, 2, Article 19 (February 2020), 26

pages.

https://doi.org/10.1145/3372407

Part of this work was presented at the IEEE International Conference on Data Mining Workshops (ICDMW), New Orleans,

LA, Dec. 2017. This work was supported by the National Nature Science Foundation of China under Grant 61601290.

Authors’ addresses: J. Dong, K. Yang, and Y. Shi (corresponding author) are with Shanghai Tech University, Shanghai

201210, China; emails: {dongjl, yangkai, shiym}@shanghaitech.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

1556-4681/2020/02-ART19 $15.00

https://doi.org/10.1145/3372407

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 2, Article 19. Publication date: February 2020.

https://doi.org/10.1145/3372407
mailto:permissions@acm.org
https://doi.org/10.1145/3372407


19:2 J. Dong et al.

1 INTRODUCTION

Recent advancements in sensor technologies and communication has facilitated the development
of the Internet of Things (IoT) where various devices, e.g., sensors, smartphones, autonomous
cars, and the like, are connected to the internet [39]. By leveraging the interaction among the
devices in IoT, the social IoT introduces social relationships among devices [44]. In the social IoT,
the principles of crowdsourcing have been exploited in solving a series of issues involving data
acquisition, processing, and collaborations among participators in a crowdsourcing network [44].
To be specific, crowdsourcing that exploits the collective intelligence of the human crowd holds
many advantages such as scalability, mobility, and cost-efficiency and can effectively enhance the
intelligence of the services, and improve the interactions between the human and the environment
[24]. The advantages of crowdsourcing enable a crowdsourcing solution to support a great number
of applications in the social IoT, ranging from social trend understanding and positioning services
[22, 47] to smart home, smart city, and smart traffic [25].

In recent years, ranking problems have been considered in order to support a variety of applica-
tions such as recommendation system in social IoT networks where the human crowd contribute
to data collection and acquisition. Moreover, a growing body of literature has focused on ranking
prediction from pairwise comparison [23] with applications including evaluating people’s percep-
tion of cities from pairwise comparisons of street views of the cities [37], recommendation system,
[40] and online sequential survey sampling for quantifying the popularity of proposals among vot-
ers [38]. Compared with the conventional numerical measurement considered in the collaborative
ranking [4, 28, 43, 45], pairwise comparison measurement has advantages in statistics (e.g., con-
sistency) [46] and manageability (e.g., facilitating ease of data storage and transmission). To be
specific, it is complex and costly for users to reflect preference on a single number [46]. Another
problem concerning numerical rating is that users are tend to rate high score on already top-ranked
item which is known as selection bias. In this article, we are interested in the ranking prediction
from crowdsourced pairwise measurements in social IoT. Consider reducing the overhead of data
collection, we only collect partial pairwise comparisons.

Collecting data from crowed workers on crowdsourcing platforms such as Amazon Mechani-
cal Turk, Zooinverse, Planet Hunters, and the like. for various applications has recently become
prominent. Crowdsourcing has also become a powerful tool to collect pairwise measurements
in the social IoT networks in order to serve some applications, i.e., recommendation system and
assessing the inequality of urban perception. From the collected pairwise comparisons, the un-
derlying information can be revealed. There are two typical ranking problems: aggregate rank-
ing [18] and collaborative ranking [35] which assume the existence of the underlying preference
weight/score vector and matrix respectively. A line of works has focused on recovering matrices
or vectors based on various parametric models, e.g., strong stochastic transitivity (SST) model [40]
and Bradley–Terry–Luce (BTL) model [3]. Specifically, the class of SST models is defined by as-
suming the existence of a total ordering of items. In contrast to the SST models, the BTL models
assume the existence of “quality” parameter for each item, which facilitates to deal with the het-
erogeneity of the workers in crowdsourcing system and exploit the diversity of preferences among
items [40]. In this article, the pairwise comparison measurements based on the BTL model is ex-
ploited in order to support efficient algorithm design. In addition, we assume that the underlying
preference weight matrix in the BTL model is a low-rank matrix based on the fact that preferences
are only dependent on a few factors [36]. This property increases the possibility of recovering the
exact ranking lists from partial pairwise comparisons.

In this article, the maximum likelihood estimation (MLE) approach is exploited to estimate the
underlying weight/score matrix based on the BTL model, followed by recovering the individual
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rankings from the estimated weight/score matrix. In addition, we introduce the elementwise in-
finity norm constraint to avoid the excessive “spikiness” of the score matrix. Unfortunately, the
resulting MLE problem is a low-rank optimization problem, which is known to be non-convex
and NP-hard problem [21]. Fortunately, a flourishing body of works has recently made marvelous
progress on the class of provable non-convex optimization problems.

1.1 Related Work

The semidefinite programming (SDP) approach via nuclear norm relaxation for low-rank matrix
optimization has been provided rigor theoretical guarantees by a growing body of literature [20, 30,
35]. However, SDP is prohibitive from being adopted to high-dimensional data problem due to the
high computational and memory cost. To reduce the computational and storage cost, the Burer and
Monteiro heuristic (e.g., [34]) has been proposed that factors X ∈ Rm×n asUVT whereU ∈ Rm×r

and V ∈ Rn×r . However, the optimization problem is non-convex in U and V . Fortunately, recent
years significant progress has been made on non-convex paradigms for low-rank optimization
problems, which improves the computational efficiency in various important problems, including
phase retrieval [17], matrix completion [17], matrix sensing, [34] and community detection [5].

Specifically, for low-rank matrix optimization, a line of literature showed that a series of
methods, i.e., gradient descent (GD), stochastic gradient descent (SGD), alternating minimization
(AltMin), and block coordinate descent (BCD) methods, yield fast local convergence to global min-
imum matrix optimization (e.g., [19, 26, 41]) based on a benign initial point. Specifically, the work
[41] achieved this goal via showing the analogous strong convexity in the neighborhood of the
globally optimal solution. Moreover, the Bi-factor gradient descent (BFGD) algorithm is proposed
by the work [33] that converges to the rank-r approximation to the underlying matrix.

Contrast to this line of works, works like [9, 29], [1, Section 7] elude careful initialization and
provide theoretical analysis. Specifically, GD converges to the local minimizer with random ini-
tialization for strict-saddle function problems where all the saddle points have negative curvature
[29]. Similarly, SGD converges to the close neighborhood of the global optimum from random
initialization in low-rank matrix recovery problems [9]. All the algorithms above are first-order
algorithms which endow with linear convergence rate. Recently, trust-region method [1, Section 7]
turns out be a powerful algorithm which is guaranteed to converge to local minimizer at a super-
linear convergence rate which enjoys lower iteration complexity than the first-order algorithm
does. It has also been applied in problems of synchronization and community detection, where
Riemannian trust-region algorithm returns global optima since second-order necessary optimal-
ity conditions are sufficient to global optimality in this problem [12]. The remarkable recent results
of non-convex paradigms are summarized in Table 1.

Compared with the state-of-the-art algorithms, the Riemannian trust-region method [1, Sec-
tion 7] enjoys the advantages of initialization robustness, computational efficiency, and fast
convergence results. Based on the above consideration, the Riemannian trust-region method is
adopted to solve the optimization problem in this article. To achieve this goal, unique challenges
for the presented low-rank optimization problems arise due to the additional non-smooth ele-
mentwise infinity constraint. the original low-rank MLE problem is thus reformulated as a rank-
constrained regularized optimization problem on the manifold. Therein, a smoothed surrogate for
the elementwise infinity norm is proposed in the objective function. Compared to the commonly
used smoothed surrogate, log-barrier method [8, 16], which calls for solving a sequence of opti-
mization problem with different regularized parameters, the proposed smoothed surrogate yields
computational efficiency. Furthermore, by exploiting the quotient manifold geometry of fixed-rank
matrices, a scalable Riemannian trust-region algorithm is developed, endowed with superlinear
convergence rate.
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Table 1. Comparison of Related Works

Initialization Algorithm Type of problem Converge result
Optimality
guarantee

good point

GD [19, 41] SGD
BCD [41] AltMin

[26]

low-rank matrix
completion

global optimum

analogous strong
convexity in the
neighborhood of

the globally
optimal solution

BFGD [33]
generic convex

objective function

the rank-r
approximation to

the underlying
matrix

N/A

random point

GD [29]
strict-saddle

objective function
local minimizer N/A

SGD [9]
low-rank matrix

completion

the close
neighborhood of

the global optimum

all local minima
are very close to a
global optimum

RTR [1, Section 7]

smooth objective
function with

compact
Riemannian

manifold

local minimizer N/A

1.2 Contributions

The major contributions to the ranking problem from crowdsourced pairwise comparisons is sum-
marized as follows:

(1) The low-rank optimization model with coupled fixed-rank constraint and elementwise
infinity norm constraint is presented to recover user individual ranking lists from pairwise
measurements.

