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Abstract—In cloud radio access networks, functional split refers
to a division of signal processing functionalities between the base-
band unit (BBU) pool and remote radio heads (RRHs). The func-
tionality of baseband signal precoding can either be performed by
the BBU pool or RRHs, which corresponds to different functional
splits. The compression-after-precoding (CAP) and data-sharing
(DS) strategies are the realizations of these two functional splits. In
this paper, we propose a flexible functional split design to enable the
dynamic functional configuration of each active RRH to use either
CAP or DS strategy. Our goal is to minimize the aggregate power
consumption, while taking into account limited fronthaul capacity,
fronthaul power consumption, and quality-of-service requirement.
We formulate a joint RRH mode (i.e., CAP, DS, and sleep) selection,
precoding design, and fronthaul compression problem. The formu-
lated problem is a non-convex quadratically constrained combina-
torial optimization problem. Through sequential convex program-
ming and ℓ1-norm convex relaxation, the problem is transformed
into a sequence of semidefinite programming problems. An effi-
cient algorithm based on the majorization–minimization scheme
is developed to solve the problem. Simulations demonstrate the
importance of considering the limited fronthaul capacity and the
performance improvement of the proposed algorithm compared
with the pure CAP and DS strategies.

Index Terms—Cloud radio access network, flexible functional
split, capacity-constrained fronthaul, energy efficiency, semidefi-
nite relaxation.

I. INTRODUCTION

BY IMPROVING the spatial frequency reuse and reducing
the distance between the user equipments (UEs) and the

access points, the ultra dense deployment of small cells is recog-
nized as an efficient and effective method to boost the network
capacity of the fifth generation (5G) wireless networks [1]. How-
ever, with the densification of small cells, every new cell adds
to co-channel interference, which is a key performance-limiting
factor in radio access networks (RANs).
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With the virtualization of baseband signal processing func-
tionalities, cloud RAN (C-RAN) has been proposed as a promis-
ing network architecture for 5G wireless networks [2]. In C-
RAN, the baseband unit (BBU) pool, composed of multiple
BBUs, performs centralized baseband signal processing and
coordinates the transmissions of low-cost remote radio heads
(RRHs). The digitized baseband inphase and quadrature sam-
ples of radio signals between the BBU pool and the RRHs are
transmitted through low-latency optical fronthaul links. C-RAN
can enhance the spectrum and energy efficiency by suppressing
co-channel interference via cooperative transmission/reception
[3], [4]. It can also reduce the network capital expenditure and
operating expenditure by adapting to spatial and temporal traffic
variations via statistical multiplexing.

The aforementioned benefits of C-RAN are achieved at the
cost of imposing a significant burden on fronthaul links. How-
ever, the fronthaul links are usually capacity-constrained in prac-
tice [5]–[7], which may become the bottleneck of the central-
ized signal processing and affect the resource allocation pro-
cesses across RRHs. The compression-after-precoding (CAP)
and data-sharing (DS) strategies are two fundamental cooper-
ative strategies in C-RAN. In the CAP strategy, the BBU pool
performs centralized precoding and compresses the precoded
baseband signals before delivering them to the corresponding
RRHs through fronthaul links. On the other hand, in the DS
strategy, the BBU pool transmits the precoding coefficients
along with the original signals to the RRHs, which perform
local precoding. Based on these two strategies, resource alloca-
tion [8], fronthaul compression [9], RRH clustering [10]–[12],
and device-to-device (D2D) communications [13] are studied
to alleviate the fronthaul capacity constraint. Specifically, Zhao
et al. in [8] propose a joint transmit beamforming design and
user data allocation scheme to minimize the requirement on
fronthaul capacity. Given the finite capacity of fronthaul links,
the weighted sum-rate of the CAP strategy can be enhanced
by jointly compressing the precoded signals for different RRHs
[9]. By balancing the tradeoff between the cooperation gain and
fronthaul capacity constraint, a dynamic user-centric cluster-
ing scheme is investigated in [10] to maximize the weighted
sum-rate. Under the fronthaul capacity constraint, we propose
a multi-timescale resource allocation mechanism to guarantee
efficient resource sharing among multiple service providers as
well as to address the user mobility issue [11]. Moreover, the au-
thors in [12] propose an approximate stochastic cutting plane al-
gorithm to address the short-term precoding and long-term user-
centric clustering problems for sum-rate maximization. Taking
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into account dynamic traffic arrival, the authors in [13] formu-
late a stochastic optimization problem to maximize the overall
throughput of C-RAN with D2D communications, which allow
direct communication between two adjacent UEs without going
through fronthaul links. However, the aforementioned studies
focus on maximizing the spectrum efficiency without consider-
ing the power consumption issue in C-RAN.

With an increasing number of RRHs, minimizing the power
consumption becomes an important design objective of C-RAN
due to the economic concern of network operators [14]–[16].
By exploiting spatial and temporal traffic fluctuations, power
consumption can be significantly reduced by switching off idle
RRHs to provide on-demand services for UEs [17]. The authors
in [18] and [19] propose dynamic RRHs and virtual base sta-
tions clustering and resource provisioning schemes to adapt to
the fluctuations of UEs’ capacity demand, which can enhance
the energy efficiency and data rate. In C-RAN, the power con-
sumption introduced by fronthaul links is comparable to that
of RRHs and thus cannot be neglected. By taking into account
the fronthaul power consumption, a joint RRH selection and
precoding design problem is formulated in [20] to minimize the
aggregate power consumption. To efficiently solve this problem,
a low complexity algorithm based on group sparse precoding is
proposed. Such an optimization framework is extended to ac-
count for both downlink and uplink transmissions in [21], and
to address the generalized sparse and low-rank optimization in
[22]. By modeling the fronthaul power consumption as a func-
tion of the fronthaul data rate, the energy efficiency of C-RAN
is investigated in [23]. The authors in [24] exploit the benefit of
non-orthogonal multiple access (NOMA) in C-RAN to enhance
the energy efficiency. Moreover, to address the channel uncer-
tainty, a robust beamforming problem is formulated in [25],
where an alternating direction method of multipliers (ADMM)-
based algorithm is proposed to solve the problem. However, the
impact of the fronthaul capacity constraint on power consump-
tion is not studied in the aforementioned studies.

To minimize the aggregate power consumption, it is neces-
sary to take into account the limited fronthaul capacity as it
affects the number of RRHs required to be active, which in
turn determines the circuit and fronthaul power consumption.
Hence, the effect of the limited fronthaul capacity on the ag-
gregate power consumption of C-RAN should be investigated.
The concept and benefit of flexible functional splits between the
BBU pool and RRHs in the physical (PHY) and medium access
control (MAC) layers are discussed in [26] and [27]. The au-
thors in [28] formulate an integer linear programming problem
to minimize the inter-cell interference by dynamically adjusting
the functional split in PHY and MAC layers. However, the radio
transmission of data streams between the RRHs and the UEs,
as an indispensable component of C-RAN, is not taken into
account. Differently, the CAP and DS strategies correspond to
different divisions of signal processing functionalities between
the BBU pool and RRHs. Specifically, the baseband signal pre-
coding functionality in the CAP and DS strategies is performed
centrally by the BBU pool and locally by the RRHs, respectively.
The fronthaul capacity required by the CAP and DS strategies
depends on different parameters. In particular, the fronthaul data

rate of the CAP strategy depends on the precoding gain, quanti-
zation noise, and the number of antennas on the RRH, while the
fronthaul data rate of the DS strategy is determined by the num-
ber of UEs served by the RRH. The maximizations of energy
efficiency for downlink C-RAN using DS and CAP strategies are
separately studied in [29]. Flexible functional split enables each
RRH to support either the CAP or DS strategy, so as to fully uti-
lize the fronthaul capacity based on the quality of service (QoS)
requirement of UEs and channel conditions. However, utilizing
flexible functional split design to reduce power consumption has
not been studied. Moreover, as most existing works (e.g., [30],
[31]) use the CAP strategy to maximize the spectrum efficiency,
the impact of fronthaul compression on the tradeoff between
the aggregate power consumption and the fronthaul capacity
requirement has not been investigated.

