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Abstract—A cloud radio access network (Cloud-RAN) is a
network architecture that holds the promise of meeting the
explosive growth of mobile data traffic. In this architecture, all
the baseband signal processing is shifted to a single baseband
unit (BBU) pool, which enables efficient resource allocation
and interference management. Meanwhile, conventional powerful
base stations can be replaced by low-cost low-power remote radio
heads (RRHs), producing a green and low-cost infrastructure.
However, as all the RRHs need to be connected to the BBU pool
through optical transport links, the transport network power
consumption becomes significant. In this paper, we propose a new
framework to design a green Cloud-RAN, which is formulated
as a joint RRH selection and power minimization beamforming
problem. To efficiently solve this problem, we first propose a
greedy selection algorithm, which is shown to provide near-
optimal performance. To further reduce the complexity, a novel
group sparse beamforming method is proposed by inducing the
group-sparsity of beamformers using the weighted ℓ1/ℓ2-norm
minimization, where the group sparsity pattern indicates those
RRHs that can be switched off. Simulation results will show that
the proposed algorithms significantly reduce the network power
consumption and demonstrate the importance of considering the
transport link power consumption.

Index Terms—Cloud-RAN, green communications, coordi-
nated beamforming, greedy selection, group-sparsity.

I. INTRODUCTION

MOBILE data traffic has been growing enormously in
recent years, and it is expected that cellular networks

will have to offer a 1000x increase in capacity in the following
decade to meet this demand [1]. Massive MIMO [2] and
heterogeneous and small cell networks (HetSNets) [1] are
regarded as two most promising approaches to achieve this
goal. By deploying a large number of antennas at each base
station (BS), massive MIMO can exploit spatial multiplexing
gain in a large scale and also improve energy efficiency.
However, the performance of massive MIMO is limited by
correlated scattering with the antenna spacing constraints,
which also brings high deployment cost to maintain the
minimum spacing [1]. HetSNets exploit the spatial reuse by
deploying more and more access points (APs). Meanwhile, as
stated in [3], placing APs based on the traffic demand is an
effective way for compensating path-loss, resulting in energy
efficient cellular networks. However, efficient interference
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management is challenging for dense small-cell networks.
Moreover, deploying more and more small-cells will cause
significant cost and operating challenges for operators.

Cloud radio access network (Cloud-RAN) has recently
been proposed as a promising network architecture to unify
the above two technologies in order to jointly manage the
interference (via coordinated multiple-point process (CoMP)),
increase network capacity and energy efficiency (via network
densification), and reduce both the network capital expendi-
ture (CAPEX) and operating expense (OPEX) (by moving
baseband processing to the baseband unit (BBU) pool) [4],
[5]. A large-scale distributed cooperative MIMO system will
thus be formed. Cloud-RAN can therefore be regarded as the
ultimate solution to the “spectrum crunch” problem of cellular
networks.

There are three key components in a Cloud-RAN: (i) a
pool of BBUs in a datacenter cloud, supported by the real-
time virtualization and high performance processors, where all
the baseband processing is performed; (ii) a high-bandwidth
low-latency optical transport network connecting the BBU
pool and the remote radio heads (RRHs); and (iii) distributed
transmission/reception points (i.e., RRHs). The key feature of
Cloud-RAN is that RRHs and BBUs are separated, resulting
a centralized BBU pool, which enables efficient cooperation
of the transmission/reception among different RRHs. As a
result, significant performance improvements through joint
scheduling and joint signal processing such as coordinated
beamforming or multi-cell processing[6] can be achieved.
With efficient interference suppression, a network of RRHs
with a very high density can be deployed. This will also
reduce the communication distance to the mobile terminals
and can thus significantly reduce the transmission power.
Moreover, as baseband signal processing is shifted to the BBU
pool, RRHs only need to support basic transmission/reception
functionality, which further reduces their energy consumption
and deployment cost.

The new architecture of Cloud-RAN also indicates a
paradigm shift in the network design, which causes some
technical challenges for implementation. For instance, as the
data transmitted between the RRHs and the BBU pool is
typically oversampled real-time I/Q digital data streams in the
order of Gbps, high-bandwidth optical transport links with
low latency will be needed. To support CoMP and enable
computing resource sharing among BBUs, new virtualization
technologies need to be developed to distribute or group the
BBUs into a centralized entity [4]. Another important aspect
is the energy efficiency consideration, due to the increased
power consumption of a large number of RRHs and also of
the transport links.

