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Abstract—Massive MIMO system yields significant improve-
ments in spectral and energy efficiency for future wireless com-
munication systems. The regularized zero-forcing (RZF) beam-
forming is able to provide good performance with the capability
of achieving numerical stability and robustness to the channel
uncertainty. However, in massive MIMO systems, the matrix in-
version operation in RZF beamforming becomes computationally
expensive. To address this computational issue, we shall propose
a novel randomized sketching based RZF beamforming approach
with low computational complexity. This is achieved by solving a
linear system via randomized sketching based on the precondi-
tioned Richard iteration, which guarantees high quality approx-
imations to the optimal solution. We theoretically prove that the
sequence of approximations obtained iteratively converges to the
exact RZF beamforming matrix linearly fast as the number of
iterations increases. Also, it turns out that the system sum-rate
for such sequence of approximations converges to the exact one
at a linear convergence rate. Our simulation results verify our
theoretical findings.

Index Terms—Regularized zero-forcing beamforming, massive
MIMO, randomized sketching algorithm, sketching method.

I. INTRODUCTION

W ITH the explosive growth in mobile data traffic and
number of mobile devices, as well as the stringent and

diverse demands of intelligent mobile services, wireless net-
works are facing formidable challenges to enable high spectral
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efficiency and support massive connectivity with low-latency. To
satisfy these requirements, network densification becomes the
key enabling technology. This is achieved by deploying more
base stations (BSs) with storage and computational capabilities,
yielding an ultra-dense network (UDN) [2]. In particular, mas-
sive multiple-input multiple-output (MIMO) technique provides
an alternative to achieve UDN by simply increasing the number
of antennas at the existing BS [3], [4]. The key success is based
on the fact that deploying large-scale antenna arrays allows for an
exceptional array gain and unprecedented spatial resolution such
that the wireless communication system is robust to inter-user
interference [5]. Furthermore, the large arrays regime provides
the opportunities for asymptotic system analysis, e.g., the high-
dimensional random matrix theory can provide deterministic
approximations for achievable data rates [6], [7].

Transmit beamforming at the BSs is a key method to op-
timize the network utility function (e.g., sum-rate) in terms
of signal-to-interference-plus-noise ratios (SINRs). However,
the resulting beamforming optimization problem is generally
very difficult to be solved due to the nonconvexity and high-
dimensionality. With the known optimal SINRs parameters for
maximizing the network utility function, a simple structure for
the optimal beamforming can be derived based on the Lagrange
duality theory [8]. To find the optimal SINRs parameters, we
normally need to solve a sequence of convex subproblems [9].
For instance, in the max-min fairness rate optimization problem,
the optimal SINRs parameters can be found via the bi-section
method [10], wherein a sequence of convex subproblems are
solved. Although the general large-scale convex optimization
problem can be solved by the operate splitting method, it still
needs to solve a sequence of subspace projection and cone
projection problems in the transformed high-dimensional space
for the standard cone program [11]. There are three heuris-
tic linear transmit beamforming algorithms in the literature,
i.e., matched-filtering, zero-forcing precoding, and regularized
zero-forcing (RZF) beamforming. [12]. However, the matched-
filtering beamforming algorithm cannot mitigate the interfer-
ence between the users, and thus achieves a poor performance
when the SNR is high. The zero-forcing precoding algorithm
suffers from noise inflation, which results in poor performance
in the low SNR regime. The RZF precoding algorithm does not
have these issues. However, the RZF beamforming needs to com-
pute a matrix inversion with complexity proportional to MK2,
where K is the number of users served by M transmit antennas.
This is however computational expensive in the massive MIMO
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scenario where M ≫ K ≫ 1. To tackle this issue, [13], [14]
proposed to replace the matrix inversion in RZF beamformer
by a truncated polynomial expansion, but it is not clear that
which degree of the polynomial is needed to guarantee the good
performance for the system sum-rate.

In recent years, randomized sketching algorithms [15]–[17]
have received a great deal of attention in order to solve large-
scale matrix computation problems. The main idea behind ran-
domized sketching algorithms is to compress a given large-scale
matrix to a much smaller matrix by multiplying it by a random
matrix with certain properties. Very expensive computation can
then be operated by the smaller matrix efficiently. In particular,
several novel randomized algorithms are proposed for the ridge
regression problem [18]–[21]. Inspired by these progresses, we
propose a randomized sketching based beamforming method to
overcome the computational issues for designing beamformers
in massive MIMO systems. The main contributions of this paper
are summarized as follows.

1) We propose a low computational complexity beamform-
ing scheme based on randomized sketching techniques.
The randomized sketching RZF beamforming matrix is
achieved by solving a linear system by preconditioned
Richard iteration [22] with the randomized sketching tech-
niques [20]. The proposed randomized sketching RZF
beamforming method has a computational complexity
proportional to LK2 with L≪ 2M as the sketching ma-
trix size.

2) We prove that the beamforming matrix obtained iteratively
converges to the RZF beamforming matrix at a linear con-
vergence rate. Furthermore, we prove that the achievable
system sum-rate of the MIMO system with the proposed
randomized method converges to the achievable sum-rate
given by RZF beamforming linearly as the number of
iteration increases.

3) Extensive simulations are conducted to verify our theo-
retical findings in terms of the convergence rate and the
performance guarantee.

The rest of this paper is organized as follows. In Sec. II, the
system model and problem statement of estimating the beam-
forming matrix for a massive MIMO communication system
are described. In Sec. III, we propose the randomized sketch-
ing method to approximate the beamforming matrix with low-
complexity and provide convergence analysis and complexity
analysis. In Sec. IV, we prove that the system sum-rate of
the randomized sketching based beamformer converges to the
sum-rate of the RZF beamforming matrix as the number of
iterations increases. We provide the exact rate of convergence
as well. In Sec. V, we numerically evaluate the performance of
the randomized sketching based beamforming method. Finally,
conclusions are drawn in Sec. VI.

Notations: Let R (resp. C) be the set of real (resp. complex)
numbers. For a matrix A, A∗i (resp. Ai∗) denotes i-th column
(resp. row) vector ofA. ∥A∥2 (resp. ∥A∥F ) denotes the operator
(resp. Frobenius) norm. For a vector x, ∥x∥2 denotes the Eu-
clidean norm. The superscript T denotes the transpose operator.
AH = Ā

T is a complex conjugate transpose ofA. The diagonal
matrix whose diagonal entries consist of entries of a vector λ is

denoted by diag{λ}. Denote the identity matrix of size K as
IK . When the size can be trivially determined by the context,
we simply write I . Denote the zero matrix with size K ×M as
0K×M . Letℜ(A) andℑ(A) denote the real and imaginary parts
of a matrix A, respectively. For a matrix Q ∈ R2K×2M with
M ≥ K of rank 2K, its (thin) Singular Value Decomposition
(SVD) is the form UΣV T where U ∈ R2K×2K is the matrix
of the left singular vectors, V ∈ R2M×2K is the matrix of the
right singular vectors, and Σ ∈ R2K×2K is a diagonal matrix
whose diagonal entries are the singular value of Q. We denote
the singular values of a matrix as σi. We denote the matrix of the
top j left singular vectors as U j ∈ R2K×j and the matrix of the
bottom 2K − j left singular vectors as U j,⊥ ∈ R2K×(2K−j).