(2) To address the unique challenge of coupled non-smooth elementwise infinity norm con-
straint and non-convex fixed-rank constraint, the original problem is reformulated as a
rank-constrained smoothed regularized optimization problem with a smoothed surrogate
of elementwise infinity norm.

(3) To solve the rank-constrained smoothed optimization problem, we develop the smoothed
Riemannian trust-region algorithm via exploiting the geometric structure of fixed-rank
matrices, which reduces the computational cost and achieve good performance.

Simulation results on both synthetic data and large collaborative filtering datasets demonstrated
that the proposed smoothed regularized approach supported by Riemannian trust-region algo-
rithm has the advantages over the state-of-the-art algorithms in terms of both algorithmic advan-
tages and admirable performance.

1.3 Organization

The remainder of this article is organized as follows. In Section 2, we introduce the system model
and problem formulations. A regularized smoothed MLE to estimate the underlying score matrix
is developed in Section 3. We further present the matrix optimization over quotient manifold of
fixed-rank matrices in Section 4. Numerical results will be demonstrated in Section 5. Finally, we
conclude the article and discuss several interesting directions of future work in Section 6. The
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Fig. 1. The proposed framework of approach for ranking from pairwise comparisons in crowdsourcing

system.

proof of propositions and details about deriving the related matrix optimization ingredients are
illustrated in the appendix. To sum up, the procedure of the proposed approach for ranking from
pairwise comparisons in the crowdsourcing system is illustrated in Figure 1.

2 SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first present the framework of crowdsourcing system. In particular, we consider
the recovery of individual rankings from pairwise comparisons which are assumed to be generated
according to the BTL model [3, 15]. The individual rankings shall be predicted via estimating the
associated weight matrix under the BTL model by using MLE.

2.1 Data Model

Consider a crowdsourcing system that includesm crowd users who provide preferences among n
items. We collect pairwise comparisons {Yi jk ∈ {1,−1} : (i, j,k ) ∈ Ω} with Ω ⊆ [m] × [n] × [n] as
the observation set, where [n] represents the set {1, 2, . . . ,n}. Here, Yi jk = 1 presents that the user
i prefers item j to item k , otherwiseYi jk = −1. The primary purpose of using pairwise comparisons
is to address the inconsistencies among various users [46]. Moreover, the pairwise comparisons
can reduce the power-consumption in data management. Note that it is impractical and also not
necessary to obtain all pairwise comparisons for the large-scale ranking problem, for which only
partial observations are needed [46].

The observation variables are analyzed under the well-known BTL model associated with the
logistic distribution [15]. The logistic function is written as

f (z) =
1

1 + exp( −z
σ

)
, (1)

where the parameter σ > 0. Here, the underlying preference score/weight matrix is denoted as
X ∈ Rm×n and the pairwise comparison measurement between item j and k provided by user i is
given by [20]

Yi jk =

{
+1 with probability f (Δi jk )

−1 with probability 1 − f (Δi jk )
∀ (i, j,k ) ∈ Ω, (2)

where Δi jk = Xi j − Xik and the index set of the observed pairwise comparison measurements is
denoted as Ω. Here, we assume that the observations are independent with each other.

In this article, we focus on the individual rankings recovery problem. Hence, an associated score

τ (i )
j for each user i ∈ [m] over the item j ∈ [n] is introduced as [40]

τ (i )
j :=

1

n

n∑
k=1

f (Δi jk ). (3)
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The score τ (i )
j associated with user i denotes the probability that item j is preferred to an item

chosen uniformly at random from all n items. We assume that each comparison necessarily results

in one winner and the scores τ (i )
j for i = 1, . . .m, j = 1, . . .n are strictly different almost surely.

Furthermore, the ranking list for user i over a set of n items is represented by a mapping π : [n]→
[n] given as

τ (i )
π (1)
> τ (i )

π (2)
> · · · > τ (i )

π (n)
, (4)

where the k-th ranked item based on the scores derived from (3) is denoted as π (k ).
In this article, our target is to recover the individual rankings (4) via estimating the weight matrix

X from pairwise comparisons [35]. Consider the fact that only a small number of factors affect
the preference [2], we assume that the weight matrix is low-rank. Specifically, in a linear factor
model, a user’s preference vector can be represented by a linear combination of factor vector with
corresponding coefficients. Therefore, in a r -factor model, there is a coefficient matrix U ∈ Rm×r

of which each row represents the proportion of associated factor being considered by each user,
and a weight/score matrix V ∈ Rn×r of which each row represents weights of each item in terms
of various factors. The weight matrix X ∈ Rm×n is thus a factorization in the form ofUVT whose
rank is at most r [2].

2.2 Maximum-Likelihood Estimation of Weight Matrix

The MLE method is exploited to estimate the weight matrix X from partial pairwise comparisons.
In view of the BTL model for the pairwise comparisons (2), the negative log-likelihood function is
presented as [20]

LΩ,Y (X ) = −
∑

(i, j,k )∈Ω

{
I(Yi jk=1) log( f (Δi jk ))

+ I(Yi jk=−1) log(1 − f (Δi jk ))
}
, (5)

where observed pairwise comparisons is denoted asY ∈ {1,−1}m×n×n and Iμ is the indicator func-
tion, i.e., Iμ = 1 if the event μ is true, otherwise, Iμ = 0. To estimate the low-rank score/weight ma-
trix X , an optimization problem is proposed that minimizes the negative log-likelihood function
with the exact rank constraint:

minimize
X ∈Rm×n

LΩ,Y (X )

subject to rank(X ) = r , (6)

where the prior information r � min{m,n} denotes the rank of weight matrix. Here,LΩ,Y (X ) can
be further written as

LΩ,Y (X ) = −
∑

(i, j,k )∈Ω

log( f (Yi jk (Xi j − Xik ))). (7)

To avoid ill-posedness and the excessive “spikiness” of the matrix of problem (6), the element-
wise infinity norm constraint is imposed to bound the magnitude of elements in matrixX [30]. The
elementwise infinity norm constraint can be termed as an incoherence requirement to ensure that
the estimation matrix is not orthogonal to the observation operator, i.e., the model of generating
pairwise comparisons. The optimization problem (6) thus can be reformulate as
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P : minimize
X ∈Rm×n

LΩ,Y (X )

subject to rank(X ) = r

‖X ‖∞ ≤ α , (8)

where an arbitrary reasonable parameter α > 0 and ‖X ‖∞ = maxi, j |Xi j | denotes the elementwise
infinity norm. From a sequence of pairwise comparisons, i.e., Yi jk ∈ {1,−1}, we estimated the
weight matrix X by solving problem P . Then, the ranking list for each user can be recovered
based on (3) and (4). However, the fixed-rank constraint makes problem P (8) non-convex. In this
article, we aim at providing efficient algorithms to solve the non-convex optimization problem.

2.3 Problem Analysis

The fixed-rank constraint makes the original problem P (8) NP-hard. Both non-convex optimiza-
tion approaches [33] and convex relaxation methods [20] have made remarkable progress to ad-
dress the NP-hardness. In this subsection, we present the state-of-the-art methods of solving the
low-rank optimization problems and present their limitations.

