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Abstract—Intelligent mobile platforms such as smart vehicles
and drones have recently become the focus of attention for onboard
deployment of machine learning mechanisms to enable low latency
decisions with low risk of privacy breach. However, most such ma-
chine learning algorithms are both computation-and-memory in-
tensive, which makes it highly difficult to implement the requisite
computations on a single device of limited computation, memory,
and energy resources. Wireless distributed computing presents new
opportunities by pooling the computation and storage resources
among devices. For low-latency applications, the key bottleneck
lies in the exchange of intermediate results among mobile devices
for data shuffling. To improve communication efficiency, we pro-
pose a co-channel communication model and design transceivers by
exploiting the locally computed intermediate values as side infor-
mation. A low-rank optimization model is proposed to maximize
the achieved degrees-of-freedom (DoF) by establishing the inter-
ference alignment condition for data shuffling. Unfortunately, ex-
isting approaches to approximate the rank function fail to yield
satisfactory performance due to the poor structure in the formu-
lated low-rank optimization problem. In this paper, we develop
an efficient difference-of-convex-functions (DC) algorithm to solve
the presented low-rank optimization problem by proposing a novel
DC representation for the rank function. Numerical experiments
demonstrate that the proposed DC approach can significantly im-
prove the communication efficiency whereas the achievable DoF
almost remains unchanged when the number of mobile devices
grows.

Index Terms—Wireless distributed computing, data shuf-
fling, interference alignment, low-rank optimization, difference-of-
convex-functions, DC programming, Ky Fan 2-k norm.
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I. INTRODUCTION

THE mass use of smart mobile devices and Internet-of-
Things (IoT) devices promotes the prosperity of mobile

applications, and also poses great opportunities for mobile edge
intelligence thanks to large amounts of collected input data from
end devices. Machine learning has become a key enabling tech-
nology for big data analytics and diverse artificial intelligence
applications, including computer vision and natural language
processing. Increasingly, more and more machine learning ap-
plications are executing real-time and private tasks on mobile
devices, such as augmented reality, smart vehicles, and drones.
However, the ultra-low latency requirement [2] for executing
intensive computation tasks of mobile edge intelligence appli-
cations imposes an unrealistic burden on the computational ca-
pability of resource-constrained mobile devices [3] and ranks
as one of the key challenges. Given limited resources of com-
putation, storage and energy at mobile devices, a single device
often cannot execute the various computation tasks required in
learning and artificial intelligence. Wireless distributed comput-
ing [4] promises to support computation intensive intelligent
tasks execution on end devices by pooling the computation and
storage resources of multiple devices.

Storage size is often one of the key limiting factors in a single
device when deploying deep learning model [3], [5]. In wireless
distributed computing systems for large-scale intelligent tasks,
the dataset (e.g., a feature library of objects) is normally
too large to be stored in a single mobile device. In popular
distributed computing framework such as MapReduce [6], the
dataset shall be split and stored across devices in advance,
during the dataset placement phase. For focal scenarios where
each mobile user collects its own input data (e.g., feature vector
of an image) and requests the output of its computation task
(e.g., inference result of the image), each mobile device shall
perform local computation according to locally stored dataset,
which is called the map phase. Next, in the shuffle phase, the
computed intermediate values in map phase are exchanged
among devices, the output of each mobile device can be con-
structed with additional local computations (i.e., reduce phase).
To enable real-time and low-latency applications, inter-device
communications for data shuffling in distributed computing
system become the main bottleneck.

To reduce the communication load for data shuffling in dis-
tributed computing system, many efforts have focused on de-
signing coded shuffling strategies. The authors of [7] exploited
the coded multicast opportunities by proposing a coded scheme
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called “Coded MapReduce” to reduce the communication load
for data shuffling in wireline distributed computing framework.
In [4], a scalable framework for wireless distributed computing
is designed, where mobile devices are connected to a common
access point (AP) such that the data shuffling is accomplished
through orthogonal uplink transmission and via broadcasting
at the rate of weakest user on downlink transmission. In this
communication model, a coding scheme is proposed to reduce
the communication load (i.e., the number of information bits)
for data shuffling. However, in wireless networks with limited
spectral resources and interference, it is also critical to improve
the communication efficiency (i.e., achieved data rates) for data
shuffling. In this paper, we propose a systematic linear coding
approach to improve the communication efficiency in the shuf-
fle phase. To improve spectral efficiency, we assume co-channel
transmission in both uplink and downlink. By exploiting the
locally computed intermediate values in the map phase as side
information, we propose to utilize the interference alignment [8]
technique for transceiver design in data shuffling.

By establishing the interference alignment condition for data
shuffling, we further develop a low-rank model to maximize
the achievable degrees-of-freedom (DoF), i.e., the first-order
characterization for the achievable data rate. Low-rank ap-
proaches have attracted enormous attention in machine learning,
high-dimensional statistics, and recommendation system [9].
Unfortunately, the non-convexity of rank function makes the
resulting low-rank optimization problem highly intractable. A
growing volumn of research focuses on finding tractable ap-
proximations for the rank function and on developing efficient
algorithms. In particular, nuclear norm relaxation approach is
well-known as the convex surrogate of rank function [9]. How-
ever, with poorly structured affine constraints in the proposed
low-rank optimization model, convex relaxation approach fails
to yield satisfactory performance. To further improve the perfor-
mance of nuclear norm relaxation and enhance low-rankness,
the iterative reweighted least square algorithm IRLS-p [10]
(0 ≤ p ≤ 1) is proposed by alternating between minimizing
weighted Frobenius norm and updating weights. However, such
approach still yields unsatisfactory performance under poorly
structured affine constraint, which motivates tight and computa-
tionally feasible approximations for the rank function. Recently,
a DC (difference-of-convex-functions) [11], [12] representation
of the rank function has been proposed in [13] with demon-
strated effectiveness. Unfortunately, during each iteration of the
DC approach, a nuclear norm minimization problem needs to be
solved in terms of a semidefinite program and does not scale well
to large problem sizes for the data shuffling problem in wireless
distributed computing. Motivated by the various issues in the
state-of-the art, we shall propose a novel DC approach which
is computation efficient and applicable for wireless distributed
computing scenario.