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. System Model

We consider a single-cell massive MIMO system consisting of
one BS equipped with M antennas and K single-antenna users,
where M ≥ K. During the downlink transmission, the received
signal at the k-th user is given by

yk = hH
k

(
K∑

i=1

wisi

)
+ nk, k = 1, . . . ,K, (1)

where wi ∈ CM is the transmit beamforming vector from the
BS for data symbol si to user i, hk ∈ CM is the channel
propagation coefficients from the BS to the k-th user, and
nk ∼ CN (0,σ2) is the additive noise (i.e., nk is a circularly
symmetric complex Gaussian random distribution with mean 0
and variance σ2). Therefore, with universal frequency reuse, the
SINR at the k-th user is given as

SINRk(W ) :=
|hH

k wk|2∑
j ̸=k |hH

k wj |2 + σ2
, (2)

where W = [w1, . . . ,wK ] ∈ CM×K is the aggregative beam-
forming matrix with the total transmit power limited by P > 0,
i.e.,

∥W ∥2
F =

K∑

k=1

∥wk∥2
2 ≤ P. (3)

The achievable system sum-rate R(W ) is thus given by

R(W ) :=
K∑

k=1

log(1 + SINRk(W )). (4)

One of the main goal of transmit beamforming is to maximize
the achievable system sum-rate. However, it is generally com-
putationally demanding to find the optimal beamforming matrix
W [9].

B. Regularized Zero-Forcing Beamforming

Although there are various precoding techniques such as
matched filter, zero forcing, regularized zero-forcing, truncated
polynomial expansion, and phased zero forcing [23], this article
considers the suboptimal beamforming approach, regularized
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zero-forcing (RZF) beamforming [12], which is known to have
the capability achieving robustness and numerical stability to
the channel uncertainty [8], [12]. RZF precoder has been con-
sidered as the state-of-the-art linear precoder for MIMO wireless
communication systems. Since we focus on the computational
issues of RZF, we consider the following RZF with equal power
allocation for simplification [6]

W ∗ = β
(
IM +

γ

σ2 H
HH

)−1
HH

= βHH
(
IK +

γ

σ2 HHH
)−1

, (5)

where H = [h1, . . . ,hK ]H ∈ CK×M is the channel matrix,
γ > 0 is an optimal regularizer, and β > 0 is a normalization
parameter to satisfy the power constraint (3). In particular, γ
can be derived as γ = P/K in the symmetric scenario, where
the channels are equally strong [12].

Although the beamforming design requires the channel state
information (CSI), we remark that the acquisition of the CSI
for MIMO system has been widely studied in the literature,
e.g., [24], [25], where low complexity algorithms were proposed
to solve the MIMO channel estimation problems in different
scenarios. In this paper, we only focus on the beamforming
design by assuming that the perfect CSI is available, which
provides an upper bound on the achievable rate performance.

C. Complexity Issues in Massive MIMO

The main computational complexity for computing (5) lies in
computing the matrix inversion directly, which leadsO(MK2 +
K3) computational complexity. To support ultra-low latency
communications in massive MIMO systems, it becomes critical
to design large-scale precoding algorithm with low computation
complexity [13], [14]. As fast inversions of large-scale matrices
in every coherence period needs to be performed, it is desired
to find efficient algorithms to reduce the high computational
complexity with performance guarantees.

In this paper, we shall develop the randomized sketching
based precoding algorithm to compute the large-scale RZF
beamforming matrix W ∗ in (5). This is based on the key
observation that the large-scale array regime, i.e., M ≫ K,
offers the opportunity for dimension reduction in (5), thereby
reducing the computational complexity while guaranteeing the
high performance accuracy. Specifically, we develop the scalable
algorithm for computing W ∗ in (5) based on the principles of
Randomized Numerical Linear Algebra [17]. In particular, the
theoretical guarantees for the achievable system sum-rate (4)
using the randomized sketching based beamforming method will
be presented in Sec. IV.

III. RANDOMIZED SKETCHING FOR LARGE-SCALE

BEAMFORMING

A. Randomized Sketching Algorithm

Randomized sketching algorithm exploits randomization as
a computational resource to develop improved algorithms for

large-scale matrix computation problems. The key idea of ran-
domized algorithm is to compress a given large-scale matrix to
a much smaller matrix by multiplying it by a random matrix
with certain properties. Very expensive computation can then be
performed on the smaller matrix efficiently. For a given matrix
A and a random matrix S, the technique of replacing A by SA
is known as a sketching technique and SA is referred to as a
sketch of A. Such S is called a sketching matrix.

Sketching technique can be accomplished by random sam-
pling or random projection. For random sampling method, the
sketch consists of a small number of carefully-sampled and
rescaled columns/rows of matrix A. On the other hand, for ran-
dom projection method, the sketch consists of a small number of
linear combinations of the columns/rows of A. We will discuss
various construction for the random matrix S in Section III-D.

Sketching technique has been extensively studied for a
decade [15]–[17]. Recently, the widespread use of sketching as a
tool for matrix computations yields many novel results in many
fields, especially in machine learning [18], [19], [26], [27].

B. Randomized Sketching Based RZF Beamforming

The first key observation is that (5) can be expressed as the
matrix ridge regression problem as follows [20]:

W ∗ = argmin
W∈CM×K

∥HW − λβIK∥2
F + λ∥W ∥2

F , (6)

where λ = σ2

γ . To facilitate algorithm design in real field, we
focus on solving the equivalent real counterpart of (6):

M ∗ = argmin
M∈R2M×K

∥QM −Λ∥2
F + λ∥M∥2

F , (7)

where

M=

[
ℜ(W )

ℑ(W )

]
,Q=

[
ℜ(H) −ℑ(H)

ℑ(H) ℜ(H)

]
,Λ=

[
ℜ(λβIK)

ℑ(λβIK)

]
.

Note that since λ,β > 0, ℑ(λβIK) = 0. Then the optimal so-
lution of (7) takes the form,

M ∗ = QT (QQT + λI2K)−1Λ. (8)

Given the matrix M ∗, it is trivial to obtain the complex RZF
beamforming matrix W ∗ in (5).