Different from the aforementioned studies, in this paper we
propose a flexible functional split design to minimize the ag-
gregate power consumption of downlink C-RAN, while taking
into account the fronthaul capacity constraint and the quality of
service requirement. The power consumption under considera-
tion includes the RRH transmit power, RRH circuit power, and
fronthaul power consumption. Each RRH can be switched off to
save power, which corresponds to the sleep mode. Each active
RRH can flexibly be configured to support either the CAP or
DS strategy to further reduce the power consumption, leading
to a mixture of RRHs using the CAP and DS strategies in the
network. Such a flexible functional split design takes the ad-
vantages of both the CAP and DS strategies, and enables the
full utilization of the fronthaul capacity for given quality of
service requirement. The main contributions of this paper are
summarized as follows:

1) We formulate a joint RRH mode (i.e., CAP, DS, sleep)
selection, precoding design, and fronthaul compression
problem to minimize the aggregate power consumption,
while taking into account the limited fronthaul capacity,
per-RRH power constraint, and QoS requirement.

2) To tackle the non-convex quadratical constraints, we trans-
form the formulated problem into a sequence of rank-
constrained semidefinite programming (SDP) problems
through sequential convex programming (SCP) and ℓ1-
norm convex relaxation. We handle the combinatorial
RRH mode selection by using the group sparse precod-
ing approach and develop an efficient algorithm based
on the majorize minimization (MM) scheme to solve the
problem.

3) Simulations demonstrate the convergence of the proposed
algorithm and show that the fronthaul capacity constraint
has a significant impact on the aggregate power consump-
tion. In addition, the CAP strategy performs better than
the DS strategy in the high target data rate and/or low
fronthaul capacity regimes. By taking advantages of both
the CAP and DS strategies, the proposed algorithm out-
performs both baseline strategies in terms of the energy
efficiency.

The remainder of this paper is organized as follows.
Section II presents the network topology, the CAP and DS strate-
gies, the signal reception model, and the power consumption
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Fig. 1. An illustration of the architecture of a C-RAN, which consists of the
BBU pool, the optical fronthaul links of finite capacity, the multi-antenna RRHs,
the radio channels, and the single-antenna UEs. An RRH can either be in the
active or sleep mode. Each active RRH can flexibly be configured to support
either the CAP or DS strategy.

model. In Section III, we formulate a non-convex quadratically
constrained optimization problem to minimize the aggregate
power consumption and transform it into a sequence of rank-
constrained SDP problems. The proposed algorithm is presented
in Section IV. The performance of the proposed algorithm is
evaluated in Section V. Finally, Section VI concludes this paper.

Notation: R and C denote the real and complex domains,
respectively. The absolute value of a scalar is denoted as | · |.
The conjugate transpose and ℓp -norm of a vector are denoted as
(·)H and ∥ · ∥p , respectively. The inverse, trace, determinant, and
rank of a matrix are denoted as (·)−1, Tr(·), det(·), and rank(·),
respectively. Denote 1x and Ix as the unit vector of length
x and the identity matrix of order x, respectively. Indicator
function 1{x} equals to 0 if x = 0, and 1 otherwise. X ≽ 0
and X ≻ 0 indicate that matrix X is positive semidefinite and
definite, respectively.

II. SYSTEM MODEL

Consider the downlink transmission of a C-RAN, which con-
sists of one BBU pool, R RRHs, and U UEs, as shown in
Fig. 1. We denote R = {1, 2, . . . , R} and U = {1, 2, . . . , U}
as the sets of the RRHs and UEs, respectively. The r-th RRH
is equipped with Nr omni-directional antennas. Each UE has
a single omni-directional antenna and it receives a single in-
dependent data stream from the BBU pool, which performs
centralized baseband signal processing, cooperative strategy se-
lection, and coordinated resource allocation. The data streams
for all UEs are assumed to be available at the BBU pool. The
BBU pool connects to each RRH via an optical fronthaul link of
finite capacity. In addition to the radio frequency (RF) function-
ality (e.g., power amplification), each RRH has baseband signal
processing capabilities such as precoding. After receiving the
data streams from the BBU pool, the RRHs forward the data
streams to the corresponding UEs over quasi-static radio chan-
nels. The global channel state information (CSI) is assumed to
be available at the BBU pool, as in [8]–[10].

To fully utilize the available resources (e.g., radio spectrum,
transmit power, and fronthaul capacity) to meet the UEs’ QoS
requirement, we propose a flexible functional split design for

C-RAN. In particular, each active RRH can flexibly be con-
figured to support either the CAP or DS strategy, as shown in
Fig. 2(a). The block diagrams of the CAP and DS strategies are
illustrated in Fig. 2(b) and (c), respectively. In the CAP strategy,
based on the CSI and UEs’ QoS requirement, the BBU pool per-
forms centralized precoding and delivers the compressed signals
to the RRHs, as shown in Fig. 2(b). On the other hand, in the DS
strategy, the BBU pool delivers both the signals and precoding
vectors to the corresponding RRHs, which perform local pre-
coding, as shown in Fig. 2(c). The CAP strategy and DS strategy
correspond to the PHY-RF split and MAC-PHY split proposed
for 5G RAN in [32], [33], respectively. The fronthaul interfaces
supporting the CAP and DS strategies follow the common pub-
lic radio interface (CPRI) and Fx interface [32], respectively.
Hence, the fronthaul interface should change accordingly with
the cooperative strategy (i.e., CAP or DS) selected by its con-
nected RRH. We assume that the RRHs can switch among the
sleep, CAP, and DS modes with negligible delay. Due to the
differences in baseband signal processing and data sharing, the
CAP and DS strategies are different in terms of the fronthaul
data rate and the RRH transmit power, as discussed in detail as
follows.

A. CAP Strategy

We denote su as the signal intended for UE u ∈ U . Without
loss of generality, the signals are assumed to be independent and
identically distributed (i.i.d.) Gaussian random variables with
zero mean and unit variance. In the BBU pool, the precoded
baseband signal for the r-th RRH supporting the CAP strategy,
denoted as x̂r ∈ CNr ×1, is given by

x̂r =
∑

u∈U
wrusu , ∀ r ∈ RC , (1)

where wru ∈ CNr ×1 denotes the precoding vector at RRH r for
UE u, and RC ⊆ R denotes the set of active RRHs using the
CAP strategy. Note that the coefficients of the precoding vector
wru should be set to 0 if RRH r is not serving UE u.