2.3.1 Convex Relaxation Approach. A line of literature [20, 30, 35] exploited the nuclear norm
convex relaxation method, yielding the following formulation:

minimize
X ∈Rm×n

LΩ,Y (X )

subject to ‖X ‖∗ ≤ α
√
rmn, (9)

where the nuclear norm of X , i.e., the summation of singular values of matrix is denoted as ‖X ‖∗.
The rank parameter r is sufficiently small, i.e., r � min (m,n). Here, to ensure the elementwise
infinity norm constraint in P (8), we scale the estimated matrix X to ‖X ‖∞ = α . The computa-
tional cost of solving (9) often prohibits the convex relaxation approach to large-dimensional data
set. To address this issue, scalable methods, e.g., non-monotone spectral projected-gradient (SPG)
method [20], which is based on the projected GD method, have been developed. Specifically, let
X = UΣVT with Σ = diag(σ1, . . . ,σ2). Then the orthogonal projection onto {X: ‖X ‖∗ ≤ α

√
rmn}

is provided as [20]

P (X ) = Umax{Σ − λI , 0}VT , (10)

where max{·} is an entry-wise function and λ > 0 is the smallest value satisfying the constraint∑d
i=1 max{σi − λ, 0} ≤ α . The iterate is thus represented as

X k+1 := P (Xk − βγk∇f (Xk )), (11)

where the details for choosing stepsize β ∈ (0, 1] and spectral stepsize γk can be found in [20].
However, it is computationally expensive to calculate orthogonal projections via singular value de-
composition (SVD) at each iteration. Hence, it is inapplicable to implement such convex paradigms
to large-dimensional data.

2.3.2 Non-convex Optimization Paradigms. A line of recent works [5, 33] has developed
non-convex optimization algorithms based on the matrix factorization (i.e., factoring X as
UVT , where U ∈ Rm×r and V ∈ Rn×r ) which enjoys the low computational complexity. Here,
log-barrier penalty function [14, 16, Section 11.2] is widely exploited to guarantee the elementwise
infinity norm constraint. Hence, problem P (8) can be transformed to a non-convex optimization
problem [8]:

minimize
U ∈Rm×r ,V ∈Rn×r

LΩ,Y (UVT ) − 1

τ

∑
a,b

log(1 − (U a, .V
T
b, ./α )2), (12)

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 2, Article 19. Publication date: February 2020.



19:8 J. Dong et al.

where the a-th row ofU is denoted byU a, . and the b-th row ofV is denoted byV b, . . The tightness
of approximation of elementwise infinity norm constraint is determined by the parameter τ .
This problem (12) can be solved via the log-barrier method [16] that computes a series of convex
problems with the regularized parameter τ0, μ · τ0, μ

2 · τ0, . . . where μ > 1. To be specific, the
Bi-factor gradient descent algorithm (BFGD) updates factorizations simultaneously [33]

U t+1 = U t − s (∇U F (U tV t )), (13)

V t+1 = V t − s (∇V F (U tV t )), (14)

where F (X ) denotes the objective function in (12) and s > 0 is the constant stepsize. We scale the
estimated matrix X to ‖X ‖∞ = α . The disadvantages of this methods are that the outer iteration
of log-barrier method increases the computational complexity and the first-order method, i.e.,
BFGD, endows with slow convergence rate.

In this article, the quotient manifold of fixed-rank matrices is exploited to remove the indeter-
minacy for matrix factorization. The Riemannian trust-region algorithm that enjoys superlinear
convergence rate [1, Section 7] is further developed. However, the non-smooth elementwise infin-
ity norm constraint brings extra challenge [1, Section 7]. The procedure of addressing this issue
will be introduced in next section.

3 REGULARIZED SMOOTHED MLE FOR SCORE MATRIX ESTIMATION VIA

RIEMANNIAN OPTIMIZATION

In this section, to develop more efficient algorithms, we reformulate the low-rank MLE problem
(8) to the smoothed regularized optimization problem, thereby developing the matrix manifold
optimization by exploiting the geometry of quotient manifold of fixed-rank matrices [32].

3.1 Computational Opportunities via Smoothing Methods

Different from the log-barrier penalty approach [8, 16] to ensure ‖X ‖∞ ≤ α , we proposed a
smoothed surrogate, of which the advantage will be explicated in the sequel.

Definition 1. [6] Consider a closed and proper convex functionд, withX ⊆ domд being a closed
convex set andK ≥ 0, α > 0. The “μ-smooth approximation” ofд overX with parameters (α , β,K ),
denoted as дμ , satisfies that

‖∇дμ (x ) − ∇дμ (y)‖1 ≤
(
K +

α

μ

)
‖x −y‖∞, (15)

where x ,y ∈ X.

Based on Theorem 4.2 in [6], we propose the smoothed approximation of the non-smooth func-
tion ‖X ‖2∞.

Proposition 1. Given a compact convex set GX ⊆ Rm×n , then the function pμ (X ) =

μ log
∑

i j e
X 2

i j /μ is a μ-smooth approximation of p (X ) = ‖X ‖2∞ with parameters (4M2
f
, log(mn), 2)

over GX , where Mf = max{‖X ‖∞ : X ∈ GX }.

Proof. Please refer to Appendix A for details. �

Based on Proposition 1, log
∑

i j e
X 2

i j is chosen as the smoothed surrogate of ‖X ‖2∞ in order to

guarantee the constraint ‖X ‖2∞ ≤ α2 in problem (8). Hence, the regularized smoothed optimization
problem can be written as

P : minimize
X ∈M

LΩ,Y (X ) + λ logN (X ), (16)
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where λ = r 2
√
K logK is a constant regularized parameter to well approximate problem (8) [42]

and N (X ) =
∑

i, j e
X 2

i j . The individual ranking lists can recovered from the estimated matrix based
on 4. In addition, we scale the estimated matrix X to ‖X ‖∞ = α in order to control the bound on
the individual elements. The proposed smoothed approximation is more computationally efficient
than the prevalent log-barrier penalty approach [8, 16], since the optimization problem with reg-
ularized log-barrier function must be solved by a sequence of problems with different regularized
parameters to address the infiniteness near the boundary of feasible set. [14, Section 11.2].

The rank-constrained smoothed optimization formulation with quadratic least-square objective
function has been widely investigated in low-rank matrix completion [32], which is endowed with
algorithmic advantages by exploiting the geometry of quotient manifold of fixed-rank matrices
[1]. However, unique challenges of generalizing geometric concepts in the Euclidean space to the
geometric concepts on the quotient manifold of fixed-rank matrices arises due to the complicated
structure of the objective function (16). The procedure of addressing this issue will be demonstrated
in Section 4.2.

We denote the objective function as F (X ) in the following discussion. To analyze the geometry
of F (X ), we present the following propositions.

Proposition 2. The function F (X ) is smooth (i.e., F (X ) has Lipschitz gradient and Lipschitz Hes-

sian) and convex over {X ∈ Rm×n : ‖X ‖∞ ≤ α }.

Proof. Please refer to Appendix B for details. �

Hence, Proposition 2 demonstrates that the objective function F (X ) is smooth and convex over
the compact convex set in the Euclidean space Rm×n . The smooth convex property of problem (16)
paves the way to develop sophisticated algorithms that enjoys a superlinear convergence rate on
the manifoldM [1, Section 7.1] which will be explained in the next section.

3.2 Fixed-Rank Matrix Factorization

The primary idea of Riemannian optimization for rank-constrained problem is based on matrix
factorization. Three main types of fixed-rank matrix factorization [32] are subspace-projection
factorization, polar factorization and balanced factorization. In particular, the balanced factoriza-
tion is obtained from the SVD, represented as

X = (UΣ
1
2 ) (Σ

1
2VT ) = LRT , (17)

where L = UΣ
1
2 ∈ Rm×r

∗ and R = VΣ
1
2 ∈ Rn×r

∗ are full-rank matrices [31]. Compared with the
other two matrix factorizations, balanced factorization endows with lower-dimensional search
space [11]. Moreover, it satisfied the structure of the weight matrix that each row of the coefficient
matrix L can represents the extent to which each factor is used and the rows of the factor matrix
R� are the factors [36]. We thus develop the matrix manifold optimization framework via balanced
factorization.