Iterative methods provide the solution to the linear system
Ax = b as the limit of a sequence x(j), and usually involve
matrix A only through multiplications by given vectors. Gener-
ally, any iterative method is based on a suitable splitting of the
matrix A with A = E −N , where E is nonsingular. Then the
sequence {x(j)} is generated as follows:

Ex(j+1) = Nx(j) + b for all j ∈ N, (9)

where x(0) is a given initial vector. Equivalently, such itera-
tion can be restated as x(j+1) = x(j) +E−1r(j)for all j ∈ N,
where r(j) := b−Ax(j) is the residual at the step j, where E
is called preconditioner for A. The following iteration is called
preconditioned Richardson iteration [22]:

x(j+1) = x(j) + αjE
−1r(j) for all j ∈ N, (10)

where αj ̸= 0 is the real acceleration parameter.
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Algorithm 1: Randomized Sketching Based Beamformer.

Input:Q ∈ R2K×2M , Λ ∈ R2K×K , λ > 0; number of
iterations t > 0; sketching matrix S ∈ R2M×L;

Initialize: Λ(0) ← Λ, M̃
(0)
← 02M×K , Y ← 02K×K ;

for j = 1 to t do

(i) Λ(j) ← Λ(j−1) − λY (j−1) −QM̃
(j−1)

;
(ii) Y (j) ← (QSSTQT + λI2K)−1Λ(j) ;

(iii) M̃
(j)
← QTY (j) ;

end for
Output: Approximate the solution matrix

M̂
(t)

=
∑t

j=1 M̃
(j)

.

We present the novel sketching based randomized beam-
forming in Algorithm 1, which iteratively computes a sequence

of matrixes M̃
(j)
∈ R2M×K for j = 1, . . . , t and returns the

approximation M̂
(t)

=
∑t

j=1 M̃
(j)

to the true solution matrix
of (8). In fact, it can be viewed as a preconditioned Richardson
iteration. Indeed, for a given Y (j) in Algorithm 1, we denote

Ŷ
(t)

=
∑t

j=1 Y
(j). Note that our solution is M (t) = QT Ŷ

(t)
.

By (i) and (iii) in Algorithm 1, we have

Λ(j) = Λ(j−1) − (QQT + λI)Y (j−1). (11)

Applying the recurrence relation (11) successively, it follows
that

Λ(j) = Λ(j−2) − (QQT + λI)Y (j−2) − (QQT + λI)Y (j−1)

= Λ(j−2) − (QQT + γI)(Y (j−2) + Y (j−1))

...

= Λ(1) − (QQT + λI)(Y (j−2) + · · ·+ Y (1))

= Λ− (QQT + λI)Ŷ
(j−1)

.

Then it holds that

Ŷ
(t)

= Ŷ
(t−1)

+ Y (t)

= Ŷ
(t−1)

+ (QSSTQT + λI)−1Λ(t)

= Ŷ
(t−1)

+ (QSSTQT + λI)−1(Λ− (QQT + λI)Ŷ
(t−1)

).

Thus, Algorithm 1 can be formulated as a preconditioned
Richard iteration to solve the linear system

(QQT + λI2K)Y = Λ, (12)

with preconditioner E = (QSSTQT + λI2K) and αj = 1 for
all j in (10).

Algorithm 1 iteratively computes a sequence of matrices

M̃
(j)

for j = 1, . . . , t and returns the approximation M̂
(t)

=
∑t

j=1 M̃
(j)

to the true solution M ∗ in (8). Equivalently, it

computes the approximation Ŵ
(t)

=
∑t

j=1 W̃
(j)

to the true

solution W ∗ in (5). We call such approximation Ŵ
(t)

a ran-
domized sketching based beamformer.

Algorithm 1 uses the sketching matrix for the precondi-
tioner in order to improve the rate of convergence and reduce
the computational complexity. Specifically, using the sketching
matrix S ∈ R2M×L with L≪ 2M , the preconditioner E =
(QSSTQT + λI2K) can be computed by matrix QS with
much smaller size.

C. Convergence Analysis

The convergence analysis depends on the selected sketching
matrix, which satisfies the constraint (13). Theorem 1 presents
a quality-of-approximation result under the assumption that the
sketching matrix satisfies the constraint (13).

Theorem 1: Assume that for some constant 0 < ε < 1, the
sketching matrix S ∈ R2M×L satisfies the following constraint

∥V TSSTV − I2K∥2 ≤
ε

2
, (13)

where V ∈ R2M×2K is the matrix of right singular vectors of

Q. Then, after t number of iterations, the approximation Ŵ
(t)

returned by Algorithm 1 satisfies

∥Ŵ
(t)
−W ∗∥F ≤ εt∥W ∗∥F ,

where W ∗ is the true value of the RZF beamforming matrix in
(5) in the complex version.

Proof: Note that by [28], (8) can be also expressed as

M ∗ = (QTQ+ λI2M )−1QTΛ. (14)

Then each column of M ∗ can be considered as the solution
of the following optimization problem

argmin
M ∗i∈R2M

∥QM ∗i −Λ∗i∥2
2 + λ∥M ∗i∥2

2, (15)

for each i = 1, . . . ,K. Recall that M i∗ and Λi∗ is the i-th
column of M and Λ, respectively. By Theorem 1 in [20], it
follows that

∥M̂
(t)

∗i − (M ∗)∗i∥2 ≤ εt∥(M ∗)∗i∥2,

for all i = 1, . . . ,K. Then we have

∥M̂
(t)
−M ∗∥2

F =
K∑

i=1

∥M̂
(t)

∗i − (M ∗)∗i∥2
2

≤ ε2t
K∑

i=1

∥(M ∗)∗i∥2
2

≤ ε2t∥M ∗∥2
F .

Clearly, ∥Ŵ
(t)
−W ∗∥F = ∥M̂

(t)
−M ∗∥F and ∥W ∗∥F =

∥M ∗∥F . !
To check whether a sketching matrixS satisfies (13), a number

of columns L that is proportional to 2K log (2K) is required
(see Theorem 3). Thus, the running time of any algorithm that
computes the sketch QS is also proportional to 2K log (2K).
To reduce the running time, it would be much better to use a
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parameter which is significantly smaller than 2K. For simplicity
of exposition, we will assume that the rank of Q is 2K.

In the context of ridge regression, a much more important
quantity than the rank of Q is the (effective) degrees of freedom
of Q as follows [29]:

dλ =
2K∑

i=1

σ2
i

σ2
i + λ

, (16)

where σi are the singular values of Q and λ = σ2

γ . Equivalently,
the (effective) degrees of freedom is defined as the trace of the
matrix Q(QTQ+ λI2K)−1QT [16]. Since λ > 0, it is trivial
that dλ ≤ 2K. That is, the degrees of freedom dλ is upper
bounded by the rank of Q.