In order to reduce the amount of information delivered over
the fronthaul links, the BBU pool compresses and quantizes
the precoded baseband signals before transmitting them to the
RRHs. Each x̂r is independently compressed and quantized
across the RRHs. Note that it is possible to leverage joint signal
compression to further alleviate the fronthaul capacity constraint
as in [9], which is out of the scope of this paper. The compressed
signal for the r-th RRH using the CAP strategy can be expressed
as

xr = x̂r + qr , ∀ r ∈ RC , (2)

where qr ∈ CNr ×1 denotes the quantization noise vector, which
is independent of x̂r and is assumed to be Gaussian distributed
with zero mean and variance σ2

q,r1Nr . According to the rate-
distortion theory [34], the achievable compression rate equals
to the mutual information between the compressed signal xr

and the precoded baseband signal x̂r . As a result, for the CAP
strategy, the data rate of the r-th fronthaul, ∀ r ∈ RC , can be
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Fig. 2. An illustration of the block diagram of the flexible functional split between the BBU pool and RRHs, where COMPR, MUX, and DEMUX represent the
compression, multiplexer, and demultiplexer, respectively.

calculated by

B log2 det

(
∑

u∈U
wruwH

ru + σ2
q,r INr

)
− NrB log2

(
σ2

q,r

)
, (3)

where B denotes the channel bandwidth. According to (3), the
fronthaul data rate of the CAP strategy depends on the values of
the precoding coefficients wru and the quantization noise σ2

q,r

as well as on the number of the antennas of RRH r. In particular,
a higher precoding gain and smaller quantization noise lead to
smaller signal distortion, but also a higher fronthaul data rate.
In this paper, such a tradeoff is balanced by jointly optimizing
the precoding coefficients and quantization noise.

B. DS Strategy

In the DS strategy, the BBU pool delivers both signal su

and its corresponding precoding vectors {wru} to a cluster of
RRHs serving UE u through fronthaul links. Similar to the CAP
strategy, all coefficients of the precoding vector wru should
be set to 0 if RRH r is not within the serving cluster of UE
u. After receiving the signals and the corresponding precoding
vectors, each RRH performs local precoding. As a result, the
signal transmitted by the r-th RRH can be written as

xr =
∑

u∈U
wrusu , ∀ r ∈ RD , (4)

where RD ⊆ R denotes the set of active RRHs using the DS
strategy. As each active RRH can be configured to support either
the CAP or DS strategy, we have RC ∩RD = ∅.

According to (4), as the signals and corresponding precoding
vectors are required to perform local precoding at each RRH, the
fronthaul data rate is the summation of the data rates required
by its serving UEs. For simplicity, the overhead introduced by
CSI estimation and precoding vector delivery is ignored due to
its negligible size compared with the data stream. As a result,
for the DS strategy, the data rate of the r-th fronthaul can be

expressed as
∑

u∈U
1{∥w r u ∥2

2}B log2(1 + γu ), ∀ r ∈ RD , (5)

where γu denotes the target signal-to-interference-plus-noise
ratio (SINR) of UE u. According to (5), the fronthaul data
rate of the DS strategy is determined by the number of UEs
served by the RRH and the target SINR of all serving UEs. In
particular, having more serving UEs at each RRH leads to a
higher cooperation gain, but also a higher fronthaul data rate.
Comparing with (3), different parameters influence the fronthaul
data rates of the CAP and DS strategies.

C. Signal Reception Model

With full spatial frequency reuse, each UE can simultaneously
receive its own signal transmitted from both the RRHs in RC

and the RRHs in RD over radio channels. The signal received
at UE u is given by

yu =
∑

r∈RC ∪RD

hH
ruxr + nu , ∀ u ∈ U , (6)

where hru ∈ CNr ×1 denotes the channel fading vector between
RRH r and UE u and incorporates the effects of both path loss
and small-scale fading, and nu denotes the additive white Gaus-
sian noise (AWGN) at UE u with zero mean and variance σ2

n,u .
By substituting (2) and (4) into (6), we have

yu =
∑

r∈RC ∪RD

hH
ruwrusu +

∑

k∈U\{u}

∑

r∈RC ∪RD

hH
ruwrk sk

+
∑

r∈RC

hH
ruqr + nu , ∀ u ∈ U , (7)

where the second term of the right hand side is the co-channel
interference.

By using single user detection (i.e., treating the co-channel
interference as noise), according to (7), the received SINR at
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UE u ∈ U can be written as

SINRu =

∣∣∣
∑

r∈RC ∪RD hH
ruwru

∣∣∣
2

Iu + σ2
n,u

, (8)

where Iu denotes the summation of the co-channel interference
and quantization noise power, given by

Iu =
∑

k∈U\{u}

∣∣∣∣∣
∑

r∈RC ∪RD

hH
ruwrk

∣∣∣∣∣

2

+

∣∣∣∣∣
∑

r∈RC

hH
ruσq,r1Nr

∣∣∣∣∣

2

.

(9)

D. Power Consumption Model

The aggregate power consumption consists of RRH transmit
power, RRH circuit power, and fronthaul power consumption.
According to (2), the transmit power of the r-th RRH using the
CAP strategy is given by

P tx
r =

∑

u∈U
∥wru∥2

2 + Nrσ
2
q,r , ∀ r ∈ RC . (10)

Similarly, according to (4), the transmit power of the r-th
RRH using the DS strategy can be expressed as

P tx
r =

∑

u∈U
∥wru∥2

2, ∀ r ∈ RD . (11)

Based on (10) and (11), the RRH transmit power of the CAP
strategy involves the quantization noise power, which is different
from that of the DS strategy.

The RRH circuit power consists of the RF circuit and ba-
sic baseband processing power consumption. They depend on
the transmission mode of the RRH (i.e., being in either ac-
tive or sleep mode). In particular, the circuit power of RRH
r ∈ Rν , ν ∈ {C,D} is modeled by a piecewise function,

P cc,ν
r =

{
P cc,ν

a,r , if P tx
r > 0,

P cc
s,r , if P tx

r = 0,
(12)

where P cc,ν
a,r and P cc

s,r denote the circuit power of the r-th RRH
in Rν in the active and sleep modes, respectively, and P cc,ν

a,r >
P cc

s,r .
Similarly, the power consumption of the r-th fronthaul in the

active and sleep modes are denoted as P fh
a,r and P fh

s,r , respec-
tively, and P fh

a,r > P fh
s,r . By denoting RS ⊆ R as the set of the

RRHs in the sleep mode, the total power consumption of RRH
circuits and fronthaul links is given by

P cf =
∑

r∈RC

(
P cc,C

a,r + P fh
a,r

)
+
∑

r∈RD

(
P cc,D

a,r + P fh
a,r

)

+
∑

r∈RS

(
P cc

s,r + P fh
s,r
)

=
∑

r∈RC

(
P cc,C

a,r + P fh
a,r − P cc

s,r − P fh
s,r
)

+
∑

r∈RD

(
P cc,D

a,r + P fh
a,r − P cc

s,r − P fh
s,r
)

+
∑

r∈R

(
P cc

s,r + P fh
s,r
)
.

By denoting P dif
r,C =P cc,C

a,r + P fh
a,r − P cc

s,r−P fh
s,r > 0, P dif

r,D =
P cc,D

a,r + P fh
a,r − P cc

s,r − P fh
s,r > 0, and omitting the constant term∑

r∈R
(
P cc

s,r + P fh
s,r
)
, minimizing the aggregate power con-

sumption is equivalent to minimizing Pagg , which is given by

Pagg =
∑

r∈RC ∪RD

∑

u∈U

1
ηr

∥wru∥2
2 +

∑

r∈RC

(
1
ηr

Nrσ
2
q,r + P dif

r,C

)

+
∑

r∈RD

P dif
r,D , (13)

where ηr > 0 denotes the drain efficiency [35] of the RF power
amplifier of the r-th RRH.