Conventionally, the transport network (i.e., backhaul links
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between the core network and base stations (BSs)) power
consumption can be ignored as it is negligible compared to the
power consumption of macro BSs. Therefore, all the previous
works investigating the energy efficiency of cellular networks
only consider the BS power consumption [7], [8]. Recently,
the impact of the backhaul power consumption in cellular
networks was investigated in [9], where it was shown through
simulations that the backhaul power consumption will affect
the energy efficiency of different cellular network deployment
scenarios. Subsequently, Rao et al. in [10] investigated the
spectral efficiency and energy efficiency tradeoff in homo-
geneous cellular networks when taking the backhaul power
consumption into consideration.

In Cloud-RAN, the transport network power consumption
will have a more significant impact on the network energy
efficiency. Hence, allowing the transport links and the corre-
sponding RRHs to support the sleep mode will be essential
to reduce the network power consumption for the Cloud-
RAN. Moreover, with the spatial and temporal variation of
the mobile traffic, it would be feasible to switch off some
RRHs while still maintaining the quality of service (QoS)
requirements. It will be also practical to implement such an
idea in the Cloud-RAN with the help of centralized signal
processing at the BBU pool. As energy efficiency is one of
the major objectives for future cellular networks [5], in this
paper we will focus on the design of green Cloud-RAN by
jointly considering the power consumption of the transport
network and RRHs.

A. Contributions

The main objective of this paper is to minimize the network
power consumption of Cloud-RAN, including the transport
network and radio access network power consumption, with
a QoS constraint at each user. Specifically, we formulate the
design problem as a joint RRH selection and power mini-
mization beamforming problem, where the transport network
power consumption is determined by the set of active RRHs,
while the transmit power consumption of the active RRHs is
minimized through coordinated beamforming. This is a mixed-
integer non-linear programming (MINLP) problem, which is
NP-hard. We will focus on designing low-complexity algo-
rithms for practical implementation. The major contributions
of the paper are summarized as follows:

1) We formulate the network power consumption mini-
mization problem for the Cloud-RAN by enabling both
the transport links and RRHs to support the sleep mode.
In particular, we provide a group sparse beamforming
(GSBF) formulation of the design problem, which as-
sists the problem analysis and algorithm design.

2) We first propose a greedy selection (GS) algorithm,
which selects one RRH to switch off at each step. It
turns out that the RRH selection rule is critical, and
we propose to switch off the RRH that maximizes the
reduction in the network power consumption at each
step. From the simulations, the proposed GS algorithm
often yields optimal or near-optimal solutions, but its
complexity may still be prohibitive for a large-sized
network.

3) To further reduce the complexity, we propose a three-
stage group sparse beamforming (GSBF) framework, by
adopting the weighted mixed ℓ1/ℓp-norm to induce the
group sparsity for the beamformers. In contrast to all
the previous works applying the mixed ℓ1/ℓp-norm to
induce group sparsity, we exploit the additional prior in-
formation (i.e., transport link power consumption, power
amplifier efficiency, and instantaneous effective channel
gains) to design the weights for different beamformer
coefficient groups, resulting in a significant performance
gain. Two GSBF algorithms with different complexities
are proposed: namely, a bi-section GSBF algorithm and
an iterative GSBF algorithm.

4) We shall show that the GS algorithm always provides
near-optimal performance. Hence, it would be a good
option if the number of RRHs is relatively small, such as
in clustered deployment. With a very low computational
complexity, the bi-section GSBF algorithm is an attrac-
tive option for a large-scale Cloud-RAN. The iterative
GSBF algorithm provides a good tradeoff between the
complexity and performance, which makes it a good
candidate for a medium-size network.

B. Related Works

A main design tool applied in this paper is optimization with
the group sparsity induced norm. With the recent theoretical
breakthrough in compressed sensing [11], [12], the sparsity
patterns in different applications in signal processing and
communications have been exploited for more efficient system
design, e.g., for pilot aided sparse channel estimation [13].
The sparsity inducing norms have been widely applied in high-
dimensional statistics, signal processing, and machine learning
in the last decade [14]. The ℓ1-norm regularization has been
successfully applied in compressed sensing [11], [12]. More
recently, mixed ℓ1/ℓp-norms are widely investigated in the
case where some variables forming a group will be selected
or removed simultaneously, where the mixed ℓ1/ℓ2-norm [15]
and mixed ℓ1/ℓ∞-norm [16] are two commonly used ones to
induce group sparsity for their computational and analytical
convenience.