A. Contributions

In this paper, we propose a co-channel communication model
for the data shuffling problem in wireless distributed comput-
ing system to improve the communication efficiency. Under

this model, we adopt linear coding scheme and establish the
interference alignment condition for data shuffling. Further-
more, we propose a low-rank optimization model for transceiver
design to support efficient algorithms design. To optimize the
transceivers with the proposed low-rank model, we propose
a novel DC representation for rank function. Specifically,
we observe that if the rank of a matrix is k, its Ky Fan 2-k
norm should be equal to its Frobenius norm. By alternatively
increasing rank and minimizing the difference between the
square of Frobenius norm and the square of Ky Fan 2-k
norm, we develop a novel DC approach for the presented
low-rank optimization problem. The Frobenius norm allows
us to further derive the closed-form solution for each iteration.
During each iteration only a subspace projection needs to be
computed.

The major contributions of this work are summarized as
follows:

1) We propose a co-channel communication model for the
data shuffling problem in wireless distributed computing.
We adopt linear coding scheme in this work, and establish
the interference alignment condition for transceiver
design. A low-rank model is then developed to maximize
the achievable DoF satisfying interference alignment
conditions.

2) To improve communication efficiency, we develop a novel
computationally efficient DC algorithm for the low-rank
optimization problem. This is achieved by proposing a
novel DC representation for rank function. The proposed
DC algorithm converges to critical points from arbitrary
initial points.

3) Numerical experiments demonstrate that with the pro-
posed communication model and DC algorithm, data shuf-
fling in wireless distributed computing can be accom-
plished with high communication efficiency. The proposed
DC algorithm significantly outperforms the nuclear norm
relaxation approach and the IRLS algorithm. Furthermore,
the communication efficiency is scalable to the number of
mobile devices.

This work proposes a systematic framework for efficient data
shuffling in wireless distributed computing.

B. Organization and Notation

The rest of this work is organized as follows. Section II
describes the system model of wireless distributed comput-
ing, including the computation model and the proposed com-
munication model. Section III provides the interference align-
ment conditions for data shuffling as well as the formulated
low-rank model. Section IV introduces our proposed DC ap-
proach. We conduct numerical experiments and illustrate the
performance of the proposed algorithm and other state-of-
art algorithms in Section V before concluding this work in
Section VI.

We use [N ] to denote the set {1, . . . , N} for some positive
integer N . ⊗ is the Kronecker product operator. The cardinality
of a set F is denoted by |F|. det(·) denotes the determinant of a
matrix.
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II. SYSTEM MODEL

In this section, we shall introduce the computation model
of wireless distributed computing system, followed by propos-
ing a co-channel transmission communication model for data
shuffling.

A. Computation Model

Consider the wireless distributed computing system consist-
ing of K mobile users, where mobile users exchange informa-
tion over a common wirelessly connected access point (AP) as
shown in Fig. 1. Suppose each mobile user is equipped with L
antennas and the AP uses M antennas. The dataset in the system
is assumed to be evenly split to N files f1, . . . , fN , each with F
bits. Each mobile user k aims to obtain the output of computa-
tion task φk(dk; f1, . . . , fN ) with the input dk. For example in
object recognition, the dataset is a feature library of various ob-
jects. Given the feature vector of an image as input, each mobile
user requires the inference result of the image. In practice, the
storage size of mobile users is often limited [3] and the entire
dataset cannot be stored directly at the user end. Therefore, we
assume that the local memory size of each mobile user is only
µF bits (µ < N ), while the whole dataset can be distributively
stored across K mobile users (i.e., µK ≥ N ). Let Fk ⊆ [N ] be
the index set of files stored at user k. Then we have |Fk| ≤ µ and
∪k∈[K]Fk = [N ]. We thus use fFk = {fn : n ∈ Fk} to denote
the set of locally stored files at the k-th mobile user.

In this work, popular distributed computing framework such
as MapReduce [6] and Spark is adopted to accomplish all com-
putation tasks, where each computation task φk is assumed to
be decomposed as [4]

φk(dk; f1, . . . , fN ) = hk(gk,1(dk; f1), . . . , gk,N (dk; fN )).
(1)

In the focused distributed computing architecture, Map func-
tion gk,n(dk; fn) is computed by the k-th mobile user according
to file fn, whose output is the intermediate value wk,n with
E bits. The Reduce function hk maps all intermediate values
wk,1, . . . , wk,N into the output of computation task φk. We as-
sume that intermediate values are small enough to be stored at
each mobile user while collecting all inputs dk’s has negligible
commmunication overhead. As shown in Fig. 2, all computation
tasks hence can be accomplished via the following four phases:! Dataset Placement Phase: In this phase, the file placement

strategy Fk shall be determined, and files are delivered to
the corresponding mobile users in advance to execute Map
Phase.! Map Phase: In this phase, intermediate values wk,n are
computed locally with map functions gk,n for all k ∈ [K]
and n ∈ Fk based on the files fFk in the local memory of
mobile user k.! Shuffle Phase: The output of computation task φk for mo-
bile user k relies on the intermediate values {wk,n : n /∈
Fk} that can only be computed by other mobile users in
the Map phase. Therefore, mobile users shall exchange in-
termediate values wirelessly with each other in this phase.

Fig. 1. Wireless distributed computing system.

Fig. 2. Distributed computing model.

! Reduce Phase: By mapping all required intermediate
values into the output value, i.e., φk(dk; f1, . . . , fN ) =
hk(wk,1, . . . , wk,N ), mobile users construct the output of
each computation task φk.

With limited radio resources, data shuffling across mobile de-
vices becomes the significant bottleneck for scaling up wireless
distributed computing.

B. Communication Model

In wireless distributed computing systems, communication
often becomes the key bottleneck [4], [14] to accomplish the
computation tasks. In this paper, we aim to improve the com-
munication efficiency for the Shuffle Phase given the dataset
placement. We shall propose a co-channel transmission frame-
work to efficiently exchange the intermediate values for the
data shuffling by modeling this problem as a side information
aided message deliveray problem. Specifically, the set of all
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intermediate values {w1,1, . . . , w1,N , . . . , wK,N} is treated as a
library of independent messages {W1, . . . ,WT }withT = KN ,
i.e., the intermediate value wk,n is represented by message
W(k−1)N+n. Let Tk ⊆ [T ] be the index set of intermediate val-
ues available at mobile user k, i.e., Tk = {(j − 1)N + n : j ∈
[K], n ∈ Fk}. Likewise, let Rk ⊆ [T ] be the index set of inter-
mediate values required by mobile user k where Rk = {(k −
1)N + n : n /∈ Fk}. Note that ∪k∈[K]Tk = [T ], Tk ∩Rk = ∅
due to the structure of MapReduce-like distributed computing
framework. With these notations, the data shuffling in Shuffle
Phase is modeled as a side information aided message delivery
problem. The proposed communication model in Shuffle Phase
consists of uplink multiple access (MAC) stage and downlink
broadcasting (BC) stage, as shown in Fig. 1. In uplink MAC
stage, the AP collects the mixed signal transmitted by all mobile
users, and forwards it to each mobile user in downlink BC stage.