Discussions: There exist performance tradeoff between the
DS and CAP strategies in terms of the cooperation gain, the fron-
thaul data rate, and the power consumption. The main advantage
of the DS strategy is that each RRH receives the original signals
of its serving UEs without distortion. However, the cooperation
gain that can be achieved by the DS strategy is determined by
the RRH cluster size (i.e., the number of RRHs cooperatively
transmitting the same signal). In particular, a larger cluster size
contributes to a higher cooperation gain, but also leads to a larger
fronthaul data rate, as each cooperating RRH is required to re-
ceive a copy of the original signal. Note that a larger cluster size
for each UE corresponds to more UEs served by each RRH.
Therefore, the fronthaul capacity constraint limits the cluster
size and the cooperation gain. In the high traffic load regime
(e.g., high target data rate and large number of UEs), the DS
strategy may require more RRHs to be active than the CAP strat-
egy, so as to achieve a large enough cooperation gain to meet
the target data rate requirement of UEs, leading to higher circuit
power consumption. For the CAP strategy, the RRHs can receive
the precoded baseband signal by utilizing all UEs’ signals, and
hence, achieving full cooperation. The fronthaul data rate of
the CAP strategy can be adjusted by changing the quantization
noise, which determines the compression resolution. Compared
to the DS strategy, the main disadvantage of the CAP strategy
is the signal distortion due to quantization noise, which leads
to larger transmit power consumption. In the low traffic load
regime (e.g., low target data rate and small number of UEs), the
DS strategy is able to achieve full cooperation, and hence can
consume less power than the CAP strategy, which suffers from
quantization noise.

III. PROBLEM FORMULATION AND TRANSFORMATION

To minimize the aggregate power consumption, we need to
reduce both the RRH transmit power and the number of ac-
tive RRHs and corresponding fronthaul links. However, there
exists a tradeoff between these two aspects. Specifically, to re-
duce the RRH transmit power, more RRHs are required to be
active to meet UEs’ QoS requirement. On the other hand, hav-
ing less active RRHs leads to lower RRH circuit and fronthaul
power consumption, but also higher RRH transmit power. Such
a tradeoff is further affected by other factors, including the ca-
pacity constraints of fronthaul links, maximum transmit power
constraints of the RRHs, and UEs’ QoS constraints. Hence,
the RRH mode (i.e., CAP, DS, sleep) selection, precoding de-
sign, and fronthaul compression should jointly be optimized to



ZHOU et al.: FLEXIBLE FUNCTIONAL SPLIT DESIGN FOR DOWNLINK C-RAN WITH CAPACITY-CONSTRAINED FRONTHAUL 6055

minimize the aggregate power consumption. Note that the pre-
coding coefficients and the quantization noise not only affect
the RRH modes for the reduction of RRH circuit power and
fronthaul power consumption, but also play an important role in
further reducing the transmit power consumption when the RRH
modes are fixed. Based on the above discussions, the aggregate
power consumption minimization problem is formulated as

minimize
RC ,RD ,RS

{w r u },{σ 2
q , r }

Pagg (14a)

subject to
∑

u∈U
∥wru∥2

2 + Nrσ
2
q,r ≤ PM

r , ∀ r ∈ RC , (14b)

∑

u∈U
∥wru∥2

2 ≤ PM
r , ∀ r ∈ RD , (14c)

∑

u∈U
∥wru∥2

2 = 0, ∀ r ∈ RS , (14d)

B log2 det

(
∑

u∈U
wruwH

ru + σ2
q,r INr

)

− NrB log2

(
σ2

q,r

)
≤ CM

r ,∀ r ∈ RC , (14e)
∑

u∈U
1{∥w r u ∥2

2}Blog2(1 + γu ) ≤ CM
r ,

∀ r ∈ RD , (14f)
∣∣∑

r∈RC ∪RD hH
ruwru

∣∣2

Iu + σ2
n,u

≥ γu , ∀u ∈ U , (14g)

RC ∩RD = ∅, (14h)
(
RC ∪RD) ∩RS = ∅, (14i)

RC ∪RD ∪RS = R, (14j)

where PM
r and CM

r denote the maximum transmit power of
the r-th RRH and the capacity of the r-th fronthaul link, respec-
tively. Constraints (14b)–(14d) represent the maximum transmit
power constraints of the RRHs in RC , RD , and RS , respec-
tively. Constraints (14h)–(14j) ensure that each RRH can be
configured to support one of the CAP, DS, and sleep modes.
The aggregate power consumption minimization problem in
(14) is a non-convex quadratically constrained combinatorial
optimization problem, which is generally difficult to solve and
imposes the following challenges: First, the objective function
(14a) is a combinatorial function due to both the RRH selection
(i.e., either being in the active or sleep mode) and the cooper-
ative strategy selection (i.e., supporting either the CAP or DS
strategy). Second, the capacity constraints of fronthaul links
supporting the CAP and DS strategies (i.e., (14e) and (14f)),
and the QoS constraints of the UEs in terms of the SINR (i.e.,
(14g)) are non-convex quadratically constrained.

To address the aforementioned challenges, we transform
problem (14) into a sequence of rank-constrained SDP prob-
lems. We define precoding matrix Wu = wuwH

u ∈ CNT ×NT

as a new optimization variable for UE u ∈ U , where NT =∑R
r=1 Nr and wu = [wH

1u ,wH
2u , . . . ,wH

Ru ]H ∈ CNT ×1. We

have constraints Wu ≽ 0 and rank(Wu ) = 1 for UE u ∈ U .
Precoding vector wu is given by the eigenvector of Wu . The
maximum transmit power constraints of the RRHs using the
CAP strategy (i.e., (14b)) can equivalently be expressed as

∑

u∈U
Tr (BrWu ) + Nrσ

2
q,r ≤ PM

r , ∀ r ∈ RC , (15)

where Br ∈ RNT ×NT denotes a block diagonal matrix with
identity matrix INr as the r-th main diagonal block matrix and
zeros elsewhere.

Similarly, the maximum transmit power constraints of the
RRHs using the DS strategy and being in the sleep mode (i.e.,
(14c) and (14d)) are, respectively, given by

∑

u∈U
Tr (BrWu ) ≤ PM

r , ∀ r ∈ RD , (16)

∑

u∈U
Tr (BrWu ) = 0, ∀ r ∈ RS . (17)

By defining Bc,r ∈ RNT ×Nr as the matrix composed of the
columns from

∑r−1
k=1 Nk + 1 to

∑r
k=1 Nk of matrix Br , we have

wruwH
ru = BH

c,rWuBc,r . The capacity constraints of the fron-
thaul links with the CAP strategy (i.e., (14e)) can be expressed
as

B log2 det

(
∑

u∈U
BH

c,rWuBc,r +
(
σ2

q,r + ϵ
)
INr

)

− NrB log2

(
σ2

q,r + ϵ
)
≤ CM

r , ∀ r ∈ RC , (18)

where ϵ > 0 is a small fixed regularization parameter.
By defining Ωr =

∑
u∈U BH

c,rWuBc,r +
(
σ2

q,r + ϵ
)
INr ,

the non-convex term in constraint (18) can be linearized by
using SCP [36]. Hence, the non-convex fronthaul capacity con-
straint can be tackled in an iterative manner. In the (m + 1)-th
iteration (m = 0, 1, 2, . . .), constraint (18) can be rewritten as

log2 det
(
Ω(m+1)

r

)
+

1
ln 2

Tr
((

Ω(m+1)
r

)−1(
Ωr − Ω(m+1)

r

))

− Nr log2

(
σ2

q,r + ϵ
)
≤ CM

r

B
, ∀ r ∈ RC , (19)

where

Ω(m+1)
r =

∑

u∈U
BH

c,rW
(m )
u Bc,r +

(
σ2(m )

q,r + ϵ
)

INr , (20)

and W(m )
u and σ2(m )

q,r are obtained from the m-th iteration.
Since ∥wru∥2

2 = Tr (BrWu ), the capacity constraints of the
fronthaul links supporting the DS strategy (i.e., (14f)) can be
written as

∑

u∈U
1{Tr(Br W u )} log2(1 + γu ) ≤ CM

r

B
, ∀ r ∈ RD . (21)