In Cloud-RAN, one RRH will be switched off only when
all the coefficients in its beamformer are set to zeros. In
other words, all the coefficients in the beamformer at one
RRH should be selected or ignored simultaneously, which
requires group sparsity rather than individual sparsity for the
coefficients as commonly used in compressed sensing. In this
paper, we will adopt the mixed ℓ1/ℓp-norm to promote group
sparsity for the beamformers instead of ℓ1-norm, which only
promotes individual sparsity. Recently, there are some works
[17]–[19] adopting the mixed ℓ1/ℓp-norm to induce group-
sparsity in a large-scale cooperative wireless cellular network.
Specifically, Hong et al. [17] adopted the mixed ℓ1/ℓ2-norm
and Zhao et al. [18] used the ℓ2-norm to induce the group
sparsity of the beamformers, which reduce the amount of the
shared user data among different BSs. The squared mixed
ℓ1/ℓ∞-norm was investigated in [19] for antenna selection.

All of the above works simply adopted the un-weighted
mixed ℓ1/ℓp-norms to induce group-sparsity, in which, no
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Fig. 1. The architecture of Cloud-RAN, in which, all the RRHs are connected
to a BBU pool through transport links.

prior information of the unknown signal is assumed other
than the fact that it is sufficiently sparse. By exploiting
the prior information in terms of system parameters, the
weights for different beamformer coefficient groups can be
more rigorously designed and performance can be enhanced.
We demonstrate through simulations that the proposed three-
stage GSBF framework, which is based on the weighted
mixed ℓ1/ℓp-norm minimization, outperforms the conventional
unweighted mixed ℓ1/ℓp-norm minimization based algorithms
substantially.

C. Organization

The remainder of the paper is organized as follows. Sec-
tion II presents the system and power model. In Section III,
the network power consumption minimization problem is
formulated, followed by some analysis. Section IV presents the
GS algorithm, which yields near-optimal solutions. The three-
stage GSBF framework is presented in Section V. Simulation
results will be presented in Section VI. Finally, conclusions
and discussions are presented in Section VII.

Notations: ∥ · ∥ℓp is the ℓp-norm. Boldface lower case and
upper case letters represent vectors and matrices, respectively.
(·)T , (·)†, (·)H and Tr(·) denote the transpose, conjugate,
Hermitian and trace operators, respectively. R(·) denotes the
real part.

II. SYSTEM AND POWER MODEL

A. System Model

We consider a Cloud-RAN with L remote radio heads
(RRHs), where the l-th RRH is equipped with Nl antennas,
and K single-antenna mobile users (MUs), as shown in Fig. 1.
In this network architecture, all the base band units (BBUs)
are moved into a single BBU pool, creating a set of shared
processing resources, and enabling efficient interference man-
agement and mobility management. With the baseband signal

processing functionality migrated to the BBU pool, the RRHs
can be deployed in a large scale with low-cost. The BBU
pool is connected to the RRHs using the common public radio
interface (CPRI) transport technology via a high-bandwidth,
low-latency optical transport network [4]. In order to enable
full cooperation among RRHs, it is assumed that all the user
data are routed to the BBU pool from the core network
through the backhaul links [4], i.e., all users can access all
the RRHs. The digitized baseband complex inphase (I) and
quadrature (Q) samples of the radio signals are transported
over the transport links between the BBUs and RRHs. The key
technical and economic issue of the Cloud-RAN is that this
architecture requires significant transport network resources.
As the focus of this paper is on network power consumption,
we will assume all the transport links have sufficiently high
capacity and negligible latency1.

Due to the high density of RRHs and the joint transmission
among them, the energy used for signal transmission will be
reduced significantly. However, the power consumption of the
transport network becomes enormous and cannot be ignored.
Therefore, it is highly desirable to switch off some transport
links and the corresponding RRHs to reduce the network
power consumption based on the data traffic requirements,
which forms the main theme of this work.