Define a diagonal matrix Σλ ∈ R2K×2K whose i-th diagonal
entry is given by

(Σλ)ii =

√
σ2
i

σ2
i + λ

, i = 1, . . . , 2K, (17)

where σi is the i-th singular value of Q and λ = σ2

γ .
Now we provide a weaker constraint with the effective degrees

of freedom.
Theorem 2: Assume that for some constant 0 < ε < 1, the

sketching matrix S ∈ R2M×L satisfies the following constraint

∥ΣλV
TSSTV Σλ −Σ2

λ∥2 ≤
ε

4
√

2
, (18)

where V ∈ R2M×2K is the matrix of right singular vectors of

Q. Then, after t number of iterations, the approximation Ŵ
(t)

returned by Algorithm 1 satisfies

∥Ŵ
(t)
−W ∗∥F ≤

εt√
2

(
∥W ∗∥2

F +
1

2λ
∥UT

ξ,⊥Λ∥2
F

) 1
2

,

(19)
where ξ is an integer number such that σ2

ξ+1 ≤ λ ≤ σ2
ξ , U j,⊥ ∈

R2K×(2K−j) is the matrix of the bottom 2K − j left singular
vectors of the matrix Q, and W ∗ is the true value of the RZF
beamforming matrix in (5) in the complex version.

Proof: Since each column of M ∗ can be considered as the
solution of (15), by Theorem 2 in [20], it follows that

∥M̂
(t)

∗i −M ∗
∗i∥2 ≤

εt

2

(
∥M ∗

∗i∥2 +
1√
2λ
∥UT

ξ,⊥Λ∗i∥2

)
,

for all i = 1, . . . ,K. Then we have

∥M̂
(t)
−M ∗∥2

F =
K∑

i=1

∥M̂
(t)

∗i −M ∗
∗i∥2

2

≤
K∑

i=1

ε2t

4

(
∥M ∗

∗i∥2 +
1√
2λ
∥UT

ξ,⊥Λ∗i∥2

)2

≤
K∑

i=1

ε2t

2

(
∥M ∗

∗i∥2
2 +

1
2λ
∥UT

ξ,⊥Λ∗i∥2
2

)

≤ ε2t

2

(
∥M ∗∥2

F +
1

2λ
∥UT

ξ,⊥Λ∥2
F

)
.

!

This improved dependency on dλ instead of the rank of matrix
Q results in a mild loss in accuracy. λ can be thought of as
regularizing the bottom 2K − ξ singular values of the matrix
Q, since it dominates them. Theorem 2 presents a quality-of-
approximation result, which uses a relative-additive error ap-
proximation. The term ∥UT

ξ,⊥Λ∥F is a norm of the part of matrix
Λ that lies on the regularized component of Q. The quality of
the approximation worsens as this quantity increases. The error
decreases exponentially fast with the number of iterations.

The bounds of (13) and (18) guarantee high-quality approxi-
mations to the optimal solution. Constraint (13) can be satisfied
by constructing the sampling-and-rescaling matrixS whose size
depends on the rank of matrix Q, and Theorem 1 guarantees
relative error approximations. The second constraint (18) can be
satisfied by sampling with respect to the ridge leverage scores,
which construct the sampling-and-rescaling matrixS whose size
depends on the degrees of freedomdλ, and Theorem 2 guarantees
relative error approximations.

D. Sketching Matrices

Matrix sketching attempts to reduce the size of large matrices
while minimizing the loss of spectral information that is useful
in tasks like linear regression. Matrix sketching algorithms use a
typically randomized procedure to compress Q ∈ R2K×2M into
an approximation (or “sketch”) C ∈ R2K×L with many fewer
columns (L≪ 2M). Matrix sketching can be accomplished
by random sampling or random projection. Random projection
algorithms construct C by forming L random linear combina-
tions of the columns in Q. On the other hand, random sampling
algorithms construct C by selecting and possibly rescaling a L
columns in Q. In the latter case, we call a sketching matrix S
as the sampling-and-rescaling matrix.

Sampling itself is simple and extremely efficient. A simple
way to perform this random sampling would be to select those
columns uniformly at random in i.i.d. trials, which mean p1 =
p2 = · · · = p2M = 1

2M . A more sophisticated and much more
powerful way to do this would be to construct an important
sampling routines which select columns using carefully chosen,
non-uniform probabilities {pi}ni=1. It is known that variations
on the standard “statistical leverage scores” give probabilities
that are provably sufficient for approximations such as low-rank
approximation. Many of these probabilities are modifications on
the standard statistical leverage scores.

Definition 1: The (statistical) leverage score of the ith col-
umn Q∗i of Q is defined as:

τi = QT
∗i(QQT )†Q∗i, (20)

for i = 1, 2, . . . , 2M .
Here, † denotes the Moore-Penrose pseudoinverse of a matrix.

When QQT is full rank, (QQT )† = (QQT )−1. τi measures
how important Q∗i is in composing the range of Q. It is
maximized at 1 when Q∗i is linearly independent from Q’s
other columns and decreases when many other columns approx-
imately align with Q∗i or when ∥Q∗i∥2 is small.

Leverage score sampling sets pi proportional to the (exact or
approximate) leverage scores τi of Q. The leverage scores are
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Algorithm 2: Construct Sampling-And-Rescaling Matrix.
Input Sampling probabilities pi, i = 1, . . . , 2M ; integer
L≪ 2M ;
S ← O2M×L;
for j = 1 to L do
Pick ij ∈ {1, . . . , 2M} with P (ij = i) = pi;
Sij ,j ← (Lpij )

− 1
2 ;

end for
Output: Sampling-and-rescaling matrix S;

used in fast sketching algorithms for linear regression and matrix
preconditioning [30]–[32].

Notably, leverage scores are defined in terms of Q∗i, which
is not always unique and regardless can be sensitive to matrix
perturbations. As a result, the scores can change drastically when
Q is modified slightly or when only partial information about the
matrix is known. This largely limits the possibility of quickly ap-
proximating the scores with sampling algorithms, and motivates
our adoption of a new leverage score. Rather than using leverage
scores based on Q∗i, we employ regularized scores called ridge
leverage scores, which have been used for approximate kernel
ridge regression [33] and in works on iteratively computing
standard leverage scores [34], [34]. For a given regularization
parameter λ, we define the λ-ridge leverage score as:

τλ
i = QT

∗i(QQT + λI2K)−1Q∗i. (21)

LetQℓ be the best low-rank approximation forQwith respect
to the Frobenius norm. In other words,

Qℓ = argmin
X:rank(X)≤ℓ

∥Q−X∥F .

Note thatQℓ can be expressed asU ℓU
T
ℓ Q. That is, the best rank

ℓ approximation can be found by projecting Q onto the span of
its top ℓ singular vectors. We will always set λ = ∥Q−Qℓ∥2

F /ℓ
as follows.