Let the aggregated signal transmitted by mobile user k over
r channel uses be

xk = [xk[i]] =

⎡

⎢⎢⎣

xk[1]

...

xk[L]

⎤

⎥⎥⎦ ∈ CLr, (2)

where xk[i] ∈ Cr corresponds to the i-th antenna. Let Hup
k [s, i]

be the channel coefficient between the i-th antenna of mobile
user k and the s-th antenna of AP in uplink MAC stage. The
received signal y[s] ∈ Cr at the s-th antenna of AP is given by

y[s] =
K∑

k=1

L∑

i=1

Hup
k [s, i]xk[i] + nup[s], (3)

where nup[s] ∈ Cr is the additive isotropic white Gaussian
noise. Here, we consider a quasi-static fading channel model
in which channel coefficients remain unchanged over r channel
uses. By denoting

y =

⎡

⎢⎢⎣

y[1]

...

y[M ]

⎤

⎥⎥⎦ ∈ CMr,nup =

⎡

⎢⎢⎣

nup[1]

...

nup[M ]

⎤

⎥⎥⎦ ∈ CMr, (4)

Hup
k =

⎡

⎢⎢⎣

Hup
k [1, 1] · · · Hup

k [1, L]

...
. . .

...

Hup
k [M, 1] · · · Hup

k [M,L]

⎤

⎥⎥⎦ ∈ CM×L, (5)

the received signal at AP can be written more compactly as

y =
K∑

k=1

(Hup
k ⊗ Ir)xk + nup, (6)

where ⊗ denotes Kronecker product.
In the downlink BC stage, the AP forwards the received signal

y to each mobile user. Similarly, the received signal zk ∈ CLr

by the k-th mobile user is given by

zk = (Hdown
k ⊗ Ir)y + ndown

k , (7)

where the channel coefficient matrix Hdown
k in downlink BC

stage and the downlink additive isotropic white Gaussian noise

ndown
k are given as

Hdown
k =

⎡

⎢⎢⎣

Hdown
k [1, 1] · · · Hdown

k [1,M ]

...
. . .

...

Hdown
k [L, 1] · · · Hdown

k [L,M ]

⎤

⎥⎥⎦ ∈ CL×M , (8)

ndown
k =

⎡

⎢⎢⎣

ndown
k [1]

...

ndown
k [L]

⎤

⎥⎥⎦ ∈ CLr. (9)

Therefore, the overall input-output relationship from all mobile
users to mobile user k through both the uplink MAC stage and
downlink BC stage can be represented as

zk =
K∑

i=1

(
Hdown

k ⊗ Ir

) (
Hup

i ⊗ Ir

)
xi (10)

+
(
Hdown

k ⊗ Ir

)
nup + ndown

k

=
K∑

i=1

(Hki ⊗ Ir)xi + nk, (11)

where Hki = Hdown
k Hup

i denotes the equivalent channel state
matrix and nk = (Hdown

k ⊗ Ir)nup + ndown
k is the effective ad-

ditive noise.
From equation (11), we observe that the proposed commu-

nication model for data shuffling is equivalent to an K-user
multiple-input-multiple-output (MIMO) interference channel.
There is a library of T messages {W1, . . . ,WT } in this side-
information aided system. Both transmitter k and receiver k
have access to messages indexed by set Tk as side information.
The k-th receiver requests messages with index set Rk from
transmitters. The average power constraint of each transmitter k
is given by E[∥xk∥22] ≤ ρ, where ρ > 0 is the maximum trans-
mit power. Note that the low-rank approach we shall propose
in this paper only requires that the problem be formulated as
an interference alignment problem with side information. Thus,
we believe our proposed approach for data shuffling can also
be applied to other network models that are equivalent to an
interference channel.

C. Achievable Data Rates and DoF

Let Rk(Wl) be the achievable data rate of the required mes-
sage Wl for mobile user k. Then there exists certain coding
scheme such that the rate of message Wl is Rk(Wl) while the
error probability of decoding Wl for mobile user k can be made
arbitrarily small as the length of codewords approaches infinity
[15].

As a first-order characterization of channel capacity, degree-
of-freedom (DoF) analysis and optimization are widely applied
in interference channels [8], [16], [17]. The optimal DoF is also
charaterized in [8] for the fully connected K user interference
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channel. Let SNRk,l be the signal-to-noise-ratio (SNR) at re-
ceiver k for message Wl, followed by the definition of degree-
of-freedom [8]

DoFk,l
△
= lim sup

SNRk,l→∞

Rk(Wl)

log(SNRk,l)
. (12)

Achievable DoF allocation set is denoted by {DoFk,l : k ∈
[K], l ∈ Rk} and symmetric DoF (denoted by DoFsym) is de-
fined as the largest achievable DoF for all k, l. That is, the DoF
allocation

{DoFk,l = DoFsym : k ∈ [K], l ∈ Rk} (13)

is achievable. In this paper, we choose DoF as the performance
metric for alleviating the interferences in data shuffling. Without
loss of generality, we shall maximize the achievable symmetric
DoF for the data shuffling in wireless distributed computing,
though it can be readily extended to general asymmetric cases.

III. INTERFERENCE ALIGNMENT CONDITIONS AND LOW-RANK

FRAMEWORK FOR DATA SHUFFLING

In this section, we shall establish the interference alignment
conditions for data shuffling in wireless distributed computing,
before developing a low-rank optimization framework for the
achievable DoF maximization in linear transceiver design.

A. Interference Alignment Conditions

Linear coding schemes for transceiver design have found ap-
plications in interference alignment [8] and index coding [18]
owing to their low-complexity and optimality in terms of DoFs.
Therefore, we focus on linear coding scheme in this work. Let
sj ∈ Cd be the representative vector for message Wj with d
datastreams such that each datastream carries one DoF. Then
the transmitted signal of user k is

xk =
∑

j∈Tk

V kjsj , (14)

where V kj is the precoding matrix of mobile user k for message
j and formed by

V kj =

⎡

⎢⎢⎣

V kj [1]

...