Let L = {1, ..., L} denote the set of RRH indices, A ⊆ L
denote the active RRH set, Z denote the inactive RRH set
with A ∪ Z = L, and S = {1, ...,K} denote the index set
of scheduled users. In a beamforming design framework, the
baseband transmit signals are of the form:

xl =
K∑

k=1

wlksk, ∀l ∈ A, (1)

where sk is a complex scalar denoting the data symbol for user
k and wlk ∈ CNl is the beamforming vector at RRH l for user
k. Without loss of generality, we assume that E[|sk|2] = 1 and
sk’s are independent with each other. The baseband signals
xl’s will be transmitted to the corresponding RRHs, but not
the data information sk’s [4], [21]. The baseband received
signal at user k is given by

yk =
∑

l∈A
hH
klwlksk +

∑

i̸=k

∑

l∈A
hH
klwlisi + zk, k ∈ S, (2)

where hkl ∈ CNl is the channel vector from RRH l to user
k, and zk ∼ CN (0,σ2

k) is the additive Gaussian noise.
We assume that all the users are employing single user

detection (i.e., treating interference as noise), so that they can
use the receivers with a low-complexity and energy-efficient
structure. Moreover, in the low interference region, treating
interference as noise can be optimal [22]. The corresponding
signal-to-interference-plus-noise ratio (SINR) for user k is
hence given by

SINRk =
|
∑

l∈A hH
klwlk|2∑

i̸=k |
∑

l∈A hH
klwli|2 + σ2

k

, ∀k ∈ S. (3)

1The impact of limited-capacity transport links on compression in Cloud-
RAN was recently investigated in [20], [21], and its impact in our setting is
left to future work.
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Each RRH has its own transmit power constraint

K∑

k=1

∥wlk∥2ℓ2 ≤ Pl, ∀l ∈ A. (4)

B. Power Model

The network power model is critical for the investigation
of the energy efficiency of Cloud-RAN, which is described as
follows.

1) RRH Power Consumption Model: We will adopt the fol-
lowing empirical linear model [23] for the power consumption
of an RRH:

P rrh
l =

{
P rrh
a,l +

1
ηl
P out
l , if P out

l > 0,
P rrh
s,l , if P out

l = 0.
(5)

where P rrh
a,l is the active power consumption, which depends

on the number of antennas Nl, P rrh
s,l is the power consumption

in the sleep mode, P out
l is the transmit power, and ηl is the

drain efficiency of the radio frequency (RF) power amplifier.
For the Pico-BS, the typical values are P rrh

a,l = 6.8W , P rrh
s,l =

4.3W , and ηl = 1/4 [23]. Based on this power consumption
model, we conclude that it is essential to put the RRHs into
sleep whenever possible.

2) Transport Network Power Consumption Model: Al-
though there is no superior solution to meet the low-cost, high-
bandwidth, low-latency requirement of transport networks for
the Cloud-RAN, the future passive optical network (PON)
can provide cost-effective connections between the RRHs and
the BBU pool [24]. PON comprises an optical line terminal
(OLT) that connects a set of associated optical network units
(ONUs) through a single fiber. Implementing a sleep mode in
the optical network unit (ONU) has been considered as the
most cost-effective and promising power-saving method [25]
for the PON, but the OLT cannot go into the sleep mode and
its power consumption is fixed[25]. Hence, the total power
consumption of the transport network is given by [25]

P tn = Polt +
L∑

l=1

P tl
l , (6)

where Polt is the OLT power consumption, P tl
l = P tl

a,l and
P tl
l = P tl

s,l denote the power consumed by the ONU l (or
the transport link l) in the active mode and sleep mode, re-
spectively. The typical values are Polt = 20W , P tl

a,l = 3.85W
and P tl

s,l = 0.75W [25]. Thus, we conclude that putting some
transport links into the sleep mode is a promising way to
reduce the power consumption of Cloud-RAN.

3) Network Power Consumption: Based on the above dis-
cussion, we define P a

l ! P rrh
a,l +P tl

a,l (P s
l ! P rrh

s,l +P tl
s,l) as the

active (sleep) power consumption when both the RRH and the
corresponding transport link are switched on (off). Therefore,
the network power consumption of the Cloud-RAN is given

by

p̂(A) =
∑

l∈A

1

ηl
P out
l +

∑

l∈A
P a
l +

∑

l∈Z
P s
l + Polt

=
∑

l∈A

1

ηl
P out
l +

∑

l∈A
(P a

l − P s
l ) +

∑

l∈L
P s
l + Polt

=
∑

l∈A

K∑

k=1

1

ηl
∥wlk∥2ℓ2 +

∑

l∈A
P c
l +

∑

l∈L
P s
l + Polt, (7)

where P out
l =

∑K
k=1 ∥wlk∥2ℓ2 and P c

l = P a
l − P s

l , and
the second equality in (7) is based on the fact

∑
l∈Z P s

l =∑
l∈L P s

l −
∑

l∈A P s
l . Given a Cloud-RAN with the RRH

set L, the term (
∑

l∈L P s
l + Polt) in (7) is a constant.