Definition 2: The ridge leverage score of the ith column Q∗i
of Q with respect to the ridge parameter λ > 0 is defined as:

τ̄i = QT
∗i

(
QQT +

∥Q−Qℓ∥2
F

ℓ
I2K

)−1

Q∗i, (22)

for i = 1, 2, . . . , 2M .
Note that the ridge leverage score can also be expressed as

τ̄i = ∥(V Σλ)i∗∥2
2 for all i = 1, 2, . . . , 2M,

where V ∈ R2M×2K is the matrix of right singular vectors of Q
andΣλ is defined as (17). The constraint (18) can also be satisfied
by sampling with respect to the ridge leverage scores [33]. The
difference is that, instead of having the column size L of the
matrix S depend on 2K, it now depends on dλ, which could be
considerably smaller. Indeed, it follows that by sampling-and-
rescaling O(dλ ln dλ) from the design matrix Q (using either
exact or approximate ridge leverage scores).

In this article we only consider the sampling-and-rescaling
matrix for a sketching matrix S. Algorithm 2 provides the
construction of it. The following theorems show how many

sampled columns guarantee that the sketching matrix holds the
constraint (13). This theorem is adopted from Theorem 3 in [20],
so the proof is omitted.

Theorem 3: Let V ∈ R2M×2K be the matrix of right singu-
lar vectors of Q. Let S be constructed by Algorithm 2 with
the sampling probabilities pi = ∥V i∗∥2

2/2K for i = 1, . . . , 2M .
Let δ be a failure probability and let 0 < ε ≤ 1 be an accuracy
parameter. If the number of sampled columns L satisfies

L ≥ 16K
3ε2 log

(
4(1 + 2K)

δ

)
, (23)

then, with probability at least 1− δ,

∥V TSSTV − I2K∥2 ≤ ε. (24)

The sampling probabilities pi = ∥V i∗∥2
2/2K are the col-

umn leverage scores [20] of the channel matrix Q. Setting
L = O(ε−2K lnK) suffices to satisfy the condition (13). [35]
demonstrated a construction for such S with L = O(ε−2K)
columns such that, for Q ∈ R2M×2K , the product QS can be
computed in time O(nnz(Q)) +O(K3/ελ) for some constant
λ. Here nnz(Q) is the number of nonzero entries of Q.

Additionally, there are a variety of sketching matrix construc-
tions for S that can satisfy (24). The running time of sketch
QS depends on the dimension of S, and the construction of
S sampling with respect to leverage scores is proportional to
2K (we assume that rank(Q) = 2K), which means the running
time of QS is also proportional to 2K. Therefore, we let S
dimensionality depend on the degrees of freedom dλ of the ridge
regression problem, as opposed to the rank of matrix Q. In this
way, the running time would result in significant savings.

To achieve the reduction in running time, the column size L
of matrix S is thus better designed proportional to degrees of
freedom dλ which depends on the distribution of the singular
value of Q and λ instead of proportional to 2K for dλ ≤ 2K,
which could be significantly smaller than 2K.

Theorem 4: Let V ∈ R2M×2K be the matrix of right singular
vectors ofQ. LetS be constructed by Algorithm 2 with the sam-
pling probabilitiespi = ∥(V Σλ)i∗∥2

2/dλ for i = 1, . . . , 2M . Let
δ be a failure probability and let 0 < ε ≤ 1 be an accuracy
parameter. If the number of sampled columns L satisfies

L ≥ 8dλ

3ε2 log

(
4(1 + dλ)

δ

)
, (25)

then, with probability at least 1− δ,

∥ΣλV
TSSTV Σλ −Σ2

λ∥2 ≤ ε. (26)

The sampling probabilities pi = ∥(V Σλ)i∗∥2
2/dλ are the col-

umn ridge leverage scores [33], [36] of the channel matrix Q.
Similarly to the constraint of (24), setting L = O(dλ ln dλ)
suffices to satisfy the condition (26). Note that while the leverage
scores which construct the sampling-and-rescaling matrix S
with the column size L depend on the rank of Q, the ridge
leverage scores constructing S depend on dλ, which could be
considerably smaller than the rank of Q. Hence, it could surely
achieve time saving. If the rank of the channel matrix Q is
smaller that 2K, e.g., the channels of some users are highly
correlated, the ridge leverage scores scheme has a smaller sketch
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size according to Theorem 3 and Theorem 4, and thus enjoys
a lower computational complexity. However, the running time
savings would lead to a drop in accuracy as shown in Theorem
2.

E. Time Complexity

We now discuss the time complexity of Algorithm 1. Note
that each column M in (8) can be computed by each col-
umn of Λ, separately. We consider Λ as a column vector. Let
Θ = QSSTQT + λI2K . Note that to find Θ−1, it suffices to
compute the singular value decomposition of QS. Since the
singular values of Θ can be computed through ΣQS + λI2K ,
where ΣA denotes the singular value of A. And the left and
right singular vectors of Θ are the same as the left singular
vectors of QS. We store it implicitly by storing its left (and
right) singular vector UΘ and its singular values ΣΘ, before
we just compute all the necessary matrix-vector products using
this implicit representation of Θ−1. The above analysis shows
that we do not need to compute Θ−1 directly. Thus computing
Θ−1 takes O(LK2) time.

Updating each Λ(j), Y (j), and M̃
(j)

is dominated by the
aforementioned running times, as all updates amount to just
matrix-vector products. Thus, summing over all t iterations, the
running time of Algorithm 1 is given by

O(t · nnz(Q)) +O(LK2). (27)

Thus the time complexity is reduced evidently. Note that the
complexity of computing the matrix inversion (8) is O(MK2).

IV. THE SYSTEM SUM-RATE ANALYSIS WITH APPROXIMATE

RZF BEAMFORMERS

In this section, we show that the system sum-rate of the ran-
domized sketching based beamformer converges to the sum-rate
of the RZF beamforming matrix as the number of iterations
increases. Moreover, if an approximation sequence converges
to the true beamforming matrix with the rate of convergence
O(βt), then the system sum-rate of the approximation sequence
converges with the same rate of convergence O(βt). Before
stating our main results, we introduce the extra notation, φkj ,
to cast SINR at the k-th user in (2) with a simpler form. From
now on, we assume that the channel matrix H is fixed and the
beamforming matrix W is considered as complex variables.
Then we can easily deal with the system sum-rate for any
approximate beamforming matrix.

For each k, j, let a function φkj : CM×K → [0,+∞) be
defined by φkj(W ) = |hH

k wj |2 for all W = [w1, . . . ,wK ] ∈
CM×K . Note that

φkj(W ) =
(
ℜ(hk)

Tℜ(wj)−ℑ(hk)
Tℑ(wj)

)2

+
(
ℑ(hk)

Tℜ(wj) + ℜ(hk)
Tℑ(wj)

)2 ≥ 0.