V kj [L]

⎤

⎥⎥⎦ ∈ CrL×d, (15)

in which V kj [i] ∈ Cr×d corresponds to the i-th antenna of
mobile user k over r channel uses. Likewise, let Ukl =
[Ukl[1] · · · Ukl[L] ] ∈ Cd×Lr be the decoding matrix for
each message Wl with l ∈ Rk. We then decode message Wl

from

z̃kl = Uklzk = Ukl

K∑

i=1

(Hki ⊗ Ir)
∑

j∈Ti

V ijsj + ñkl, (16)

where ñkl = Uklnk. We observe that z̃kl contains the linear
combination of the entire message set, which can be decomposed
into three parts: the desired message, interferences, and locally

available messages, i.e.,

z̃kl = I1( sl︸︷︷︸
desired message

) + I2({sj : j ∈ Tk}︸ ︷︷ ︸
locally available messages

)

+ I3({sj : j /∈ Tk ∪ {l}}
︸ ︷︷ ︸

interferences

) + ñkl. (17)

Specifically, linear operators I1, I2, I3 are given by

I1(sl) =
∑

i:l∈Ti

Ukl(Hki ⊗ Ir)V ilsl,

I2({sj : j ∈ Tk}) =
∑

j∈Tk

∑

i:j∈Ti

Ukl(Hki ⊗ Ir)V ijsj ,

I3({sj : j /∈ Tk ∪ {l}}) =
∑

j/∈Tk∪{l}

∑

i:j∈Ti

Ukl(Hki ⊗ Ir)V ijsj .

Interference alignment [8] turns out to be a powerful tool to
handle the mutual interference among users. The basic idea is to
make signals resolvable at intended receivers while aligning and
cancelling signals at unintended receivers. To eliminate interfer-
ences which is the key limit factor for achieving high data rates,
we establish the following interference alignment conditions

det

(
∑

i:l∈Ti

Ukl(Hki ⊗ Ir)V il

)
̸= 0, (18)

∑

i:j∈Ti

Ukl(Hki ⊗ Ir)V ij = 0, j /∈ Tk ∪ {l}, (19)

where l ∈ Rk, k ∈ [K]. By designing transceivers to satisfy in-
terference alignment conditions (18) and (19), message Wl can
be decoded from signal s̃l = I−1

1 (z̃kl − I2({sj : j ∈ Tk})) for
all l ∈ Rk, k ∈ [K].

If conditions (18) and (19) are met, we can obtain interference-
free channels for transmitting d-dimensional messages over r
channel uses. The achievable DoFk,l is thus given by d/r. Hence
the symmetric DoF in the wireless distributed computing system
is given by

DoFsym = d/r. (20)

Consequently, achievable symmetric DoF can be maximized by
finding the minimum channel use r subject to (18) and (19).

B. Low-Rank Optimization Approach

In this subsection, we develop a low-rank model to estab-
lish the interference alignment conditions (18) and (19) for data
shuffling in wireless distributed computing. Note that

Ukl(Hki ⊗ Ir)V ij =
L∑

m=1

L∑

n=1

Hki[m,n]Ukl[m]V ij [n], (21)

where Hki[m,n] is the (m,n)-th entry of matrix Hki. Define a
set of matrices

Xk,l,i,j = [Xk,l,i,j [m,n]] = [Ukl[m]V ij [n]] (22)
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=

⎡

⎢⎢⎣

Ukl[1]V ij [1] · · · Ukl[1]V ij [L]
...

. . .
...

Ukl[L]V ij [1] · · · Ukl[L]V ij [L]

⎤

⎥⎥⎦ (23)

=

⎡

⎢⎢⎣

Ukl[1]
...

Ukl[L]

⎤

⎥⎥⎦
[
V ij [1] · · · V ij [L]

]
(24)

= ŨklṼ ij , (25)

where Ũkl ∈ CLd×r and Ṽ ij ∈ Cr×Ld. We further denote

X = [Xk,l,i,j ] (26)

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

X1,1,1,1 · · · X1,1,1,T · · · X1,1,K,T

...
. . .

...
. . .

...
X1,T,1,1 · · · X1,T,1,T · · · X1,T,K,T

...
. . .

...
. . .

...
XK,T,1,1 · · · XK,T,1,T · · · XK,T,K,T

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(27)

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ũ11

...

Ũ1T

...

ŨKT

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
Ṽ 11 · · · Ṽ 1T · · · Ṽ KT

]
(28)

= Ũ Ṽ , (29)

where Ũ ∈ CLdKT×r and Ṽ ∈ Cr×LdKT . Without loss of
generality, to enable efficient algorithms design, we set∑

i:l∈Ti Ukl(Hki ⊗ Ir)V il = I in (18). Then the interference
alignment conditions (18) and (19) can be rewritten as

∑

i:l∈Ti

L∑

m=1

L∑

n=1

Hki[m,n]Xk,l,i,l[m,n] = I, (30)

∑

i:j∈Ti

L∑

m=1

L∑

n=1

Hki[m,n]Xk,l,i,j [m,n] = 0, j /∈ Tk ∪ {l},

(31)

which can be vectorized at both sides and denoted by A(X) =
b with the linear operator A : CD×D 0→ CS as a function of
{Hki}. Note that the rank of matrix X is equal to the number
of channel uses r since X = Ũ Ṽ , i.e.,

rank(X) = r. (32)

We hence propose the following low-rank optimization approach
to maximize the achievable symmetric DoF

P : minimize
X∈CD×D

rank(X)

subject to A(X) = b, (33)

where D = LdKT . Note that, in this paper, we assume that the
file placements {Fk}Kk=1 are given and will aim to maximize

the achievable DoF. Problem P is always feasible since each
requested intermediate values can always be delivered through
orthogonal transmission directly. However, problem P is com-
putationally hard due to the non-convexity of the rank function.

C. Problem Analysis

Low-rank optimization approach has recently caught enor-
mous attentions particularly in machine learning, high-
dimensional statistics, and recommendation systems [9].
Unfortunately, low-rank optimization problems are generally in-
tractable due to the non-convex rank function. Therefore, many
efforts focused on finding tractable representation for the rank
function, based on which a number of algorithms are developed.

1) Nuclear Norm Relaxation: Nuclear norm [9] has demon-
strated its effectiveness as the convex surrogate for the rank func-
tion, yielding the following nuclear norm minimization problem

minimize
X

∥X∥∗

subject to A(X) = b. (34)

The nuclear norm ∥X∥∗ is equal to the sum of the singular values
of X . It is the convex hull of the collection of atomic unit-norm
rank-one matrices, and is thus the tightest convex relaxation
of the rank function. Its equivalent semidefinite programming
(SDP) form

minimize
X,W 1,W 2

Tr(W 1) + Tr(W 2)

subject to A(X) = b,
[
W 1 X

XH W 2

]
≽ 0 (35)

can be solved by the interior point method with high preci-
sion at a low iteration count. However, this second-order al-
gorithm has high computational complexity with computational
cost O((S +D2)3) at each iteration due to the Newton step
[19]. The first-order alternating direction method of multipli-
ers (ADMM) [20], [21] significantly reduces the computational
cost to O(SD2 +D3) for each iteration (please refer to IV-D
for more details). It converges within O(1/ϵ) iterations given
the precision ϵ > 0.