The indicator function in constraint (21) can equivalently be
expressed as an ℓ0-norm of a scalar, which indicates whether or
not this scalar is equal to zero. Thereby, constraint (21) can be
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written as
∑

u∈U
∥Tr (BrWu )∥0 log2(1 + γu ) ≤ CM

r

B
, ∀ r ∈ RD . (22)

Such a non-convex ℓ0-norm can be approximated by a convex
reweighted ℓ1-norm, which is widely used in compressive sens-
ing [37]. Similar to (19), in the (m + 1)-th iteration, constraint
(22) can be rewritten as
∑

u∈U
β(m+1)

ru Tr (BrWu ) log(1 + γu ) ≤ CM
r

B
, ∀ r ∈ RD ,

(23)

where β(m+1)
ru can be iteratively updated according to

β(m+1)
ru =

1

Tr
(
BrW

(m )
u

)
+ c1

(24)

and c1 > 0 is a constant regularization factor.
To achieve the target SINR, the QoS constraint of UE u can

be rewritten as

hH
u Wuhu

hH
u

(∑
k∈U\{u} Wk

)
hu + hH

u Λqhu + σ2
n,u

≥ γu ,

∀ u ∈ U , (25)

where hu = [hH
1u , . . . ,hH

Ru ]H ∈ CNT ×1, and Λq ∈ RNT ×NT is
a block diagonal matrix with identity matrix σ2

q,rINr as the r-th
main diagonal block square matrix. Note that σ2

q,r = 0 for RRH
r /∈ RC .

Based on the above transformation, problem (14) can be tack-
led by iteratively solving the following problem,

P (m+1) : minimize
RC ,RD ,RS

{W u },{σ 2
q , r }

∑

r∈RC ∪RD

∑

u∈U

1
ηr

Tr (BrWu )

+
∑

r∈RC

(
1
ηr

Nrσ
2
q,r + P dif

r,C

)

+
∑

r∈RD

P dif
r,D (26a)

subject to constraints (14h)–(14j), (15)–(17),

(19), (23), (25),

rank (Wu ) = 1, ∀ u ∈ U , (26b)

Wu ≽ 0, ∀ u ∈ U . (26c)

Problem P(m+1) still cannot directly be solved due to the
combinatorial objective function (26a) and the non-convex rank-
one constraint (26b). Given RRH setsRC ,RD , andRS , problem
P (m+1) is a rank-constrained SDP problem. By dropping the
rank-one constraint [38], the convex relaxation problem can
be efficiently solved by using the interior-point method [39].
Finally, the aggregate power minimization problem in (14) can
be solved by developing an MM algorithm to iteratively update
parameters {Ω(m )

r } and {β(m )
ru } according to (20) and (24) by

solving (26).

IV. GROUP SPARSE PRECODING ALGORITHM

In this section, we develop an efficient algorithm to tackle the
combinatorial challenge based on the group sparse precoding
approach and mitigate the non-convex rank-one constraint. The
proposed algorithm is composed of two stages, as discussed in
the following two sub-sections.

A. Stage One: Identify Active RRHs

In the first stage, we identify the RRHs that are required to
be active to meet UEs’ QoS requirement. Suppose all active
RRHs are initially configured to support the CAP strategy (i.e.,
RD = ∅), problem P (m+1) can be simplified as

minimize
RC ,RS

{σ 2
q , r },{W u }

∑

r∈RC

1
ηr

(
∑

u∈U
Tr (BrWu ) + Nrσ

2
q,r

)

+
∑

r∈RC

P dif
r,C

subject to constraints (15), (17), (19), (25),

(26b), (26c),

RC ∩RS = ∅,

RC ∪RS = R. (27)

When RRH r is switched off, all coefficients of precod-
ing vector w̃r = [wH

r1, . . . ,w
H
rU ]H should be set to 0, yielding

∥w̃r∥2
2 =

∑
u∈U Tr (BrWu ) = 0 and a group-sparsity struc-

ture of precoding vector w = [w̃H
1 , . . . , w̃H

R ]H . As a result, prob-
lem (27) can be expressed as

minimize
{W u },{σ 2

q , r }

∑

r∈R

1
ηr

(
∑

u∈U
Tr (BrWu ) + Nrσ

2
q,r

)

+
∑

r∈R
1{∑ u ∈U Tr(Br W u )+Nr σ 2

q , r }P dif
r,C

subject to constraints (15), (19), (25), (26b), (26c),

(28)

where ∀ r ∈ RC in constraints (15) and (19) is replaced by ∀ r ∈
R. Problem (28) is non-convex due to the indicator function in
the objective function. An indicator function is equivalent to the
ℓ0-norm of a scalar, which can further be approximated by a
convex reweighted ℓ1-norm. Thus, we have

1{ ∑
u ∈U

Tr(Br W u ) + Nr σ 2
q , r

}

≈ µ(m+1)
r

(
∑

u∈U
Tr (BrWu ) + Nrσ

2
q,r

)
,

where µ(m+1)
r can be iteratively updated according to

µ(m+1)
r =

1
∑

u∈U Tr
(
BrW

(m )
u

)
+ Nrσ

2(m )
q,r + c2

, (29)

and c2 > 0 is a constant regularization factor.
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Through convexifying the indicator function in the objective
function, we need to solve the following optimization problem,

minimize
{W u },{σ 2

q , r }

∑

r∈R

(
1
ηr

+ µ(m+1)
r P dif

r,C

)

×
(
∑

u∈U
Tr (BrWu ) + Nrσ

2
q,r

)
,

subject to constraints (15), (19), (25), (26b), (26c),

(30)

where ∀ r ∈ RC in constraints (15) and (19) is replaced by ∀ r ∈
R. After dropping rank-one constraint (26b), problem (30) is
an SDP problem, which can be efficiently solved by convex
programming solver (e.g., CVX [40]). We show the tightness of
the rank-one constraint relaxation as follows.

Theorem 1: Let W⋆
u denote the precoding matrix of UE u ∈

U as the solution of problem (30) without rank-one constraint
(26b), then rank (W⋆

u ) = 1 always holds.
Proof: Please refer to Appendix A. !
The MM algorithm [41] can be used to solve a sequence of

convex optimization problems (i.e., problem (30) without the
rank-one constraint) in an iterative manner. We denote P (m+1)

Alg1
as the value of the objective function of problem (30) in the
(m + 1)-th iteration. The convergence threshold and the maxi-
mum number of iterations are denoted as δ1 and φ1, respectively.
The proposed algorithm based on the MM scheme to identify
the active RRHs is summarized in Algorithm 1. It is shown in
[41] that the MM algorithm always converges to a stationary
point of the original problem. After solving problem (27) by us-
ing Algorithm 1, we can obtain the set of RRHs in sleep mode
as R̃S = {r |

(∑
u∈U Tr (BrWu ) + Nrσ2

q,r

)
< ϕ}, and set of

RRHs using the CAP strategy as R̃C = R \ R̃S , where ϕ is a
predefined small constant. Besides, we obtain the converged ob-
jective value of problem (27) denoted by PC

agg and quantization
noises for active RRHs given by {σ̃2

q,r , r ∈ R̃C}.