Therefore, minimizing the total network power consumption
p̂(A) (7) is equivalent to minimizing the following re-defined
network power consumption by omitting the constant term
(
∑

l∈L P s
l + Polt):

p(A,w) =
∑

l∈A

K∑

k=1

1

ηl
∥wlk∥2ℓ2 +

∑

l∈A
P c
l , (8)

where w = [wT
11, . . . ,w

T
1K , . . . ,wT

L1, . . . ,w
T
LK ]T . The ad-

vantage of introducing the term P c
l is that we can rewrite

the network power consumption model (7) in a more compact
form as in (8) and extract the relevant parameters for our
system design. In the following discussion, we refer to P c

l as
the relative transport link power consumption for simplifica-
tion. Therefore, the first part of (8) is the total transmit power
consumption and the second part is the total relative transport
link power consumption.

Note 1: The re-defined network power consumption model
(8) reveals two key design parameters: the transmit power
consumption ( 1

ηl

∑K
k=1 ∥wlk∥2ℓ2) and the relative transport

link power consumption P c
l . With the typical values provided

in Section II-B1 and Section II-B2, the maximum transmit
power consumption, i.e., 1

ηl
P out
l = 4W , is comparable with

the relative transport link power consumption, i.e., P c
l =

P a
l − P s

l = (P rrh
a,l + P tl

a,l) − (P rrh
s,l + P tl

s,l) = 5.6W . This
implies that a joint RRH selection (and the corresponding
transport link selection) and power minimization beamforming
is required to minimize the network power consumption.

III. PROBLEM FORMULATION AND ANALYSIS

Based on the power consumption model, we will formulate
the network power consumption minimization problem in this
section.

A. Power Saving Strategies and Problem Formulation

The network power consumption model (8) indicates the
following two strategies to reduce the network power con-
sumption:

• Reduce the transmission power consumption;
• Reduce the number of active RRHs and the corresponding

transport links.
However, the two strategies conflict with each other. Specif-
ically, in order to reduce the transmission power consump-
tion, more RRHs are required to be active to exploit a

Yuanming SHI
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higher beamforming gain. On the other hand, allowing more
RRHs to be active will increase the power consumption of
transport links. As a result, the network power consumption
minimization problem requires a joint design of RRH (and
the corresponding transport link) selection and coordinated
transmit beamforming.

In this work, we assume perfect channel state information
(CSI) available at the BBU pool. With target SINRs γ =
(γ1, . . . , γK), the network power consumption minimization
problem can be formulated as

P : minimize
{wlk},A

p(A,w)

subject to
|
∑

l∈A hH
klwlk|2∑

i̸=k |
∑

l∈A hH
klwli|2 + σ2

k

≥ γk,

∑K

k=1
∥wlk∥2ℓ2 ≤ Pl, l ∈ A. (9)

Problem P is a joint RRH set selection and transmit beam-
forming problem, which is difficult to solve in general. In the
following, we will analyze and reformulate it.

B. Problem Analysis

We first consider the case with a given active RRH set
A for problem P , resulting a network power minimization
problem P(A). Let wk = [wT

lk]
T ∈ C

∑
l∈A Nl indexed by

l ∈ A, and hk = [hT
lk]

T ∈ C
∑

l∈A Nl indexed by l ∈ A, such
that hH

kwk =
∑

l∈A hH
klwlk. Since the phases of wk will not

change the objective function and constraints of P(A) [26],
the SINR constraints are equivalent to the following second
order cone (SOC) constraints:

C1(A) :

√∑
i̸=k

|hH
kwi|2 + σ2

k ≤
1
√
γk

R(hH
kwk), k ∈ S. (10)

The per-RRH power constraints (4) can be rewritten as

C2(A) :