However, the nuclear norm minimization approach yields
unsatisfactory performance due to the poor structure of the
affine constraint in problem P . For example, in the scenario
of two users with K = N = 2, µ = d = L = M = 1, each mo-
bile user stores distinct files locally, and requires the intermediate
values computed by the other one. In this case, the nuclear norm
relaxation of problem P is

minimize
X

∥X∥∗

subject toX =

[
⋆ ⋆ 1/H12 0

0 1/H21 ⋆ ⋆

]
, (36)

where the value of ⋆ is unconstrained (here we have removed
the rows and columns that are all unconstrained). In this case,
the nuclear norm approach always returns full rank solution
while the optimal rank is 1. Furthermore, the numerical results
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provided in Section V shall demonstrate that the convex relax-
ation approach yields poor performance on average.

2) Schatten-pNorm Approximation and Iterative Reweighted
Least Squares Minimization: To provide better approximation
for the rank function, Schatten-p norm (0 ≤ p ≤ 1) of a matrix
has been studied in [10]. Specifically, the Schatten-p norm of
matrix X ∈ CD×D is defined as

∥X∥p =

(
D∑

i=1

σp
i (X)

)1/p

. (37)

Since it is nonconvex for p < 1, an iterative reweighted least
squares algorithm (IRLS-p) is proposed to alternatively mini-
mize weighted Frobenius norm and update weights W based
on the observation that

∥X∥pp = Tr((XHX)
p
2−1XHX) (38)

holds for non-singular matrix X . In the t-th iteration, X and
weight matrix W can be updated as follows

X [t] = argmin
X

{Tr(W [k−1]XHX) : A(X) = b} (39)

W [t] = (X [t]HX [t] + γ[k]I)
p
2−1, (40)

where γ[k] ∈ R is a regularization parameter to ensure thatW [t]

is well-defined and {γ[k]} is a non-increasing sequence. How-
ever, its performance still falls short when applied to problem
P given the poorly structured affine constraint. In this work,
we shall propose a novel difference-of-convex-functions (DC)
algorithm to achieve considerable performance improvements
by rewriting the rank function as a DC function.

IV. DC APPROACH FOR LOW-RANK OPTIMIZATION

This section develops a DC algorithm for the low-rank opti-
mization problem in data shuffling. This is achieved by propos-
ing a novel DC representation for the rank function, and de-
veloping an efficient DC algorithm based on the proposed DC
representation.

A. DC Approach

A DC representation of the rank function has recently been
proposed in [13], followed by a DC algorithm to solve problem
P . We will first introduce the definition of Ky Fan norm.

Definition 1: Ky Fan k-norm [22]: The Ky Fan k-norm of a
matrix X is a convex function of matrix X and given by the
sum of its largest-k singular values, i.e.,

|||X|||k =
k∑

i=1

σi(X), (41)

where σi(X) is the i-th largest singular value of X .
Based on Definition 1, if a matrix is low-rank (rank r), its

Ky Fan r-norm equals its nuclear norm. Then a DC represen-
tation for the rank function can be obtained. For any matrix
X ∈ Cm×n, the following equation holds [13]:

rank(X) = min{k : ∥X∥∗ − |||X|||k = 0, k ≤ min{m,n}}.
(42)

Therefore, by representing the rank function with Ky Fan k-
norm, problem P can be solved by finding the minimum k
such that the optimal objective value is zero in the following
optimization problem:

minimize
X∈CD×D

∥X∥∗ − |||X|||k

subject to A(X) = b, (43)

where the objective is the difference of two convex functions
∥X∥∗ and |||X|||k. Due to the nonconvex DC objective function,
the majorization-minimization (MM) algorithm [11], [12] can be
adopted to iteratively solve a convex subproblem by linearizing
|||X|||k as Tr(∂|||Xt|||HkX), i.e., by solving

minimize
X∈CD×D

∥X∥∗ − Tr(∂|||Xt|||HkX)

subject to A(X) = b (44)

in the (t+ 1)-th iteration. Here Xt is the solution to (44) in the
t-th iteration. ∂|||Xt|||k [22] denotes the subdifferential of |||X|||k
at Xt and can be chosen as

∂|||Xt|||k = {Udiag(q)V H, q = [1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
D−k

]}, (45)

whereXt = UΣV H is the singular value decomposition (SVD)
of Xt.

Unfortunately, the main drawback of this DC approach is
that in each iteration a nuclear norm minimization problem (44)
should be solved. The computational cost of nuclear norm min-
imization problem is O( 1ϵ (SD

2 +D3)) even with first-order
ADMM algorithm for precision ϵ, which is computationally
costly and not amenable to the data shuffling problem in this
paper. Efficient algorithm should be proposed especially for the
wireless distributed computing scenarios with large number of
mobile users. Next, we shall propose a novel computationally
efficient DC approach for solving problem P , for which we
propose a novel DC representation for the rank function.

B. A Novel DC Representation for Rank Function

We observe that the nuclear norm function in the objective
function of problem (43) leads to cumbersome computations. To
overcome the drawback, we propose a novel DC representation
of the rank function. We first introduce:

Definition 2: For any integer 1 ≤ k ≤ min{m,n}, the Ky
Fan 2-k norm [23] of matrix X ∈ Cm×n is defined as the ℓ2-
norm of the subvector formed by the largest-k singular values
of X . That is,

|||X|||k,2 =

(
k∑

i=1

σ2
i (X)

)1/2

, (46)

where σi(X) is the i-th largest singular value of matrix X .
The Ky Fan 2-k norm is a unitarily invariant norm, and can

be computed via the following SDP problem [23]

|||X|||2k,2 = minimize
z,U

kz + Tr(U)

subject to zI +U ≽ XHX,

U ≽ 0. (47)
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Note that rank(X) = r means that the min{m,n}− r smallest
singular values of matrix X ∈ Cm×n are zeros. Based on this
fact, we have the following proposition:

Proposition 1: For a matrix X ∈ Cm×n, we have

rank(X) ≤ k ⇔ ∥X∥F = |||X|||k,2. (48)

Futhermore,

rank(X) = min{k : ∥X∥2F − |||X|||2k,2 = 0, k ≤ min{m,n}}.
(49)

Proof: Given rank(X) ≤ k, we have σi(X) = 0 ∀i > k.
It follows that ∥X∥F = |||X|||k,2. Conversely, we can deduce
σi(X) = 0 ∀i > k from ∥X∥F = |||X|||k,2. Thus, the rank of
matrix X is no more than k.