The system sum-rate of a given variables W can thus be rewrit-
ten as

R(W ) =
K∑

k=1

log

(
1 +

φkk(W )∑
j ̸=k φkj(W ) + σ2

)
. (28)

Fig. 1. The system sum-rate R(W ).

That is, R can be viewed as a function from CM×K to [0,+∞),
as shown in Fig. 1.

Let V be a nonempty open subset of Rn, f : V → Rm, and
p ∈ N. Recall that a function f is said to be Cp on V if each
partial derivative of f of order k ≤ p exists and is continuous
on V . f is said to be C∞ on V if f is Cp on V for all p ∈ N. In
other words, a C∞-mapping is a function that is differentiable
for all degrees of differentiation.

Lemma 1: The system sum-rate R is a C∞-mapping on
R2M×K .

Proof: Note that the complex variables W ∈ CM×K can be
considered as real variables M ∈ R2M×K . We use M and W
interchangeably. Let M ∈ R2M×K be real variables. Then it is
easy to check that thatφkj is a multivariate polynomial in R[M ],
i.e., the ring of polynomials with real coefficients over variables
M . Thus φkj is C∞-mapping on R2M×2K . Since the logarithm
function are C∞-mapping, the function R is a C∞-mapping on
R2M×2K , provided

∑
j ̸=k φkj(W ) + σ2 ̸= 0. LetH ∈ CK×M

be a given channel matrix. Considering the beamforming matrix
M ∼= W as real variables in R2M×K(∼= CM×K), the system
sum-rate in (4) can be considered as a function R : R2M×K −→
[0,+∞) defined by

W = [w1, . . . ,wK ] ∼=

[
ℜ(w1) · · · ℜ(wK)

ℑ(w1) · · · ℑ(wK)

]
3−→ R(W ).

In other words, φkj can be considered as a function from
R2M×2K −→ [0,+∞). Moreover, it is easy to check that φkj is
a multivariate polynomial in R[M ], which is C∞-mapping on
R2M×2K . Since it can be rewritten as

R(W ) =
K∑

k=1

log

(
1 +

φkk(W )∑
j ̸=k (φkj(W ) + σ2)

)
,

and the logarithm function is C∞-mapping, the function R is a
C∞-mapping on R2M×2K , provided

∑
j ̸=k(φkj(W ) + σ2) ̸=

0. !
Denote the true solution of the regularized RZF problem (8)

in the complex version as W ∗. By Lemma 1, R is continuous.
By Theorem 1, each entry of the approximation converges to the
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entry of the true solution, respectively, i.e.,

ℜ(Ŵ
(t)

ij ) −→ ℜ(W ∗
ij) as t −→∞,

ℑ(Ŵ
(t)

ij ) −→ ℑ(W ∗
ij) as t −→∞.

Note that the image of a convergent sequence under a continuous
function converges to the image of limit. Thus, the following
holds.

Proposition 5: Assume that for some constant 0 < ε < 1, the
sketching matrix S ∈ R2M×L satisfies the constraint (13). Let
t be the number of iterations. Then, the system sum-rate of the

approximation R(Ŵ
(t)
) converges to the system sum-rate of

the true solution R(W ∗) as the number of iterations increases.
That is,

R

(
Ŵ

(t)
)
−→ R (W ∗) as t −→∞. (29)

The next theorem is our key result. It shows that the error of the
system sum-rate is bounded by the error of an approximation of
beamforming matrix. Using this result, the rate of convergence
for the system sum-rate of an approximation can be obtained.

Theorem 6: Let H be a given channel matrix, and let Ŵ
(resp. W ∗) be the approximation (resp. true) RZF beamforming
matrix. Then it holds that∣∣∣R

(
Ŵ
)
−R (W ∗)

∣∣∣

≤ C
∥∥H

∥∥2
F

(∥∥Ŵ −W ∗∥∥2
F
+ 2
∥∥Ŵ −W ∗∥∥

F

∥∥W ∗∥∥
F

)
,

where C is constant independent to Ŵ .
Proof: See Appendix A. !
Suppose a sequence {βt}∞t=1 converges to zero, and {αt}∞t=1

converges to a number α. Recall that {αt}∞t=1 converges to α
with rate of convergence O(βt) if a positive constant K exists
with |αt − α| ≤ K|βt| for sufficiently large t.

The following shows that if an approximation sequence

{Ŵ
(t)
}∞t=1 converges to the true beamforming matrix W ∗ with

the rate of convergence O(βt), then {R(Ŵ
(t)
)}∞t=1 converges

to R(W ∗) with the same rate of convergence O(βt).
Theorem 7: Let η ≥ 0. If an approximation sequence

{Ŵ
(t)
}∞t=1 converges to W ∗ such that ∥Ŵ

(t)
−W ∗∥F ≤

|βt|(∥W ∗∥F + η), then
∣∣∣R
(
Ŵ

(t)
)
−R (W ∗)

∣∣∣ ≤ 3C|βt|
∥∥H

∥∥2
F
(
∥∥W ∗∥∥

F
+ η)2,

provided sufficiently large t.
Proof: Since βt converges to 0, there exists T ∈ N such that

t ≥ T implies |βt| < 1. By Theorem 6 it follows that

∣∣R
(
Ŵ
)
−R (W ∗)

∣∣ ≤ C
∥∥H

∥∥2
F

(
|βt|2

(∥∥W ∗∥∥
F
+ η
)2

+ 2|βt|
(∥∥W ∗∥∥

F
+ η
) ∥∥W ∗∥∥

F

)
.

Since η ≥ 0, we have

|βt|2
(∥∥W ∗∥∥

F
+ η
)2

+ 2|βt|
(∥∥W ∗∥∥

F
+ η
) ∥∥W ∗∥∥

F

≤ |βt|2
(∥∥W ∗∥∥

F
+ η
)2

+ 2|βt|
(∥∥W ∗∥∥

F
+ η
)2

≤ 3|βt|
(∥∥W ∗∥∥

F
+ η
)2

,

provided t ≥ T . !
Using Theorem 7, one can find the rate of convergence for

the system sum-rate of the approximation sequence generated
by Algorithm 1.

Corollary 8:
(i) Assume that for 0 < ε < 1, the sketching matrix S satis-

fies the constraint (13). Then, after t number of iterations,

the approximation Ŵ
(t)

returned by Algorithm 1 holds
∣∣∣R
(
Ŵ

(t)
)
−R (W ∗)

∣∣∣ ≤ 3Cεt
∥∥H

∥∥2
F

∥∥W ∗∥∥2
F
.