3.3 Quotient Manifold Space

Note that the balanced factorization is not unique based on the fact thatX = LM−1 (RMT )T = LRT

where M ∈ GL(r ) = {M ∈ Rr×r : det(M ) � 0} [1, 31]. Hence, to address this issue, the quotient

spaceM/∼ := (Rm×r
∗ ×Rn×r

∗ )/GL(r ), whereM := Rm×r
∗ ×Rn×r

∗ is the computational space and ∼
represents the equivalence relation, is exploited to represent the search space for problem P . The
quotient space describes the set of equivalence classes

[(L,R)] = {(LM−1,RMT ) : M ∈ GL(r )}. (18)
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The quotient manifold plays a vital role in dealing with the unique issue of the matrix factorization.
Due to the quotient manifoldM/∼ is an abstract space, the corresponding matrix representations
of geometric objects in M/∼ are required to design algorithms. In addition, the matrix repre-
sentations can be computed in the computational space M based on the theory of Riemannian

submersion [1, Section 3.6.2].

4 MATRIX OPTIMIZATION OVER QUOTIENT MANIFOLDS

In this section, the matrix optimization algorithm is developed over the quotient manifold space
endowed with fixed-rank matrices. Specifically, the basic geometric concepts on the quotient man-
ifold and the corresponding matrix representations on the computational space are presented in
Section 4.1. Based on the framework of Riemannian optimization, we derive the optimization-
related ingredients in Section 4.2, which are utilized to develop Riemannian trust-region method
on the quotient manifold space in Section 4.3. Computational complexity will be analyzed in
Section 4.4.

4.1 The Framework of Riemannian Optimization

A Riemannian metric that characterizes the structure of quotient space on which optimization
algorithms is given by [32]

дX (ζX , ξX ) = Tr
((
LT L

)−1
ζT

Lξ L

)
+ Tr

((
RT R

)−1
ζT

Rξ R

)
, (19)

where ζX = (ζ L,ζR ), ξX = (ξ L, ξ R ) ∈ TXM and X = (L,R).
In view of the metric (19), the tangent space TXM can be decomposed as the sum of two com-

plementary spaces:

TXM = VXM ⊕HXM, (20)

where VXM denotes the vertical space and HXM is the horizontal space. To be specific, direc-
tions of vectors in the horizontal space HXM are orthogonal to the set of equivalence classes
[X ] (18) and directions of vectors in the vertical spaceVXM are tangent to the set of equivalence
classes (18). Hence, vectors ξX ∈ HXM are invariant along the equivalence class [X ] (18). De-
note T[X ] (M/∼) as the tangent space at point [X ] on the quotient spaceM/∼. There is unique
element ξX ∈ HXM, called the horizontal lift of ξ[X ] at X , being the matrix representation of
ξ[X ] ∈ T[X ] (M/∼) [1, Section 3.5.8].

Let ξX ,ηX ∈ HXM be the horizontal lifts of ξ[X ],η[X ] ∈ T[X ] (M/∼) respectively and we define
a Riemannian metric on the quotient manifoldM/∼, given by

д[X ] (ξ[X ],η[X ]) := дX (ξX ,ηX ). (21)

Endowed with this metric, the natural projection π :M →M/∼ is Riemannian submersion [1,
Section 3.6.2] characterizing the relationship between geometrics objects in manifoldM and cor-
responding ones in quotient manifoldM/∼. Thus, the optimization on abstractM/∼ can be rep-
resented onM. It is known that the cost function F (X ) is invariable in vertical directions and the
search direction is restrict to horizontal directions in the horizontal space HXM. Therefore, in
the computational spaceM, the procedure of Riemannian optimization framework can be briefly
depicted as detecting the update direction ξX on the horizontal spaceHXM. With the calculated
descent direction ξX, the notion of moving in the direction of ξX on the manifold is generalized
by mapping RX : HXM →M called retraction. In view of notions above, Algorithm 1 presents
the generic matrix manifold optimization algorithm. Moreover, the graphical representation of
Algorithm 1 is illustrated in Figure 2.
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Fig. 2. Graphical representation of the concept of matrix manifold optimization.

ALGORITHM 1: Matrix Manifold Optimization

Given: Riemannian manifoldM with Riemannianmetric д, retraction mapping R, objective function F and

the stepsize α .

Output: Xk

1: Initialize: initial point X 0, k = 0

2: while not converged do

3: Compute a descent direction ξk . (e.g., via implementing trust-region method)

4: Update Xk+1 = RX k
(αξk )

5: k = k + 1.

6: end while

4.2 Optimization Related Ingredients

In this subsection, the matrix representations of abstract geometrics objects on the quotient mani-
fold is presented in detail to develop Riemannian optimization algorithms. In particular, we mainly
contribute to generalize the Euclidean gradient and Euclidean Hessian to the Riemannian gradient
and Riemannian Hessian, respectively.

4.2.1 Riemannian Gradient. To implement second-order method, trust region algorithm, on the
quotient spaceM/∼, the matrix representation (horizontal lift), i.e., gradX f ∈ HXM, of the Rie-

mannian gradient grad[X ] f ∈ T[X ] (M/∼) is needed, which is derived from the Euclidean gradient

of the objective function F (X ).
We denote the Euclidean partial derivatives as (∇LF (X ),∇RF (X )) ∈ Rm×r ×Rn×r and the Rie-

mannian gradient is written as

gradX f = (gradL f , gradR f )

= (∇LF (X )LTL,∇RF (X )RTR), (22)

Please refer to Appendix C for details on the derivation of the Euclidean partial derivatives.

4.2.2 Riemannian Hessian. To employ the trust-region method on the manifold, we further
need to define the Riemannian Hessian on the tangent space TXM and project it onto the hor-
izontal space HXM in order to compute the matrix representation of the Riemannian Hessian
Hess[X ] f [ξX ] ∈ T[X ] (M/∼) on the quotient manifold.

In particular, tangent space projector is required to project the matrix representations of the
ambient Euclidean space onto the tangent space TXM. Due to the tangent space of the computa-
tional spaceM := Rm×r

∗ ×Rn×r
∗ being TXM = (ζ L, ξ R ) ∈ Rm×r ×Rn×r , tangent space projector
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Table 2. Optimization-Related Ingredients For Problem P

P : minimize LΩ,Y (LRT ) + λ logN (LRT )

Matrix representation of an element X ∈ M X = (L,R)

Computational spaceM Rm×r
∗ ×Rn×r

∗
Quotient space M/∼ := (Rm×r

∗ ×Rn×r
∗ )/GL(r )

Metric дX (ζX , ξX ) for ζX , ξX ∈ TXM дX (ζX , ξX ) = Tr((LT L)−1ζT
L
ξ L ) + Tr((RT R)−1ζT

R
ξR )

Riemannian gradient gradX f gradX f = (gradL f , gradR f ) = (∇LF (X )LT L,∇RF (X )RTR)

Riemannian Hessian HessX f [ξX ] HessX f [ξX ] = ΠHX M (∇ξ X
gradX f )

Retraction RX : TXM →M RX (ξX ) = (L + ξ L ,R + ξR )

ΠTX M : Rm×r ×Rn×r → TXM is given by [31]

ΠTX M (X ) = (L,R). (23)

In addition, horizontal space projector is required to project a tangent vector ηX ∈ TXM onto
the horizontal spaceHXM, which is defined in the sequel.

Proposition 3 (Horizontal Space). The quotient manifoldM/∼ endowed with the Riemannian

metric (21) admits a horizontal space HXM = {(ζ L,ζR ) ∈ Rm×r ×Rn×r : ζT
LLR

T R = LT LRT ζR },
which is the complementary subspace ofVXM with respect to the Riemannian metric (19), providing

the matrix representation of the abstract tangent space T[X ] (M/∼).