B. Stage Two: Identify Cooperative Strategies and Optimize
Precoding Matrices and Quantization Noise

In the second stage, we determine the set of active RRHs
switching to support the DS strategy, and optimize the precod-
ing matrices and quantization noise, to further reduce the power
consumption. We utilize the following ordering criterion to de-
termine the priorities of RRHs using the CAP strategy to be
switched to support the DS strategy,

θr =
1
ηr

Nr σ̃
2
q,r , ∀ r ∈ R̃C . (31)

The RRH with a larger θr has a higher priority to support the
DS strategy. In particular, the RRHs with more transmit anten-
nas, smaller drain efficiency, and larger quantization noise are
likely to consume more power and generate higher interference
according to (8) and (10). We denote the number of active RRHs
(i.e., cardinality of R̃C ) as α. Based on the ordering criterion
(31), we order the RRHs in a descending order, i.e., θπ1 ≥ θπ2 ≥
· · · ≥ θπα , to determine the set of active RRHs using the DS
strategy. For simplicity, we iteratively select the active RRHs
to support the DS strategy. Thus, we introduce another itera-
tion which is outside the iterations used to update Ω(m+1)

r and
β(m+1)

ru . The RRH sets supporting the DS and CAP strategies in
the τ -th outer iteration are denoted as R̃D(τ ) = {π1,π2, . . . , πτ }
and R̃C(τ ) = {πτ +1,πτ +2, . . . , πα}, respectively. Based on the
above definitions, we have R̃D(τ ) ∪ R̃C(τ ) = R̃C . Given RRH
sets R̃C(τ ) , R̃D(τ ) , and R̃S , the RRH circuit and fronthaul power
consumption is fixed. Hence,

∑
r∈R̃C ( τ ) P dif

r,C +
∑

r∈R̃D ( τ ) P dif
r,D

is a constant and can be omitted in the objective function. As
a result, we can solve the following problem in the (m + 1)-th
inner iteration to reduce the aggregate power consumption,

minimize
{W u },{σ 2

q , r }

∑

r∈R̃C ( τ )

1
ηr

(
∑

u∈U
Tr (BrWu ) + Nrσ

2
q,r

)

+
∑

r∈R̃D ( τ )

1
ηr

∑

u∈U
Tr (BrWu )

subject to constraints (15)-(17), (19), (23),

(25), (26b), (26c), (32)

where ∀ r ∈ RC and ∀ r ∈ RD in all constraints are replaced
by ∀ r ∈ R̃C(τ ) and ∀ r ∈ R̃D(τ ) , respectively. Similarly, prob-
lem (32) without rank-one constraint (26b) is an SDP problem
and can efficiently be solved. The tightness of the rank-one
constraint relaxation is shown in the following theorem.

Theorem 2: Let W⋆
u denote the precoding matrix of UE u ∈

U as the solution of problem (32) without rank-one constraint
(26b), then rank (W⋆

u ) = 1 always holds.
Proof: Please refer to Appendix B !
We denote P (m+1)

Alg2 as the value of the objective function of
problem (32) in the (m + 1)-th inner iteration. The convergence
threshold and the maximum number of iterations are denoted
as δ2 and φ2, respectively. The proposed algorithm to solve
problem (32) is summarized in Algorithm 2. We denote P (τ )

agg
as the converged objective value of problem (32) for the τ -th
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outer iteration. Finally, combining the above two stages, the
algorithm for solving the aggregate power consumption mini-
mization problem (14) is given in Algorithm 3. The set of RRHs
using the DS strategy, R̃D(0) , and the iteration index, τ , are
initialized in Step 1. By using Algorithm 1, we solve problem
(27) to check the feasibility and identify the set of RRHs re-
quired to be active (Step 2). If problem (27) is feasible, then
we determine the set of RRHs using the CAP strategy, R̃C ,
the set of RRHs in the sleep mode, R̃S , the quantization noise,
{σ̃2

q,r}, as well as the aggregate power consumption, PC
agg , and

then sort the ordering criterion (31) in a descending order (Steps
3–5). Otherwise, the algorithm terminates (Steps 6 and 7). We
initialize R̃C(0) in Step 8. In the τ -th iteration, we move one
active RRH from set R̃C(τ ) to set R̃D(τ ) based on the ordering
of active RRHs (Steps 10 and 11), and solve problem (32) using
Algorithm 2 to obtain P (τ )

agg (Step 12). If the aggregate power
consumption in the τ -th iteration is smaller than PC

agg , then we
update the values of PC

agg and τ (Steps 13 – 15). Otherwise, we
break the loop (Steps 16 and 17). The loop stops when either
τ > α or P (τ )

agg +
∑

r∈R̃C ( τ ) P dif
r,C +

∑
r∈R̃D ( τ ) P dif

r,D ≥ PC
agg . In

Step 18, we determine sets R̃C(τ ) and R̃D(τ ) , and recover pre-
coding vectors {ŵu} and quantization noise {σ̂2

q,r} to serve all
UEs. Note that the final precoding vector ŵu is the eigenvector
of Ŵu ,∀u ∈ U . By using the iteratively reweighted method
and the MM-based algorithm, the solution of the proposed al-
gorithm is always a stationary point of the original problem
[42].

The overall algorithm (i.e., Algorithm 3) runs Algorithm 1
once and Algorithm 2 at most R times. Algorithms 1 and 2
solve a sequence of SDP problems, i.e., problems (30) and
(32) without rank-one constraint, respectively. To solve the
SDP problem with U matrix optimization variables of size
NT × NT , the interior-point method takes O(

√
UNT log(1/ε))

iterations and O(UN 6
T) floating point operations to achieve

an optimal solution with accuracy ε > 0. Note that the maxi-
mum number of SDP problems required to be solved for Algo-
rithms 1 and 2 are φ1 and φ2, respectively. Hence, the overall

computational complexity of the proposed algorithm is given
by O((φ1 + Rφ2)U 1.5N 6.5

T log(1/ε)).

V. PERFORMANCE EVALUATION

In this section, we evaluate the energy efficiency of the pro-
posed flexible functional split design for downlink C-RAN and
compare the aggregate power consumption with that of the pure
CAP and DS strategies. Specifically, in the CAP and DS strate-
gies, all active RRHs work in the CAP and DS modes, respec-
tively. In the simulations, the RRHs and UEs are randomly dis-
tributed in a circular network coverage area with radius 500 m.
We consider quasi-static Rayleigh fading channels and set the
path loss exponent to be 4. The channel bandwidth B and noise
power σ2

n,u are set to be 10 MHz and −100 dBm, respectively.
The number of RRHs (i.e., R) in the network coverage area
is 10. The maximum transmit power of the r-th RRH (i.e.,
PM

r ,∀ r ∈ R) is 80 mW. Each RRH using the DS strategy only
needs to superimpose the received signals weighted by the cor-
responding precoding coefficients, which is a simple operation
and consumes less power than the quantization codebook based
signal decompression operation performed by each RRH using
the CAP strategy. Hence, the power differences between the ac-
tive and sleep modes for the CAP and DS strategies (i.e., P dif

r,C
and P dif

r,D , ∀ r ∈ R) are set to be 500 mW and 400 mW, respec-
tively. The drain efficiency of the RF power amplifier of the
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Fig. 3. Convergence of Algorithms 1 and 2 for different number of UEs in the
network when CM

r = 80 Mbps and κu = 20 Mbps, ∀ r ∈ R, u ∈ U .

r-th RRH (i.e., ηr , ∀ r ∈ R) is 0.25. The constant regularization
factors (i.e., ϵ, c1, and c2) are all set to be 10−5. The convergence
thresholds (i.e., δ1 and δ2) are set to 1, and the predefined small
constant (i.e., ϕ) is set to 10−3. The maximum number of itera-
tions (i.e., φ1 and φ2) used in Algorithms 1 and 2 are set to be 30
and 15, respectively. Each RRH is equipped with two antennas
and each UE is equipped with a single antenna. We denote the
target data rate as κu = B log2(1 + γu ),∀u ∈ U .