(ii) Assume that for 0 < ε < 1, the sketching matrix S satis-
fies the constraint (18). Then, after t number of iterations,

the approximation Ŵ
(t)

returned by Algorithm 1 holds
∣∣∣R
(
Ŵ

(t)
)
−R (W ∗)

∣∣∣ ≤ 3Cεt
∥∥H

∥∥2
F

(∥∥W ∗∥∥
F

+
1√
2λ
∥UT

2K,⊥Λ∥2

)2

.

Here, W ∗ is the true value in (5).
Proof: (i) It holds from Theorem 7 with η = 0 and Theorem

1. (ii) It holds from Theorem 7 with η = 1√
2λ
∥UT

2K,⊥Λ∥2 and
Theorem 1. !

V. SIMULATIONS

In this section, we simulate the performance of the proposed
randomized sketching based beamformer in Algorithm 1. We
consider the following channel model between the BS and the
k-th user:

hk = 10−L̃(dk)/20√ϕkskfk, (30)

where L̃(dk) is the path-loss at distance dk, sk is the shadowing
coefficients, ϕk is the antenna gain, and fk is the small fading
coefficient. We use the standard cellular network parameters
as shown in [37, Table I]. We consider a single cell massive
MIMO system with M = 1500 antennas at the BS and K = 50
single-antenna users uniformly and independently distributed in
the square region [−5000, 5000]× [5000, 5000] meters.

First, we compare three different sampling-and-rescaling
methods whose random matrices are generated by Algorithm
2 with the following sampling probabilities {pi}2M

i=1:! (Uniformly at random) Calculate
pi =

1
2M for i = 1, . . . , 2M .! (Leverage scores) Calculate pi =

∥V i∗∥2
2

2K for i =
1, . . . , 2M .! (Ridge leverage scores) Calculate pi =

∥(V Σλ)i∗∥2
2

dλ
for i =

1, . . . , 2M .
Here, V denotes the right singular value of matrix Q, and Σλ

denotes the diagonal matrix given by (17).
Fig. 2 shows the sum-rate error for three different sampling-

and-rescaling methods. We fix the iteration numbers t = 15.
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Fig. 2. Solution error vs. sketch size.

Fig. 3. Average per user rate vs. SNR.

Each graphs present the average of 200 replicated runs. It clearly
illustrates that the uniformly at random method achieves better
accuracy than the other two sampling-and-rescaling methods.
We thus generate sampling matrix uniformly at random in the
following simulations.

We compare the proposed randomized sketching based beam-
formers under various sketch sizes and different SNR which
is defined as the transmit power at the BS over the received
noise power at all the users. We generate sketching matrices with
different sizes, and terminate Algorithm 1 after 10 iterations. As
shown in Fig. 3, the randomized sketching based beamformer
performs closely to RZF beamforming in terms of the average
per user rate as the sketch size increases.

Fig. 4 illustrates that the iterative solution converges to the
RZF beamforming matrix at a linear convergence rate as shown

in Theorem 1 by plotting the trend of ∥Ŵ
(t)
−W ∗∥F up

to 50 iterations with SNR being 5. Fig. 5 illustrates that the
achievable sum-rate of the randomized beamforming converges
to the achievable sum-rate given by RZF beamforming lin-
early as shown in Corollary 8. It demonstrates the trend of

Fig. 4. Solution error vs. iteration.

Fig. 5. Sum-rate error vs. iteration.

|R(Ŵ
(t)
)−R(W ∗)| within 50 iterations. It is clear that in

Fig. 4 and 5 the error decreases fast with the number of iterations,
and larger sketch size leads to faster convergence rate.

Finally, we compare the proposed randomized sketching
method with the polynomial expansion based method [13] given
the channel matrixH . Note that the polynomial expansion based
method [13] consists of two steps, i.e., seeking the polynomial
coefficients based on the channel matrix H and then computing
the beamforming matrix using the polynomial coefficients. We
follow the simulation settings in [13] and consider the case
M = 1000, K = 50. The sketch size is set to be 500, and
we terminate our proposed sketch method after 10 iterations.
The results averaged for 100 times are presented in Fig. 6.
For the polynomial expansion based method, we present the
results with polynomial expansion degree equals 2, 3 and 4,
respectively. As can be seen from Fig. 6, our proposed method
and the truncated polynomial expansion method with degree 3
achieve similar performance as the RZF method. To compute the
beamforming matrix, the average running time of our proposed
randomized sketching method is 0.0214s, while it costs 2.0950s
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Fig. 6. Compassion with truncated polynomial expansion method [13].

TABLE I
COMPARISON FOR TIME COMPLEXITY

via the truncated polynomial expansion method with degree 3
(see TABLE I). This is because the time complexity is high
when we compute the polynomial coefficients. Therefore, given
the channel matrix H , the proposed sketching method is more
efficient compared to the polynomial expansion based method.

VI. CONCLUSION

We proposed a randomized sketching based RZF beam-
forming approach to tackle the computational challenges of
precoding in massive MIMO systems. This was achieved by
solving the linear system for the matrix inversion via randomized
sketching based on the preconditioned Richard iteration. The
computational complexity of our proposed method scales with
LK2, whereL≪ 2M is the sketching matrix size. Furthermore,
we proved that the proposed algorithm iteratively converges to
the RZF beamforming matrix at a linear convergence rate. Also,
the achievable sum-rate with the randomized sketching based
RZF beamformer linearly converges to the achievable sum-rate
with the RZF beamformer as the number of iteration increases.
Simulation results were demonstrated to verify our theoretical
findings.

This paper shows the benefit of exploiting randomized numer-
ical linear algebra for the very large-scale RZF beamforming
problem. The key insight is that the channel matrix contains
redundancy for designing the beamforming matrix if the number
of antennas at the BS goes to very large. The idea can potentially
be leveraged in various future 6 G wireless networks design,
where the problem dimension goes increasingly large [38]. For
example, in wireless federated systems [39], the high dimen-
sional local model parameters are required to be aggregated at

an edge server, which leads to a communication bottleneck. By
using the randomized numerical linear algebra, we may reduce
the communication overhead during the model aggregation in
federated learning [40]. In addition, the reconfigurable intelli-
gent surface (RIS) assisted massive MIMO system suffers from
high dimensional problem optimization due to the large number
of reflecting elements at the RIS [41]. Therefore, it is also
interesting to exploit the potential use of randomized numerical
linear algebra in the RIS systems.

For future research, it is important to extend the randomized
sketching beamforming method for other utility maximization
problems. One of our key observations is that the solution
structure of the matrix ridge regression problem is the same
as the RZF beamforming solution, which connects the ran-
domized numerical algorithms to the RZF beamforming. For
other utility function maximization problems, e.g., minimum
rate maximization, it remains open to apply the randomized
numerical algorithms to reduce the computational complexity.
It is also interesting to further reduce the computational com-
plexity by exploiting the statistical information of the channels.
For example, we can design the sketching matrix based on the
statistical information of the channel matrix [42], so as to avoid
constructing the sketching matrix for every channel realization.