Let the rank of matrix X be r. Then σi(X) = 0 ∀i > r
and σi(X) > 0 ∀i ≤ r. Since ∥X∥F = |||X|||k,2 if and only if
rank(X) ≤ k, the minimum k for ∥X∥2F − |||X|||2k,2 = 0 will
be exactly r. Conversely, r = min{k : ∥X∥2F − |||X|||2k,2 = 0}
we deduce that σi(X) = 0 ∀i > r and σi(X) > 0 ∀i ≤ r. Then
rank(X) = r. !

C. Efficient DC Algorithm for Problem P

With the proposed novel DC representation of rank function,
the minimum rank r can be found by sequentially solving

PDC : minimize
X∈CD×D

∥X∥2F − |||X|||2k,2

subject to A(X) = b (50)

and incrementing k from 1 to min{m,n}, until the objective
value of problem PDC achieves zero. Problem PDC is a DC
programming problem since its objective function is the differ-
ence of two convex functions.

To develop the simplified form of DC algorithm [11] , we
equivalently rewrite problem PDC as

minimize
X∈Cm×n

∥X∥2F + I(A(X)=b)(X)− |||X|||2k,2 (51)

where the indicator function I is given by

I(A(X)=b)(X) =

{
0, A(X) = b

+∞, otherwise
. (52)

To deal with the complex domain, we employ Wirtinger’s
calculus [24]. Let g(X) = ∥X∥2F + I(A(X)=b)(X), h(X) =
|||X|||2k,2. Since {X : A(X) = b} is an affine subspace, func-
tion g and function h are both convex. We denote

α = inf
X∈X

f(X) = g(X)− h(X) (53)

where X = Cm×n. According to the Fenchel’s duality [25], its
dual problem is given by

α = inf
Y ∈Y

h∗(Y )− g∗(Y ). (54)

Here h∗(Y ) and g∗(Y ) are the conjugate functions of g and h
respectively. The conjugate function is defined by

g∗(Y ) = sup
X∈X

⟨X,Y ⟩ − g(X), (55)

where the inner product is defined as ⟨X,Y ⟩ = Tr(XHY )
based on [24]. Please see Appendix A for the detailed derivation
of (54).

Simplified DC algorithm aims to update both the primal and
dual variables via successive convex approximation. Specific
iterations for solving problem PDC are given by

Y [t] = arg inf
Y ∈Y

h∗(Y )− [g∗(Y [t−1])+ ⟨Y −Y [t−1],X [t]⟩],

(56)

X [t+1] = arg inf
X∈X

g(X)− [h(X [t]) + ⟨X −X [t],Y [t]⟩].
(57)

Using the Fenchel biconjugation theorem [25], equation (56)
can be summarized as

Y [t] ∈ ∂h(X [t]). (58)

Therefore, we propose to solve problem PDC by updating the
primal and dual variables X [t+1],Y [t] via

Y [t] ∈ ∂|||X [t]|||2k,2 (59)

X [t+1] = arg inf
X∈X

{∥X∥2F − ⟨X,Y [t]⟩ : A(X) = b}. (60)

Proposition 2: One subgradient of |||X|||2k,2 is given by

∂|||X|||2k,2 := 2UΣkV
H, (61)

where X = UΣV H is the singular value decomposition (SVD)
of matrix X ∈ CD×D and Σk keeps the largest k diagonal ele-
ments of the matrix Σ.

Proof: First we note that the Ky Fan 2-k norm of matrixX is
orthogonally invariant. This can be obtained from the orthogonal
invariance of singular values, and

|||X|||2k,2 = |||σ(X)|||2k,2 =
k∑

i=1

σ2
i (X). (62)

Here σ = [σi(X)] ∈ RD denotes the vector composed by all
singular values of matrix X . |||σ(X)|||k,2 denotes the Ky Fan
2-k norm of vector σ(X). The subgradient of |||σ(X)|||2k,2 with
respect to σ(X) is given by

c ∈ RD : ci =

{
2σi(X), i <= k

0, i > k
. (63)

According to the subdifferential of orthogonally invariant norm
[26], we obtain

{Udiag(d)V H : X = UΣV H,

d ∈ ∂|||σ(X)|||k,2} ⊆ ∂|||X|||k,2. (64)

It then follows that

2UΣkV
H ∈ ∂|||X|||2k,2, (65)

where Σk is given by

(i, j)-th entry ofΣk :=

{
σi(X), i = j, i <= k

0, otherwise
. (66)

!
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Note that each iteration of (59) and (60) for the proposed DC
algorithm can be computed much more efficiently than solv-
ing the nuclear norm minimization problem (44) since (60) is a
simple quadratic programming (QP) problem with closed form
solutions. Specifically, according to (59) and (60), X [t+1] can
be rewritten as the solution to the following quadratic program:

minimize
X∈CD×D

∥∥∥∥X − 1

2
∂|||X [t]|||2k,2

∥∥∥∥
2

F

subject to A(X) = b. (67)

The solution to this least square problem with affine constraint
is the orthogonal projection onto the affine subspace, whose
closed-form is given by

X [t+1] =
(
I −A+A

)(1

2
∂|||X [t]|||2k,2

)
+A+(b), (68)

where A+ = AH(AAH)−1. Therefore, the overall procedure of
our proposed DC algorithm is shown in Algorithm 1.

D. Computational Complexity and Convergence Analysis

As presented in Section III-C1, the computational complex-
ity for solving one nuclear norm relaxation problem is O((S +
D2)3)with the second-order interior point method implemented
by CVX toolbox [27] at each iteration. The proposed DC al-
gorithm involves computing a series of equation (68) multiple
times for fixed rank r. Since both A and A+ can be computed
and stored in advance, in each iteration the computational over-
head comes from matrix vector multiplication and subgradient
evaluation. Since the dimension of A is CD×D 0→ CS , the com-
plexity of matrix vector multiplication is O(SD2). Computing
the subgradient by following (61) is dominated by the SVD with
computational complexityO(D3). Therefore, the computational
overhead of the proposed DC algorithm for each iteration is
O(SD2 +D3). However, the first-order algorithm ADMM [21]
for solving the nuclear norm minimization problem (44) needs
to solve a sequence of semidefinite cone projection problem via
SVD, which yields computational cost O( 1ϵ (SD

2 +D3)) with
ϵ as the solution accuracy. Therefore, our proposed DC algo-
rithm is much more computationally efficient with closed form
solution for solving the DC program (50), instead of solving

a nuclear norm minimization problem for solving the DC pro-
gram (43). The complexity of the iterations (39) and (40) for the
IRLS-p algorithm using projected gradient descent method [10]
is O((SD2 +D3) log 1

ϵ ).
The proposed DC algorithm can be implemented very effi-

ciently due to the sparse structure of operator A. The overhead
of matrix vector multiplication is often small especially when
L and d are much smaller compared with the number of in-
volved mobile users. Specifically, the sparsity level of the linear
operator A is given as

K∑

k=1

∑

l∈Rk

∑

j ̸=Tk

|{i : j ∈ Ti}|L2d2. (69)

For example, for a single-antenna wireless distributed comput-
ing system with 5 mobile users and 10 files in the dataset, if each
mobile user stores 6 files in its local storage unit and messages
are delivered with single datastream, D = 250 and the sparisity
level of A is only 920.