Proof. Please refer to Appendix E for details. �

Proposition 4 (Horizontal Space Projection). The operator ΠHX M : TXM →HXM that

projecting vectors on the tangent space onto the horizontal space is called horizontal space projection.

It is given as ΠHX M (ηX ) = (ηL + LΛ,ηR − RΛT ), where Λ is the solution to the Lyapunov equation

ΛT (LT L) (RT R) + (LT L) (RT R)ΛT

= (LT L)RT ηR − ηT
LL(RT R). (24)

Proof. Please refer to Appendix F for details. �

Propositions 3 characterizes the horizontal space of a Riemannian manifold and demonstrates
that there is unique element ξX ∈ HXM, called the horizontal lift of ξ[X ] at X , being the matrix
representation of ξ[X ] ∈ T[X ] (M/∼). It implies that the optimization operations on the abstract
tangent space of the quotient manifold space, i.e., T[X ] (M/∼) can be mapped into the horizontal
space of the manifold, i.e.,HXM. Furthermore, Propositions 4 characterizes the horizontal projec-
tion that maps the geometric concepts of Euclidean space to the geometric concepts of Riemann-
ian manifold, which facilitates to develop Riemannian optimization algorithms on the manifold.
Specifically, the matrix representation of the Riemannian Hessian Hess[X ] f [ξX ] on the Riemann-
ian quotient manifold is given by

HessX f [ξX ] = ΠHX M (∇ξ X gradX f ), (25)

where gradX f (22) is the Riemannian gradient, ΠHX M is the projection operator and ∇ξ X gradX f
is the Riemannian connection. The procedure of deriving the directional derivative of Riemannian
gradient is showed in Appendix D.

In summary, the optimization-related ingredients for problem P are illustrated in Table 2.
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4.3 Trust Region Algorithm

In this subsection, based on the matrix manifold optimization framework and the matrix repre-
sentations mentioned above, we implement the second-order algorithm, i.e., trust-region method,
in the computational placeM.

Consider a sequence of iterates X 0,X 1, . . . , we assume that the current iterate X t ∈ M. The
trust-region subproblem is given as

minimize
ξ X t

∈HX tM
m(ξX t

)

subject to дX t
(ξX t
, ξX t

) ≤ δ 2
t , (26)

where δt is the trust-region radius in t-th iteration and the cost function is written as

m(ξX t
) = F (X t ) + дX t

(ξX t
, gradX t

f )

+
1

2
дX t

(ξX t
,HessX t

f
[
ξX t

]
), (27)

where HessX t
f

[
ξX t

]
and gradX t

f denote the matrix representations of Riemannian Hessian and
the Riemannian gradient on the quotient manifold, respectively.

After deriving (approximate) solution ξX t
of Euclidean trust-region subproblem (26) by using

the gradient method [1, Section 7.3], the decisions on whether updating X t and choosing the new
trust-region radius δt+1 are dependent on the quotient [1]

ρk =
F (X t ) − F (RX (ξX t

))

m(0X t
) −m(ξX t

)
. (28)

If ρk is exceedingly small, the trust-region radius should be reduced and keep X k+1 unchanged to
improve the accuracy of the model. If ρk � 1, even though the model is inaccurate, a significant
decrease is being produced during the iteration. Under such condition, the algorithm can expand
the trust region radius to examine the exist of a further decrease in the objective value. If ρk

is proper small, the trust-region radius is maintained and new iterate is updated according to
X t+1 = RX t

(ξX t
),where the retraction mapping operator RX t

: HXM →M in each iteration is
given by

RX (ξX ) = (L + ξ L,R + ξ R ), (29)

where ξX := (ξ L, ξ R ) ∈ HXM [32].
According to Section 3.1, the objective function in (16) is smooth. With the manifoldM being

compact, the Riemannian trust-region algorithm returns the local minimizer with local superlinear
convergence rate. More details on the trust region method can refer to [1, Section 7].

4.4 Computational Complexity Analysis

The computational complexity of Algorithm 1 for matrix manifold optimization to minimize the
objective function F (X ) mainly depends on the computational cost of the optimization-related
ingredients showed in Table 2, which is demonstrated below.

(1) Computing Riemannian metric (19): O (mr 2 + nr 2).
(2) Computing Riemannian gradient: O ( |Ω | +mnr +mn +mr 2 + nr 2).
(3) Computing the projection operator showed in Proposition (3): O (mr 2 + nr 2).
(4) Computing of Riemannian Hessian (25): O ( |Ω | +mnr +mn +mr 2 + nr 2).

Here, |Ω | denotes the sampling size. Therefore, the computational cost of per iteration in Algo-
rithm 1 is approximately linear with |Ω |. Compared to the convex relaxation approach solved by
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SDP which endows with the computational complexity O (max (m,n)n2) [14], the proposed algo-
rithm has much lower computational complexity, i.e., O ( |Ω | +mnr ). Note that, compared to the
first-order algorithms, the proposed algorithm has remarkable advantage on the superlinear con-
vergence rate. Endowed with such fast convergence rate, the computational complexity of the
proposed algorithm is no greater than the one of the first-order algorithms. Thus the proposed
algorithm has the notable advantage over the first-order algorithms.

5 NUMERICAL RESULTS

In this section, we present the simulation results of the proposed smoothed matrix manifold op-
timization algorithm for recovering individual rankings from pairwise comparisons in order to
demonstrate the advantages over state-of-the-art algorithms.

5.1 Simulation Settings and Performance Metric

We run the simulations under the following settings. Simulation results are further evaluated with
well-defined performance metric. The simulation settings are presented as follows:

(1) Weight matrix X ∗: The weight/score matrix is generated as X ∗ = UVT , where U ,V ∈
RK×r have i.i.d. entries uniformly chosen from [−0.5, 0.5]. MatrixX ∗ is scaled to ‖X ∗‖∞ =
1.

(2) Pairwise comparisons Yi jk : We generate the pairwise comparisons from the BTL model
with the underlying weight matrix X ∗ and σ = 0.18 [20].

(3) Observation/sampling set Ω: Given the sample size of Ω as |Ω |, |Ω | independent observa-
tions is chosen uniformly at random.

(4) Performance metric:

—Relative mean square error: After scaling the estimated weight matrix X̂ such that

‖X̂ ‖∞ = 1, we exploit the relative mean square error (MSE) to assess the performance
of weight matrix estimation [35]

err(X̂ ) = ‖X̂ −X ∗‖2F /‖X
∗‖2F .

—Success rate: It equals to the number of pairwise comparisons in right orders over the
total number of pairwise comparisons [35], which is given by

Success rate =
1

|S|
∑

(i, j,k )∈S,Yi jk=1

IX̂i j >X̂ik
,

where Iμ is the indicator function and S denotes the test set.
—Normalized discounted cumulative gain (NDCG)@K : It is the ranking measure for nu-

merical rating, defined as [35]

NDCG@K (i ) =
DCG@K (i,πi )

DCG@K (i,π ∗i )
,

where

DCG@K (i,πi ) =
K∑

k=1

2
R∗

i πi (k ) − 1

log2 (k + 1)
,

and πi (k ) is the index of thek-th ranked item of the test set of i-th user.R∗i j is the true rat-

ing of item j given by user i in the datasets and π ∗i maximize the function DCG@K (i,πi ).
Note that, the individual ranking lists, i.e., (4) are recovered via computing the associ-
ated score, i.e., (3).
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We compare three algorithms on synthetic data, described as:

—Proposed Riemannian trust-region algorithm solving log-sum-exp regularized

problem (PRTRS): The algorithm is implemented by Manopt [13] where the fixed-
rank manifold implementation of fixedrankfactory_2factors and the solver of
trustregions are chosen to solve the problem (16) with default option.