In Fig. 3, we first evaluate the convergence of the proposed
algorithm for the flexible functional split design in downlink
C-RAN with different number of UEs (i.e., U ) when CM

r =
80 Mbps and κu = 20 Mbps, ∀ r ∈ R, u ∈ U . According to
Algorithm 3, the convergence of the proposed algorithm is guar-
anteed as long as Algorithms 1 and 2 converge. The maximum
number of iterations for the loops in Algorithms 1 and 2 are
set as 30 and 15, respectively. The objective values obtained by
Algorithms 1 and 2 after each iteration are plotted in Fig. 3(a)
and (b), respectively. As can be seen, Algorithm 1 converges

Fig. 4. Aggregate power consumption versus fronthaul capacity when U = 8
and κu = 20 Mbps, ∀ u ∈ U .

after about 12 to 18 iterations, while Algorithm 2 converges
after about 2 to 5 iterations. In particular, the larger the number
of UEs in the network, the larger the number of iterations is
required for the algorithm to converge. Overall, Algorithm 3
always converges after a small number of iterations.

In Fig. 4, we then investigate the impact of the limited fron-
thaul capacity on the aggregate power consumption when U = 8
and κu = 20 Mbps, ∀ u ∈ U . With the variation of the fron-
thaul capacity, the aggregate power consumption changes sig-
nificantly, which demonstrates the importance of taking into
account the limited fronthaul capacity. For the DS strategy, the
fronthaul capacity constraint limits the number of cooperating
RRHs for each UE, which in turn limits the achievable coop-
eration gain. Hence, in the low fronthaul capacity regime, the
DS strategy is less likely to meet the QoS requirement of all
UEs due to the limited cooperation gain. In particular, when
CM

r = 40 Mbps or 60 Mbps, the DS strategy is infeasible (i.e.,
the QoS requirement of all UEs cannot be simultaneously sat-
isfied). Hence, the corresponding points are marked with stars,
as shown in Fig. 4. On the other hand, the CAP strategy is
feasible in the low fronthaul capacity regime. Hence, by trans-
forming the advantage of generating low fronthaul data rates to
the requirement of activating less RRHs, the CAP strategy out-
performs the DS strategy when the fronthaul capacity is small.
With the increase of CM

r from 60 Mbps to 120 Mbps, the aggre-
gate power consumption of all considered strategies decreases
as less RRHs are required to be active to meet the QoS require-
ment of all UEs. When CM

r > 120 Mbps, the aggregate power
consumption cannot be further reduced by increasing the fron-
thaul capacity. When the fronthaul capacity is large enough to
deliver multiple data streams, the DS strategy not only requires
a similar number of active RRHs as that of the CAP strategy,
but also consumes less transmit power (e.g., no quantization
noise in the DS strategy) and processing power (e.g., no signal
decompression is needed in the DS strategy). As a result, the
DS strategy outperforms the CAP strategy when the fronthaul
capacity is large. The proposed flexible functional split design



6060 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 68, NO. 6, JUNE 2019

Fig. 5. Aggregate power consumption versus target data rate when U = 8 and
CM

r = 120 Mbps, ∀ r ∈ R.

exploits the advantages of both the CAP and DS strategies, i.e.,
activating less RRHs and using a lower transmit power, respec-
tively. Hence, the flexible functional split design always achieves
a better performance than both the CAP and DS strategies for
all values of the fronthaul capacity.

Fig. 5 shows the impact of the target data rate of UEs on
the aggregate power consumption when U = 8 and CM

r = 120
Mbps, ∀ r ∈ R. For a given number of UEs, the target data
rates of UEs reflect the traffic load in the network. As we can
see, the aggregate power consumption of all strategies under
consideration increases with the target data rates of UEs. This is
because supporting higher data rates requires higher fronthaul
data rates, which in turn requires more active RRHs as each RRH
is connected to a fronthaul link with limited capacity. Hence, in
the low traffic load regime, maximizing the number of RRHs
in the sleep mode is crucial in minimizing the aggregate power
consumption. As can be seen, neither the DS nor CAP strategy
dominates the other across the entire target data rate regime.
For example, when the target data rate is less than 25 Mbps,
the DS strategy achieves a better performance than the CAP
strategy. On the other hand, when the target data rate is larger
than 30 Mbps, the CAP strategy achieves a better performance
than the DS strategy. This is because the fronthaul data rate
of the DS strategy directly depends on the target data rate and
the number of serving UEs, while the fronthaul data rate of
the CAP strategy depends on the logarithm of the SINR and
increases slowly with the target data rate. In the high traffic load
regime (e.g., the target data rate is 40 Mbps or above), the sets of
RRHs using the CAP and DS strategies are critical optimization
variables. As shown in Fig. 5, the DS strategy becomes infeasible
in this regime and the corresponding points are plotted with stars.
By appropriately setting the transmission mode for each RRH,
the flexible functional split design outperforms both the CAP
and DS strategies in terms of the energy efficiency.

In Fig. 6, we compare the percentage of RRHs in the DS
and CAP modes for the flexible functional split design with

Fig. 6. Percentage of RRHs in the DS and CAP modes versus target data
rate for the flexible functional split design when U = 8 and CM

r = 120 Mbps,
∀ r ∈ R.

different target data rates of UEs when U = 8 and CM
r = 120

Mbps, ∀ r ∈ R. As we can see, when the target data rate is low
(i.e., less than 15 Mbps), almost all active RRHs are switched
to the DS mode, as the fronthaul capacity is not the dominant
performance-limiting factor in the low data rate regime. With
the increase of the target data rate from 15 Mbps to 35 Mbps,
the percentage of RRHs in the DS mode decreases, while the
percentage of RRHs in the CAP mode increases, i.e., less ac-
tive RRHs are switched to the DS mode. This is because the
fronthaul link is not able to support the transmission of multi-
ple data streams without compression. By further increasing the
target data rate, the percentage of RRHs in the DS mode almost
remains at about 34%. As we can see, in the moderate and high
target data rate regimes, the proposed flexible functional split
design adjusts the transmission modes of all RRHs according to
their channel conditions so as to fully exploit the advantages of
both DS and CAP modes.

Fig. 7 illustrates the impact of the number of UEs on the ag-
gregate power consumption of all strategies under consideration
when CM

r = 120 Mbps and κu = 20 Mbps, ∀ r ∈ R, u ∈ U .
With the increase of the number of UEs, the traffic load in the
network increases, which imposes a higher requirement on the
fronthaul capacity. As a result, more RRHs are required to be
active to support the QoS requirement of all UEs in the network,
leading to higher power consumption. When the number of UEs
is small, the required fronthaul data rate of the DS strategy is
smaller than the fronthaul capacity, and hence, the DS strategy
outperforms the CAP strategy in terms of the energy efficiency.
When the number of UEs is large, the DS strategy becomes
infeasible, while the CAP strategy becomes more favourable by
activating less RRHs. Overall, the proposed flexible functional
split design adapts to the network traffic load and outperforms
both the CAP and DS strategies for all values of the number of
UEs.

Fig. 8 shows the impact of the number of UEs on the fraction
of active RRHs in downlink C-RAN when CM

r = 120 Mbps and
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Fig. 7. Aggregate power consumption versus number of UEs when
CM

r = 120 Mbps and κu = 20 Mbps, ∀ r ∈ R, u ∈ U .

Fig. 8. Fraction of active RRHs versus number of UEs when CM
r = 120

Mbps and κu = 20 Mbps, ∀ r ∈ R, u ∈ U .

κu = 20 Mbps, ∀ r ∈ R, u ∈ U . Similar to the trends observed
in Fig. 7, the fraction of the active RRHs increases with the
number of UEs. As we can see, the fraction of the active RRHs
of the proposed flexible functional split design is always smaller
than that of the DS strategy due to its better utilization of the
fronthaul capacity. When the number of UEs reaches 14 or more,
the DS strategy becomes infeasible, while the proposed flexible
functional split design can still guarantee the QoS requirement
of all UEs. Moreover, the gap in terms of the active RRHs
between the DS strategy and the flexible functional split design
also increases with the number of UEs.