The convergence of the proposed DC algorithm for solving
problem PDC is given by the following proposition.

Proposition 3: Given rank parameter k, the proposed
Algorithm 1 for solving problem PDC converges to critical
points from arbitrary initial points.

Proof: Please refer to Appendix B for details. !

V. NUMERICAL RESULTS

In this section, we describe numerical experiments to compare
the performance of the proposed DC algorithm (Algorithm 1)
with the following benchmarks:! Nuclear norm relaxation: To evaluate the performance of

the nuclear norm relaxation approach (35), we implement
the interior point method introduced in Section III-C1 with
CVX [27] toolbox.! Iterative reweighted least squares (IRLS): In [10],
smoothed Schatten-p norm approximation for the rank
function is adopted. To solve this nonconvex problem, the
iterative reweighted least squares algorithm is proposed as
presented in Section III-C2. p is chosen as 0.5 through cross
validation in this section.! DC algorithm based on the difference between nuclear
norm and Ky Fank-norm: This DC algorithm is proposed
in [13] and has been introduced in Section IV-A, which is
refered to as “DC-Nuc” in this section.

In all simulations, we consider the symmetric case where
all mobile users and the AP are equipped with L = M anten-
nas. The maximum achievable symmetric DoF (20) is chosen
as the performance metric. The channel coefficients are ran-
domly drawn from independent and identically distributed com-
plex Gaussian distribution, i.e., Hki ∼ CN (0, I). For each al-
gorithm, the rank is determined by the number of singular values
above 10−5. Given r, iterations for the proposed DC algorithm
will be terminated when the (r + 1)-th singular value is less
than 10−5, i.e.,σr+1(X) < 10−5. Since the computational com-
plexity of the “DC-Nuc” algorithm is overwhelming when the
problem size is large, we run it only when the problem sizes are
small, i.e., in Section V-A and Section V-B.
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A. Convergence Rate and Time

In this subsection, we consider a 5-user single-antenna wire-
less distributed computing system and compare the convergence
rate (i.e., the number of iterations for convergence) and conver-
gence time (i.e., the computation time for convergence) of the
“IRLS” algorithm, “DC-Nuc” algorithm and the proposed DC
algorithm. Suppose each mobile devices store 5 out of 10 files
in the file library. We run each algorithm with r = 13 and take
the (r + 1)-th singular value of X as the cost function to show
their convergence behaviors. The simulation results shown in
Fig. 3 demonstrate that the “DC-Nuc” algorithm converges in a
few iterations while the proposed DC algorithm is the slowest.
However, the overall computational complexity of the proposed
DC algorithm is the lowest due to its cheap iteration cost.

B. Achievable DoF Over Local Storage Size

Consider a wireless distributed computing framework with 5
single-antenna mobile users and a single-antenna AP. Each mo-
bile user stores 5 to 9 files locally while the full dataset consists
of 10 files. We shall evaluate the maximum achievable symmet-
ric DoF that each algorithm can obtain with the assumption that
each message is a single datastream. We run each algorithm 100
replications to evaluate the relationship between DoF and the
local storage size.

FromFig. 4, we observe that the achievable symmetric DoF
has visible growth when more files are stored at each mobile
devices for all algorithms. Clearly, this is because more coop-
eration is enabled and fewer intermediate values need to be ex-
changed when each mobile user can access more files of the
whole dataset. The proposed DC algorithm achieves comparable
performance with the “DC-Nuc” algorithm, while considerably
outperforms both the IRLS algorithm and nuclear norm relax-
ation. Meanwhile, the proposed DC algorithm has the lowest
computational cost among the “DC-Nuc” algorithm and IRLS
algorithm. The result of this experiment demonstrates that the
proposed DC representation for the rank function has advantages
over the Schatten-p norm approximation approach, while the nu-
clear norm relaxation is inferior to the other two approaches.

C. Achievable DoF Over the Number of Antennas

We consider a wireless distributed computing framework with
8 mobile users and an AP. Each mobile user stores 1 out of 4
files in its local memory. We assume that each mobile users and
the AP are equipped with the same number of antennas. We used
different number of antennas to evaluate the multiplex gain of
the focused wireless distributed computing system. Each point
is averaged 100 times and the result is shown in Fig. 5.

We can see that achievable symmetric DoF grows linearly
with the number of antennas for the proposed DC algorithm
and IRLS algorithm. However, the achievable DoF by the nu-
clear norm relaxation algorithm remains constant despite the
growing number of antennas due to the poor structure of our
problem. This test demonstrates that the proposed transceiver
design framework achieves linear gain by increasing the num-
ber of antennas for the proposed DC algorithm. It also shows

Fig. 3. The convergence rate and time of different algorithms.

Fig. 4. The maximum achievable symmetric DoF over local storage size µ of
each mobile user.

the intrinsic defects of nuclear norm relaxation approach for the
data shuffling problem. The proposed DC approach is superior
to the IRLS algorithm and the nuclear relaxation approach for
data shuffling.
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Fig. 5. The maximum achievable symmetric DoF over the number of antennas
when the mobile users and the AP are equipped with same number of antennas.

Fig. 6. The achievable DoF with different algorithms over the number of
mobile users.