APPENDIX A
PROOF OF THEOREM 6

Lemma 2: For all a, b > 0, it holds that | log(1 + a)−
log(1 + b)| ≤ |a− b|.

Proof: Let f(x) = log(1 + x) and a, b > 0 with a ̸= b. By
the Mean Value Theorem, there exists ξ ∈ (a, b) such that

∣∣∣∣
f(a)− f(b)

a− b

∣∣∣∣ = |f ′(ξ)| < 1.

!
Lemma 3: Let a, b > 0 be given. Then it holds that

∣∣∣
y

x+ b
− a

b

∣∣∣ ≤
1
|b| |y − a|+ a

b2 |x|, (31)

for all x, y ≥ 0.
Proof: By the triangle inequality, it holds that
∣∣∣

y

x+ b
− a

b

∣∣∣ =
|b(y − a)− ax|

|x+ b||b| ≤ |b(y − a)|+ |ax|
|b|2 ,

for all x, y ≥ 0. !
Lemma 4: For each k, j it holds that
∣∣∣φkj(Ŵ )− φkj(W̃ )

∣∣∣

≤
∥∥ŵj − w̃j

∥∥
2

∥∥hk

∥∥2
2

(∥∥ŵj − w̃j

∥∥
2 + 2

∥∥w̃j

∥∥
2

)
.

Proof: Using the fact |hH
k wj |2 = wH

j hkh
H
k wj , by the tri-

angle inequality, we have that
∣∣∣φkj(Ŵ )− φkj(W̃ )

∣∣∣

=
∣∣ŵH

j hkh
H
k ŵj − w̃H

j hkh
H
k w̃j

∣∣

=
∣∣ŵH

j hkh
H
k (ŵj − w̃j) + (ŵH

j − w̃H
j )hkh

H
k w̃j

∣∣
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≤
∣∣ŵH

j hkh
H
k (ŵj − w̃j)

∣∣+
∣∣(ŵH

j − w̃H
j )hkh

H
k w̃j

∣∣

≤
∥∥ŵj − w̃j

∥∥
2

∥∥hkh
H
k

∥∥
2

(∥∥ŵj

∥∥
2 +

∥∥w̃j

∥∥
2

)
.

By the triangle inequality and the definition of operator norm, it
holds that

∥∥ŵj −wj

∥∥
2

∥∥hkh
H
k

∥∥
2

(∥∥ŵj

∥∥
2 +

∥∥wj

∥∥
2

)

≤
∥∥ŵj −wj

∥∥
2

∥∥hkh
H
k

∥∥
2

(∥∥ŵj −wj

∥∥
2 + 2

∥∥wj

∥∥
2

)

≤
∥∥ŵj −wj

∥∥
2

∥∥hk

∥∥2
2

(∥∥ŵj −wj

∥∥
2 + 2

∥∥wj

∥∥
2

)
.

!
Now we are ready to prove Theorem 6.
Since SINRk > 0 for all k, the triangle inequality and

Lemma 2 imply that

∣∣R
(
Ŵ
)
−R (W ∗)

∣∣ ≤
K∑

k=1

∣∣∣SINRk(Ŵ )− SINRk(W
∗)
∣∣∣.

Then by Lemma 3 it follows that

K∑

k=1

∣∣∣SINRk(Ŵ )− SINRk(W
∗)
∣∣∣

=
K∑

k=1

∣∣∣∣∣
φkk(Ŵ )

∑
j ̸=k φkj(Ŵ ) + σ2

− φkk(W
∗)∑

j ̸=k φkj(W
∗) + σ2

∣∣∣∣∣

≤
K∑

k=1

[
1∑

j ̸=k φkj(W
∗) + σ2

∣∣∣φkk(Ŵ )− φkk(W
∗)
∣∣∣

+
φkk(W

∗)

(
∑

j ̸=k φkj(W
∗) + σ2)2

∣∣∣∣
∑

j ̸=k

φkj(Ŵ )−
∑

j ̸=k

φkj(W
∗)

∣∣∣∣

]

≤ C

2

K∑

k=1

[∣∣φkk(Ŵ )−φkk(W
∗)
∣∣+
∑

j ̸=k

∣∣φkj(Ŵ )−φkj(W
∗)
∣∣
]

≤ C∥H∥2
F

K∑

k=1

(∥∥ŵk−w∗k
∥∥2

2+2
∥∥ŵk−w∗k

∥∥
2

∥∥w∗k
∥∥

2

)

≤ C∥H∥2
F

(∥∥Ŵ −W ∗∥∥2
F
+ 2
∥∥Ŵ −W ∗∥∥

F

∥∥W ∗∥∥
F

)
,

where C = 2max
k

{
1∑

j ̸=k φkj(W
∗)+σ2 ,

φkk(W
∗)

(
∑

j ̸=k φkj(W
∗)+σ2)2

}
.

Note that the first inequality holds from Lemma 3. The last
second inequality holds from the following by Lemma 4.

K∑

k=1

∑

j ̸=k

∣∣φkj(Ŵ )− φkj(W
∗)
∣∣

≤
K∑

j=1

K∑

k=1

∥∥ŵj −w∗j
∥∥

2

∥∥hk

∥∥2
2

(∥∥ŵj −w∗j
∥∥

2 + 2
∥∥w∗j

∥∥
2

)

≤
∥∥H

∥∥2
F

K∑

j=1

(∥∥ŵj −w∗j
∥∥2

2 + 2
∥∥ŵj −w∗j

∥∥
2

∥∥w∗j
∥∥

2

)
,

K∑

k=1

∣∣∣φkk(Ŵ )− φkk(W
∗)
∣∣∣

≤
K∑

k=1

∥∥ŵk −w∗k
∥∥

2

∥∥hk

∥∥2
2

(∥∥ŵk −w∗k
∥∥

2 + 2
∥∥w∗k

∥∥
2

)

≤
K∑

k=1

∥∥ŵk −w∗k
∥∥

2

∥∥H
∥∥2
F

(∥∥ŵk −w∗k
∥∥

2 + 2
∥∥w∗k

∥∥
2

)

≤ ∥H∥2
F

K∑

k=1

(∥∥ŵk −w∗k
∥∥2

2 + 2
∥∥ŵk −w∗k

∥∥
2

∥∥w∗k
∥∥

2

)
.

The last inequality holds from the Cauchy-Schwartz inequality
as follows:

K∑

k=1

∥∥ŵk −w∗k
∥∥

2

∥∥w∗k
∥∥

2

≤
(

K∑

k=1

∥∥ŵk −w∗k
∥∥2

2

) 1
2
(

K∑

k=1

∥∥w∗k
∥∥2

2

) 1
2

≤
∥∥Ŵ −W ∗∥∥

F

∥∥W ∗∥∥
F
.
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