VI. CONCLUSION

In this paper, we proposed a flexible functional split between
the BBU pool and the RRHs in downlink C-RAN with limited
fronthaul capacity. We formulated a joint RRH mode (i.e., CAP,
DS, sleep) selection, precoding design, and fronthaul compres-

sion problem to minimize the aggregate power consumption. We
took into account both the fronthaul capacity constraint and fron-
thaul power consumption, and tackled the non-convex fronthaul
capacity constraints by using the SCP and ℓ1-norm convex relax-
ation techniques. We transformed the non-convex optimization
problem into a sequence of rank-constrained SDP problems.
An iterative algorithm based on group sparse precoding
approach and MM scheme was proposed to solve the problem.
Simulation results showed that the fronthaul capacity constraint
has a significant impact on aggregate power consumption and
the proposed flexible functional split design outperforms both
the pure CAP and DS strategies in terms of aggregate power
consumption. For future work, we will consider the uncertainty
of radio channels and the millimeter wave-based fronthaul, and
investigate their impact on the energy efficiency of C-RAN.

APPENDIX

A. Proof of Theorem 1

For notational simplicity, we denote gr = µ(m+1)
r P dir

r +
1
ηr

,∀ r ∈ R. In addition, we denote ζr , λr , νu ≥ 0, and Hermi-
tian matrix Xu ≽ 0 as the Lagrangian multipliers of constraints
(15), (19) for all r ∈ R, (25), and (26c), respectively. Hence,
the Lagrangian of problem (30) is given by

L1
(
{Wu}, {σ2

q,r}, {ζr}, {λr}, {νu}, {Xu}
)

=
∑

u∈U
Tr

(
Wu

(
∑

r∈R

(
grBr + ζrBr + λrΞr

)

+
∑

k∈U\{u}

νkγkhkhH
k − νuhuhH

u − Xu

⎞

⎠

⎞

⎠+ Γ1,

where Ξr = 1
ln 2Bc,r (Ω

(m+1)
r )−1BH

c,r , Γ1 depends on {σ2
q,r},

{ζr}, {λr}, {νu}, and other constant parameters in problem
(30). The dual problem of problem (30) is given by

maximize
{ζr },{λr },{νu },{Xu }

inf
{W u },{σ 2

q , r }
L1. (33)

We denote Φ⋆ =
(
{W⋆

u}, {σ2⋆
q,r}

)
and Ψ⋆ = ({ζ⋆

r }, {λ⋆
r},

{ν⋆
u}, {X⋆

u}) as the solutions of primal and dual problems, re-
spectively. Hence, the Karush-Kuhn-Tucker (KKT) conditions
can be written as

∇W u L1
∣∣
Φ⋆ ,Ψ ⋆ = 0, ∀u ∈ U , (34a)

X⋆
uW

⋆
u = 0, ∀u ∈ U , (34b)

ζ⋆
r ≥ 0, λ⋆

r ≥ 0, ν⋆
r ≥ 0, ∀ r ∈ R, (34c)

where ∇W u L1
∣∣
Φ⋆ ,Ψ ⋆ denotes the gradient of the Lagrangian in

(33) with respect to Wu at Φ⋆ and Ψ⋆ . According to (34a), for
UE u ∈ U , we have
∑

r∈R

(
grBr + ζ⋆

r Br + λ⋆
rΞr

)

+
∑

k∈U\{u}

ν⋆
k γkhkhH

k − ν⋆
uhuhH

u − X⋆
u = 0, ∀u ∈ U .

(35)
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Based on (34b) and (35), for UE u ∈ U , we have

W⋆
u

(
∑

r∈R

(
grBr + ζ⋆

r Br + λ⋆
rΞr

)

+
∑

k∈U\{u}

ν⋆
k γkhkhH

k − ν⋆
uhuhH

u

⎞

⎠ = W⋆
uX

⋆
u = 0. (36)

Hence, we have,

W⋆
u (Y⋆

u − Z⋆
u ) = 0 ⇔ rank (W⋆

uY
⋆
u ) = rank (W⋆

uZ
⋆
u ) ,

(37)

where Y⋆
u =

∑
r∈R(grBr + ζ⋆

r Br + λ⋆
rΞr ) +

∑
k∈U\{u}(ν

⋆
k

γkhkhH
k ) and Z⋆

u = ν⋆
uhuhH

u . By taking into account gr > 0,
constraint (34c), and the definition of Br , we have Y⋆

u ≻ 0, and
thus rank (Y⋆

u ) = NT ,∀u ∈ U . As a result, we have

rank (W⋆
uY

⋆
u ) = rank (W⋆

u ) = rank (W⋆
uZ

⋆
u )

≤ rank (Z⋆
u ) = 1, ∀u ∈ U .

As Wu = 0 cannot be the solution of problem (30) due to
UEs’ QoS requirement, we conclude that solving problem (30)
without the rank-one constraint always achieves rank (W⋆

u ) =
1,∀u ∈ U . Hence, the proof of Theorem 1 is complete.

B. Proof of Theorem 2

The Lagrangian of problem (32) without constraint (26b) can
be written as

L2
(
{Wu}, {σ2

q,r}, {ζC
r }, {ζD

r }, {ζS
r }, {λC

r }, {λD
r },

{νu}, {Xu}
)

=
∑

u∈U
Tr

(
Wu

(
∑

r∈R̃C ( τ )

(
Br

ηk
+ ζC

r Br + λC
r Ξr

)

+
∑

r∈R̃D ( τ )

(
Br

ηk
+ ζD

r Br + λD
r β(m+1)

ru log2 (1 + γu )
)

+
∑

r∈R̃S

ζS
r Br +

∑

k∈U\{u}

νkγkhkhH
k − νuhuhH

u − Xu

))

+ Γ2, (38)

where ζC
r , λC

r , ζD
r , λD

r , ζS
r , νu ≥ 0, and Xu ≽ 0 are the La-

grangian multipliers for constraints (15), (19) for all r ∈ R̃C(τ ) ,
(16), (23) for all r ∈ R̃D(τ ) , (17) for all r ∈ R̃S , (25), and (26c),
respectively, and Γ2 includes all other terms unrelated to Wu

and Xu . Following similar steps in the proof of Theorem 1, for
UE u, we have

W⋆
u (P⋆

u − Q⋆
u ) = 0 ⇔ rank (W⋆

uP
⋆
u ) = rank (W⋆

uQ
⋆
u ) ,
(39)

where

P⋆
u =

∑

r∈R̃C ( τ )

(
Br

ηk
+ (ζC

r )⋆Br + (λC
r )⋆Ξr

)

+
∑

r∈R̃D ( τ )

(
Br

ηk
+ (ζD

r )⋆Br + (λD
r )⋆β(m+1)

ru log2 (1 + γu)
)

+
∑

r∈R̃S

(ζS
r )⋆Br +

∑

k∈U\{u}

ν⋆
k γkhkhH

k , (40)

and Q⋆
u = ν⋆

uhuhH
u , and {(ζC

r )⋆}, {(λC
r )⋆}, {(ζD

r )⋆}, {(λD
r )⋆},

{(ζS
r )⋆}, and {ν⋆

u} denote the solution of the dual problem.
Thus, we have P⋆

u ≻ 0 and rank (W⋆
uP⋆

u ) = rank (W⋆
u ). As

rank(W⋆
uQ⋆

u ) ≤ rank(Q⋆
u ) = 1, we obtain rank (W⋆

u ) ≤ 1.
Due to QoS requirement of UEs, we have rank (W⋆

u ) =
1, ∀u ∈ U . Hence, the proof of Theorem 2 is complete.
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