D. Achievable DoF Over the Number of Mobile Users

As pointed in [4], the limited communication bandwidth may
become the bottleneck since the computation tasks increase lin-
early with network size. Therefore, the scalability becomes crit-
ical for a wireless distributed computing framework. In this test,
we shall evaluate the achievable DoF by increasing the number
of mobile users. Consider a single-antenna wireless distributed
computing system where the dataset can be separated to 5 files,
and each mobile user can only store up to 2 files in its local stor-
age. We consider the uniform placement case when each mobile
user stores µ = 2 files and each file is stored by µK/N = 2K/5
mobile users. Consider the single datastream case of d = 1.
The achievable symmetric DoFs of different algorithms aver-
aged over 100 trials are shown in Fig. 6. The achievable DoFs
of the proposed DC algorithms remain nearly unchanged as
the network size grows, which demonstrates its scalability. On
the contrary, there is a marked decline of the achievable DoFs
for IRLS algorithm and nuclear norm relaxation algorithm. Al-
though more requested messages are involved in the system

when the number of users grows, opportunities of collaboration
for mobile users also increase since each file is stored at more
mobile users. Our proposed algorithm can harness the benefits
of such collaboration while other algorithms fail. However, it
still remains an interesting but challenging problem to prove the
scalability theoretically for the proposed DC algorithm.

In summary, the proposed DC algorithm has the capability of
achieving higher DoF over benchmark approaches by exploiting
the special structure of the data shuffling problem. Furthermore,
the achievable DoF of the proposed DC algorithm almost re-
mains unchanged when the number of mobile users increases.

VI. CONCLUSION

In this paper we proposed a novel low-rank optimization to
improve the communication efficiency for wireless distributed
computing. We focus on the data-shuffle phase of the distributed
computing and establish a novel interference alignment condi-
tion for data shuffling. We proposed a novel DC representa-
tion for the rank function based on Ky Fan 2-k norm, and then
developed an efficient DC algorithm for the focused low-rank
optimization problem, by deriving the closed-form solution for
each iteration of the proposed DC algorithm. Numerical results
demonstrated that the proposed DC approach can achieve higher
DoF than the nuclear norm relaxation approach and IRLS algo-
rithm. Furthermore, in uniform placement scenario, the achiev-
able DoF nearly remains unchanged though more mobile users
are involved.

For the proposed data shuffling strategy for wireless dis-
tributed computing, there still exist some open problems. Possi-
ble future directions are listed as follows:! This paper has proposed a low-rank approach for maximiz-

ing the achievable DoF given arbitrary file placements. It
remains an interesting research topic to design the optimal
file placement strategy for further improving the commu-
nication efficiency.! Although we have shown that the proposed low-rank ap-
proach is scalable with the growth of mobile users, it is par-
ticularly interesting to prove the scalability theoretically.! We have shown that the proposed DC algorithm converges
globally, but establishing the convergence rate can be con-
sidered in future works.! It would also be interesting to consider the transceiver de-
sign with finite SNR scenarios for the proposed commu-
nication model for data shuffling in wireless distributed
computing systems.

APPENDIX A
DERIVATION OF EQUATION (54)

From the biconjugation theorem, we have

α = inf
X∈X

g(X)− h(X) (70)

= inf
X∈X

{g(X)− sup
Y ∈Y

{⟨X,Y ⟩ − h∗(Y )}}. (71)

We then rewrite it as a joint optimization problem, i.e.,

α = inf
X∈X ,Y ∈Y

{g(X)− ⟨X,Y ⟩+ h∗(Y )} (72)
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= inf
Y ∈Y

{h∗(Y )− sup
X∈X

{⟨X,Y ⟩ − g(X)}} (73)

= inf
Y ∈Y

h∗(Y )− g∗(Y ). (74)

Here we use the definition of conjugate function to obtain (74).
Therefore, the dual form is given by equation (54).

APPENDIX B
PROOFS OF PROPOSITION 3: CONVERGENCE OF ALGORITHM 1

Since Y [t] ∈ ∂h(X [t]), we have

h
(
X [t+1]

)
≥ h

(
X [t]

)
+
〈
X [t+1] −X [t],Y [t]

〉
. (75)

By adding −g(X [t+1]) from both sides, we have

(g − h)
(
X [t+1]

)
≤ g

(
X [t+1]

)

−
〈
X [t+1] −X [t],Y [t]

〉
− h

(
X [t]

)
.

(76)

Similarly, X [t+1] ∈ ∂g∗(Y [t]) implies

g
(
X [t]

)
≥ g

(
X [t+1]

)
+
〈
X [t] −X [t+1],Y [t]

〉

+ ∥X [t+1] −X [t]∥2F . (77)

Thus, subtracting h(X [t]) from both sides we obtain inequality

g
(
X [t+1]

)
−
〈
X [t+1] −X [t],Y [t]

〉
− h

(
X [t]

)

≤ (g − h)
(
X [t]

)
− ∥X [t+1] −X [t]∥2F . (78)

On the other hand,

X [t+1] ∈ ∂g∗
(
Y [t]

)
⇔
〈
X [t+1],Y [t]

〉

= g(X [t+1]) + g∗(Y [t]) (79)

Y [t] ∈ ∂h
(
X [t]

)
⇔
〈
X [t],Y [t]

〉
= h

(
X [t]

)
+ h∗

(
Y [t]
)
.

(80)

Then it follows

g
(
X [t+1]

)
−
〈
X [t+1] −X [t],Y [t]

〉
− h

(
X [t]

)

= h∗
(
Y [t]

)
− g∗

(
Y [t]

)
. (81)

According to (76) and (78), we obtain that

(g − h)(X [t+1]) ≤ h∗
(
Y [t]

)
− g∗

(
Y [t]

)

≤ (g − h)
(
X [t]

)
−
∥∥∥X [t+1] −X [t]

∥∥∥
2

F
.

(82)

Adding that

(g − h)(X) ≥ 0, (83)

the objective value converges and

lim
t→∞

∥∥∥X [t+1] −X [t]
∥∥∥
2

F
= 0. (84)

For every limit point,

(g − h)
(
X [t+1]

)
= (g − h)

(
X [t]

)
, (85)

and
∥∥∥X [t+1] −X [t]

∥∥∥
2

F
= 0. (86)

Therefore, we have

(g − h)
(
X [t+1]

)
= h∗

(
Y [t]

)
− g∗

(
Y [t]

)

= (g − h)
(
X [t]

)
. (87)

From (80) we know that

h
(
X [t+1]

)
+ h∗

(
Y [t]

)
= g

(
X [t+1]

)
+ g∗

(
Y [t]

)

=
〈
X [t+1],Y [t]

〉
, (88)

i.e.,

Y [t] ∈ ∂h
(
X [t+1]

)
. (89)

Then we haveY [t] ∈ ∂g(X [t+1]) ∩ ∂h(X [t+1]), which implies
that X [t+1] is a critical point of g − h. Therefore, given r Algo-
rithm 1 converges to critical points from arbitrary initial points.
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