—Bi-factor gradient descent solving log-barrier regularized problem (BFGDB): Prob-
lem (12) is solved by the algorithm [33]. The regularization term coefficientτt is set to μ · τt−1

during t-th outer iteration of the algorithm [8, 16]. The Bi-factor gradient descent with the
constant stepsize, i.e., s := 2

187 {
1

‖U 0 ‖2F
, 1
‖V 0 ‖2F

} [33] is implemented in the inner iteration.

—Spectral projected-gradient (SPG): In this algorithm [20], codes provided in [20] is ex-
ploited to solve the problem (9) with setting the elementwise infinity norm constraint co-
efficient α equal to ‖X ∗‖∞ [35].

Set K =m = n for all experiments. The algorithms are initialized with U 0,V 0 whose entries
are i.i.d. and drawn form the standard normal distribution, which are scaled to ‖X 0‖∞ = 0.95
with X 0 = U 0VT

0 . The PRTRS algorithm terminate either the norm of Riemannian gradient

‖gradX t
f ‖ < 10−6 or the number of iterations exceeding 500. The stopping situation for inner

iteration of the BFGDB algorithm is the same as [33] and it is also ended when ‖X ‖∞ ≥ 1. In terms
of the outer iteration of BFGDB, the regularization term coefficient τ1 is chosen as mn/LΩ,Y (X 0)
and the number of outer iterations is given as⌈

logmn − logη − logτ1

log μ

⌉
(30)

where η = 10−3 and μ = 2 [8, 16]. The setting for SPG algorithm is the same as [20]. The algorithms
are carried out under Matlab environment on a desktop computer with an Intel i7-6500U CPU with
64GB memory.

We further compare our algorithm with AltSVM [35] and SGD [10] on large collaborative filter-
ing datasets, i.e., MovieLens100k and MovieLens1m. The settings for AltSVM and SGD algorithm
are the same as the code in https://github.com/dhpark22/collranking which are carried out under
C++ environment on a desktop computer with an Intel i7-6500U CPU with 64 GB memory.

5.2 Convergence Rate of Normalized Objective Function

Consider the setting of K = 200 and the sampling size being (drK logK ), where the rescaled sample
size is d = 15 and the rank of weight matrix is r = 15 [30], Figure 3 illustrates the convergence
rate of normalized objective functions of different algorithms. The normalized objective function
in t-th iteration is represented as Q (x t )/Q (x∗), where Q (x ) denotes the objective function and
x∗ is the converge result of the algorithm. It shows that PRTRS has faster convergence rate of
normalized objective Function than both BFGDB algorithm and SPG algorithm.

5.3 Relative MSE with Different Sample Sizes

Under the setting of K = 200 and r = 10, we simulate with different sample sizes (drK logK ) [30].
We conduct numerical experiments averaged over 100 realizations to compare these three algo-
rithms with stopping criterion described in Section 5.1. Figure 4 illustrates the relative MSE cor-
responding to different rescaled sample sizes d . We can see that all the algorithms perform better
as the rescaled sample size d increases. Furthermore, PRTRS achieves better performance in terms
of MSE than both SPG and BFGDB algorithm.
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Fig. 3. Convergence rate of the normalized objective functions of different algorithms.

Fig. 4. Relative MSE with different sample sizes d .

Fig. 5. Success rate with different ranks r .

5.4 Success Rate with Different Ranks

Consider the situation that fixed parameters are |Ω | = 2 × 104 and K = 200, we simulate the algo-
rithms with different ranks r of the underlying weight matrix and averaged over 100 realizations.
Here, the rank of the manifold in the optimization is set to r . The success rate of ranking recovery
is shown in Figure 5. It demonstrates that the proposed algorithm achieves higher success rate
than both SPG and BFGDB, especially at higher rank. Moreover, for all algorithms, we can see
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Fig. 6. Success rate and corresponding computation time with different sizes.

that the lower rank is, the higher success rate can be achieved, which implies that fewer factors
considered in the linear factor model make it easier to recover unobserved data under the same
set of observations.

5.5 Computation Time with Different Problem Sizes

With fixed parameters as r = 10 and d = 5, we conduct the numerical experiments averaged over
100 realizations to simulate three algorithms with different sizes K . The two figures in Figure 6
show the success rate and corresponding computational time with different sizes K respectively.
It implies the dramatical advantage in computational time of the proposed PRTRS over other algo-
rithms while achieving better performance. The low computational time of PRTRS is facilitated by
the low computational complexity and iteration complexity. To be specific, the proposed algorithm
is a second-order algorithm developed on the Riemannian algorithm which enjoys a superlinear
convergence rate [1, Section 7.1]. Thus, the proposed algorithm enjoys lower iteration complex-
ity than the first-order algorithms, i,e., SPG [20] and BFGDB [33], which has linear convergence
rate. Furthermore, since only second-order directional derivative is required for developing the
Riemannian trust-region algorithm, the computational complexity of the proposed algorithm is as
lower as the one of first-order algorithm which requires to compute the gradient of the objective
function that is O ( |Ω | +mnr ).

5.6 Experiments on Practical Datasets

Now we demonstrate that our algorithm has good performance on both pairwise data and rating
data in practical datasets. We compared our algorithm with SGD [10] and AltSVM [35] on the
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Fig. 7. Numerical experiments on practical datasets.

MovieLens 100k dataset, which contains 100,000 ratings given by 943 users on 1,682 movies. The
training/test data Y are generated by converting the integral ratings (i.e., from one to five) to
pairwise comparisons. For each user, we subsampled N comparisons as training data while the
rest of the comparisons as test data. We dropped out the users with less than N + 10 comparisons.
The rank r is chosen as 50. In Figure 7(a), we evaluate the performance of different algorithms
via NDCG@10. Under the same setting, we further evaluate the performance of our algorithm by
computing success rate, illustrated in Figure 7(b). From the above simulations, it turns out that
our algorithm outperforms state-of-the-art algorithms in terms of both the ranking measure for
numerical ratings and the measure for inferring preferences.

We now show the performance of our algorithm on the larger practical datasets. The simulations
are based on the MovieLens 1m dataset, which contains 1,000,209 ratings given by 6,040 users on
3,900 movies. For each user, we subsampled 25 comparisons for training and took the rest of ratings
for test. The rank r is chosen as 100. Figure 7(c) shows that our algorithm can converge to better
result than state-of-the-art algorithms in a few iterations.

We further demonstrate that the choice of rank parameter r has slight influence on the per-
formance of our algorithm when dealing with practical datasets. We used the MovieLens 100k
dataset, therein 20 comparisons are subsampled for each user. We compare the above three algo-
rithms, i.e., PRTRS, AltSVM, and SGD in terms of different rank parameters r . Figure 7(d) shows
that the performance of our algorithm is robust to the rank r when dealing with practical datasets.

In summary, simulations show that the proposed Riemannian trust-region algorithm has re-
markable advantages over the BFGD and SPG algorithm in terms of algorithmic advantages
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(i.e., computational time and rate of convergence) and admirable performance (i.e., success rate
and MSE). The superior performance of the proposed algorithm is mainly facilitated by the ge-
ometry of quotient manifold space that address the ununique issue of the balanced factorization
and the trust-region algorithm that enjoys superlinear convergence rate. Simulations on large col-
laborative filtering datasets further demonstrate the advantages of our proposed algorithm over
AltSVM, and SGD in dealing with both pairwise data and numerical data.

6 CONCLUSIONS

In this article, a low-rank optimization problem was presented to recover the individual ranking
lists from crowdsourced pairwise comparisons in social IoT networks. To address the unique chal-
lenge of the coupled rank constraint and elementwise infinity norm constraint in the low-rank es-
timation formulation, a smoothed surrogate of elementwise infinity norm was further proposed to
smooth the objective function. In addition, we introduced an optimization framework of Riemann-
ian optimization via generalizing the Euclidean geometric concepts to the geometric concepts on
the quotient manifold space of fixed-rank matrices. Based on this framework, we developed a Rie-
mannian trust-region algorithm that enjoys the superlinear rate of convergence. Numerical results
showed that the proposed algorithm remarkably surpasses the state-of-the-art algorithms in esti-
mation performance improvements and algorithmic advantages.

APPENDICES

A PROOF OF PROPOSITION 1

To proof that function pμ (X ) is the smoothed surrogate of p (X ), we first present the smoothed
surrogate of function d (X ) = maxi, jXi j in the space Rm×n based on the definitions (e.g., inner
product, conjugate function and dual norm) represented in [27]. We then finish the proof based on
the results in [6]. According to discussions above, the Lamma is represented in the following:

Lemma 1. The conjugate function of ω (X ) = log(
∑

i, j e
Xi j ) is represented as ω∗ (U ) =∑

i, j Ui j logUi j with domain ω∗ = {U ∈ Rm×n :
∑

i j Ui j = 1,Ui j ≥ 0}, which is a 1-strongly convex

function with respect to the ‖ · ‖1 norm. Note that ‖A‖1 =
∑

i, j |Ai j |.

Proof. It is obvious to generalize the conclusion in Rn [7] to the space Rm×n . �

Based on Lemma 1 and the theorem on strong/smooth duality in [27], we conclude that the func-
tion ω = ω∗∗ is 1-strongly smooth with respect to the elementwise infinity norm ‖ · ‖∞. Moreover,
it is easy to check that [6], ∀ μ > 0 and X ∈ Rm×n , there is

d (X ) ≤ μω

(
X

μ

)
, (31)

and ω (0) = log(mn). Thus, according to Theorem 4.2 in [6], dμ (X ) = μω ( X
μ

) = μ log(
∑

i, j e
Xi j /μ )

is a μ-smooth approximation of d (X ) with parameters (1, log(mn), 0).

Proof of Proposition 1: Let c : Rm×n → Rm×n c (X ) = X ◦X , where “◦” denotes the Hadamard
product operation, e.g., elementwise product. Since dμ (X ) is a (1, log(mn), 0)-smooth approxima-
tion of d (X ) over Rm×n , according to definition of smoothable function [6], it follows that there is
a decomposition log(mn) = β1 + β2, for which [6]

d (Z ) − β1μ ≤ dμ (Z ) ≤ d (Z ) + β2μ for everyZ ∈ Rm×n . (32)
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Let Z = c (X ) such that p (X ) = d (c (X )) and pμ (X ) = dμ (c (X )), then for every X ∈ GX , we obtain
that

p (X ) − β1μ ≤ pμ (X ) ≤ p (X ) + β2μ, (33)

which preserves the property of smoothable function [6] with β = log(mn). To derive the parame-
ters for smooth approximation, we first introduce the elementwise gradient matrix of function pμ

by the chain rule, given as

∇pμ (X ) = 2X ◦ ∇dμ (c (X )). (34)

Based on definition of smoothable function [6], for all X ,U ∈ GX, we let

Dμ (X ,U ) = ∇dμ (c (X )) − ∇dμ (c (U )), (35)

ΔX ,U = X −U , (36)

Δc = c (X ) − c (U ), (37)

then there is

‖∇pμ (X ) − ∇pμ (U )‖1
≤‖2X ◦ Dμ (X ,U )‖1 + ‖2ΔX ,U ◦ ∇dμ (c (U ))‖1
≤‖2X ‖∞ · ‖Dμ (X ,U )‖1 + ‖2ΔX ,U ‖∞ · ‖∇dμ (c (U ))‖1
∗
≤ 2

μ
‖X ‖∞ · ‖Δc ‖∞ + 2‖ΔX ,U ‖∞ · ‖∇dμ (c (U ))‖1, (38)

where the inequality (∗) follows that dμ (X ) has a Lipschitz gradient with constant 1
μ

. To present

the inequality (38) in detail, for ∀Z ∈ Rm×n , we have

‖∇dμ (Z )‖1 =
∑
i, j

����� eZi j /μ∑
i, j e

Zi j/μ

����� = 1, (39)

‖c (X ) − c (U )‖∞ ≤ 2Mf ‖X −U ‖∞, (40)

where Mf = max{‖X ‖∞ : X ∈ GX}. Based on the formulation (39), (40), we conclude that

‖∇pμ (X ) − ∇pμ (U )‖1 ≤
(

4

μ
M2

f + 2

)
‖X −U ‖∞, (41)

which implies that pμ (X ) = dμ (c (X )) = μ log
∑

i j e
X 2

i j /μ is a μ-smooth approximation of p (X ) =

d (c (X )) = ‖X ‖2∞ over GX with parameters (4M2
f
, log(mn), 2). �

B PROOF OF PROPOSITION 2

We have already known logN (X ) is convex and endows with Lipschitz gradient from Appendix A.
Based on the notions mentioned in Appendix A, we further proof it has Lipschitz Hessian as well.

Proof of Proposition 2: The directional derivative of ∇pμ (X ) in the direction of ξ ∈ Rm×n is de-
rived as

∇2pμ (X )[ξ ] = 2ξ ◦ ∇dμ (c (X )) + 4X ◦2 ◦ ξ ◦ ∇2dμ (c (X )), (42)
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where ∇2dμ (Z ) = eZ /μ

μ
∑

i, j e
Zi j/μ

. Let

D2
μ (X ,U ) = ξ ◦ (∇2dμ (c (X )) − ∇2dμ (c (U ))), (43)

Δ2
X ,U = ξ ◦ Δc . (44)

Thus, based on the equations (35) and (37), there is

‖∇2pμ (X )[ξ ] − ∇2pμ (U )[ξ ]‖1
= ‖2ξ ◦Dμ (X ,U )+4X ◦2◦D2

μ (X ) + 4Δ2
X ,U ◦ ∇

2dμ (c (U ))‖1
≤ ‖2ξ ‖∞ · ‖Dμ (X ,U )‖1 + ‖4X ◦2‖∞ · ���D2

μ (X ,U )���1
+ Γ

∗
≤ 2

(
1

μ
+

2‖X ‖2∞
μ2

)
‖ξ ‖∞ · ‖Δc ‖∞ + Γ , (45)

where Γ = ‖4Δ2
X ,U ‖∞ · ‖∇

2dμ (c (U ))‖1. The inequality (∗) follows that dμ (X ) has a Lipschitz gra-

dient with constant 1
μ

and ∇dμ (X ) has a Lipschitz gradient with constant 1
μ2 . Moreover, there is

‖∇2dμ (Z )‖1 =
∑
i, j

����� eZi j /μ

μ
∑

i, j e
Zi j/μ

����� = 1

μ
. (46)

Thus, based on the formulation (40) and (46), we claim that

‖∇2pμ (X )[ξ ] − ∇2pμ (U )[ξ ]‖1

= ��12

μ
+

8M2
f

μ2
�	Mf ‖ξ ‖∞ · ‖X ‖∞, (47)

which demonstrates the directional derivative of function ∇pμ (X ) is Lipschitz continuous with
respect to elementwise infinity norm. To sum up, the function logN (X ) is smooth endowing with
Lipschitz gradient and Lipschitz Hessian. As for the smoothness and convexity of the function
LΩ,Y (X ), it will be illustrated in the following.

Based on the results in following Appendix C and D, we derived the Euclidean gradient (53)
and the Euclidean directional Hessian (57) of function LΩ,Y (X ) (7). Define the inner product as
〈X ,Y 〉 := Tr(XTY ) = Tr(YTX ). Therefore, with ∀ξ ∈ Rm×n , it is easy to check that

〈ξ ,∇2LΩ,Y (X )[ξ ]〉

=
∑

(i, j,k )∈Ω

Tr
(
Mi jk (ξ )h(Mi jk (X ))AT

i jk · ξ
)

=
∑

(i, j,k )∈Ω

Mi jk (ξ )h(Mi jk (X )) · Yi jk (ξi j − ξik )

=
∑

(i, j,k )∈Ω

h(Mi jk (X )) (ξi j − ξik )2 ≥ 0, (48)

which implies LΩ,Y (X ) is a convex function.

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 2, Article 19. Publication date: February 2020.



19:22 J. Dong et al.

For two matrices X ,U ∈ {X ∈ Rm×n : ‖X ‖∞ ≤ α }, there is

‖∇LΩ,Y (X ) − ∇LΩ,Y (U )‖1

=

�������
∑

(i, j,k )∈Ω

д(Mi jk (X ))M ′i jk (X ) − д(Mi jk (U ))M ′i jk (U )

�������1

≤ 02
∑

(i, j,k )∈Ω

eYi jk (Ui j−Uik ) |eYi jk (Xi j−Ui j−Xik+Uik ) − 1|

≤ 2|Ω |e2α (e2‖X −U ‖∞ − 1)

‖X −U ‖∞
‖X −U ‖∞

(∗)
≤ |Ω |e

2α (e4α − 1)

α
‖X −U ‖∞, (49)

where |Ω | denotes the sampling size. The inequality (∗) follows that m(x ) = e2x−1
x

is a monotoni-
cally increasing function as x ∈ [−α ,α],α > 0. The inequality (49) demonstrates the derivative of
function LΩ,Y (X ) is Lipschitz continuous with respect to elementwise infinity norm.

Let ξ ∈ Rm×n denote the directional matrix and letvx = Xi j − Xik ,vu = Ui j −Uik , then we have

‖∇2LΩ,Y (X )[ξ ] − ∇2LΩ,Y (U )[ξ ]‖1
(∗)
≤ 2

∑
(i, j,k )∈Ω

�����Mi jk (ξ )
[
eYi jk vu (ϱ − 1) +ψ (ϱ−2 − 1)

] �����
≤ 2

∑
(i, j,k )∈Ω

|Mi jk (ξ ) |
[
eYi jk vu |ϱ − 1| +ψ |ϱ−2 − 1|

]
≤ 4|Ω |·‖ξ ‖∞

[
e2α |ϱ − 1| + e6α |ϱ−2 − 1|

]
(∗∗)
≤ 2|Ω |(e2α (e4α − 1) + e6α (e8α − 1))

α
‖X −U ‖∞ · ‖ξ ‖∞, (50)

where ϱ = eYi jk (vx−vu ) andψ = eYi jk (2vx+vu ) . The inequalities (*) and (**) follow the analogous pro-
cedure as the third and last step in (49) respectively. The inequality (50) demonstrates the direc-
tional derivative of function ∇LΩ,Y (X ) is Lipschitz continuous with respect to elementwise infin-
ity norm. To sum up, LΩ,Y (X ) is a convex and smooth function endowed with Lipschitz gradient
and Lipschitz Hessian over {X ∈ Rm×n : ‖X ‖∞ ≤ α } in the Euclidean space [27]. �

C COMPUTING THE EUCLIDEAN PARTIAL DERIVATIVES

Let Mi jk (X ) denote Yi jk (Xi j − Xik ), which is a linear function of X . The derivative of Mi jk with
respect to the matrix X is

M ′i jk (X ) = Yi jkδ i j − Yi jkδ ik , (51)

where δ i j is am × n matrix with [δ i j ]i j = 1 and being zeros otherwise. In addition, the derivative
of N (X ) is given by

N ′(X ) = 2X ◦ exp(X ◦2), (52)

where ‘◦’ denotes the Hadamard product operation, i.e., elementwise product/power. We derive
the Euclidean derivative of the function LΩ,Y (X ) (7) as

∇LΩ,Y (X ) =
∑

(i, j,k )∈Ω

д(Mi jk (X ))M ′i jk (X ), (53)
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where д(x ) = − 1
1+ex . Hence, the Euclidean derivative of the objective function F (X ) is written as

∇F (X ) = ∇LΩ,Y (X ) + λQ (X ), (54)

where Q (X ) = N ′(X )/N (X ). Then we have

∇L f (X ) = ∇F (X ) · R, ∇R f (X ) = ∇F (X )T · L. (55)

D COMPUTING THE DIRECTIONAL DERIVATIVE OF RIEMANNIAN GRADIENT

Based on the results presented in Appendix C, we now derive the directional derivative of Rie-
mannian gradient. The directional derivative of Q (X ) in the direction of ξX := (ξ L, ξ R ) ∈ HXM
is written as

∇Q (X )[ξX ] =
1

N 2 (X )
[N (X ) (2eX ◦2 + 2X ◦ N ′(X )) ◦K

− N ′(X )
∑
i j

(N ′(X ) ◦K )i j ], (56)

where K = ξ LRT + LξT
R .

Given i, j,k and M ′
i jk

(X ) that is a constant matrix replaced by Ai jk , then the directional deriv-

ative of Euclidean gradient ∇LΩ,Y (X ) in the direction of ξ ∈ Rm×n is derived as

∇2LΩ,Y (X )[ξ ] =
∑

(i, j,k )∈Ω

Mi jk (ξ )h(Mi jk (X ))Ai jk , (57)

where h(x ) = ex

(1+ex )2 . Thus the directional derivative of Euclidean gradient ∇F (X ) in the direction

of ξX = (ξ L, ξ R ) is denoted as

∇2F (X )[ξX ]

=
∑

(i, j,k )∈Ω

[
Mi jk (ξ LR

T ) +Mi jk

(
LξT

R

)]
· h(Mi jk (X ))Ai jk ,

+ λ∇Q (X )[ξX ]. (58)

From (55) and (58), we can derive the directional second-order partial derivatives of f (X ) in the
direction of ξX as

∇2
L f (X )[ξX ] = ∇2F (X )[ξX ] · R + ∇F (X ) · ξ R , (59)

∇2
R f (X )[ξX ] = ∇2F (X )[ξX ]T · L + ∇F (X )T · ξ L . (60)

Thus, the directional derivative of Riemannian Gradient is written as [32]

∇ξX gradX f [ξX ] = (∇ξ L
gradL f [ξ L],∇ξ R

gradR f [ξ R]) (61)

where

∇ξ L
gradL f [ξ L] = ∇2

L f (X )[ξX ] · LTL

+2∇L f (X ) · Sym
(
ξT

LL
)

(62)

∇ξ R
gradR f [ξ R] = ∇2

R f (X )[ξX ] · RTR

+2∇R f (X ) · Sym
(
ξT

RR
)

(63)
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E PROOF OF PROPOSITION 3: HORIZONTAL SPACE

The vertical space VXM is defined as the tangent space to the equivalence class. Based on the
vertical space for the Grassmann manifold [1, Example 3.6.4], we derive the matrix representation
for the vertical space as

VXM = {(−LΛ,RΛT ) : Λ ∈ Rr×r }. (64)

We define ζX = (ζ L,ζR ) ∈ HXM and ξX = (ξ L, ξ R ) ∈ VXM. As horizontal space HXM is
the complementary subspace ofVXM with respect to the Riemannian metric (19), ζX is orthog-
onal to ξX in the sense of Riemannian metric дX (19), i.e.,

Tr
(
(LT L)−1ζT

Lξ L

)
+ Tr

(
(RT R)−1ζT

Rξ R

)
= 0. (65)

After simplifying the equation (65) by exploiting the properties of trace, we derive the horizontal
space as

HXM =
{
(ζ L,ζR ) ∈Rm×r ×Rn×r :

ζT
LLR

T R = LT LRT ζR

}
. (66)

F PROOF OF PROPOSITION 4: HORIZONTAL SPACE PROJECTION

The horizontal space projector ΠHX M is the operator of extracting the horizontal component
of the tangent vector. Based on the relationship between tangent space and two complementary
spaces (20), the expression for the projector ΠHX M is

ΠHX M (ηX ) = (ηL + LΛ,ηR − RΛT ) = (ζ L,ζR ) (67)

where ηX = (ηL,ηR ) ∈ TXM and ζX = (ζ L,ζR ) ∈ HXM. As ζX belongs to the horizontal space
(66), we have

ζT
LLR

T R = LT LRT ζR , (68)

(ηL + LΛ)TLRT R = LT LRT (ηR − RΛT ), (69)

which can be rewritten as the equation (24).
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