√∑K

k=1
∥Alkwk∥2ℓ2 ≤

√
Pl, l ∈ A, (11)

where Alk ∈ C
∑

l∈A Nl×
∑

l∈A Nl is a block diagonal matrix
with the identity matrix INl as the l-th main diagonal block
square matrix and zeros elsewhere. Therefore, given the active
RRH set A, the network power minimization problem is given
by

P(A) : minimize
w1,...,wK

∑

l∈A

(
K∑

k=1

1

ηl
∥Alkwk∥2ℓ2 + P c

l

)

subject to C1(A), C2(A), (12)

with the optimal value denoted as p⋆(A). This is a second-
order cone programming (SOCP) problem, and can be solved
efficiently, e.g., via interior point methods [27].

Based on the solution of P(A), the network power mini-
mization problem P can be solved by searching over all the
possible RRH sets, i.e.,

p⋆ = minimize
Q∈{J,...,L}

p⋆(Q), (13)

where J ≥ 1 is the minimum number of RRHs that makes
the network support the QoS requirements, and p⋆(Q) is
determined by

p⋆(Q) = minimize
A⊆L,|A|=Q

p⋆(A), (14)

where p⋆(A) is the optimal value of the problem P(A) in (12)
and |A| is the cardinality of set A. The number of subsets A of
size m is

(
L
m

)
, which can be very large. Thus, in general, the

overall procedure will be exponential in the number of RRHs
L and thus cannot be applied in practice. Therefore, we will
reformulate this problem to develop more efficient algorithms
to solve it.

C. Group Sparse Beamforming Formulation

One way to solve problem P is to reformulate it as a
MINLP problem [28], and the generic algorithms for solv-
ing MINLP can be applied. Unfortunately, due to the high
complexity, such an approach can only provide a performance
benchmark for a simple network setting. In the following, we
will pursue a different approach, and try to exploit the problem
structure.

We will exploit the group sparsity of the optimal aggregative
beamforming vector w, which can be written as a partition:

w = [wT
11, . . . ,w

T
1K︸ ︷︷ ︸

w̃T
1

, . . . ,wT
L1, . . . ,w

T
LK︸ ︷︷ ︸

w̃T
L

]T , (15)

where all the coefficients in a given vector w̃l =
[wT

l1, . . . ,w
T
lK ]T ∈ CKNl form a group. When the RRH l

is switched off, the corresponding coefficients in the vector
w̃l will be set to zeros simultaneously. Overall there may
be multiple RRHs being switched off and the corresponding
beamforming vectors will be set to zeros. That is, w has a
group sparsity structure, with the priori knowledge that the
blocks of variables in w̃l’s should be selected (the correspond-
ing RRH will be switched on) or ignored (the corresponding
RRH will be switched off) simultaneously.

Define N = K
∑L

l=1 Nl and an index set V =
{1, 2, . . . , N} with its power set as 2V = {I, I ⊆
V}. Furthermore, define the sets Gl = {K

∑l−1
i=1 Ni +

1, . . . ,K
∑l

i=1 Ni}, l = 1, . . . , L, as a partition of V , such
that w̃l = [wi] is indexed by i ∈ Gl. Define the support of
beamformer w as

T (w) = {i|wi ̸= 0}, (16)

where w = [wi] is indexed by i ∈ V . Hence, the total relative
transport link power consumption can be written as

F (T (w)) =
L∑

l=1

P c
l I(T (w) ∩ Gl ̸= ∅), (17)

where I(T ∩ Gl ̸= ∅) is an indicator function that takes value
1 if T ∩Gl ̸= ∅ and 0 otherwise. Therefore, the network power
minimization problem P is equivalent to the following group
sparse beamforming (GSBF) formulation

Psparse : minimize
w

T (w) + F (T (w))

subject to C1(L), C2(L), (18)

where T (w) =
∑L

l=1

∑K
k=1

1
ηl
∥wlk∥2ℓ2 represents the total

transmit power consumption. The equivalence means that if
w⋆ is a solution to Psparse, then ({w⋆

lk},A⋆) with A⋆ = {l :
T (w⋆) ∩ Gl ̸= ∅} is a solution to P , and vice versa.

Note that the group sparsity of w is fundamentally different
from the conventional sparsity measured by the ℓ0-norm of
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w, which is often used in compressed sensing [11], [12]. The
reason is that although the ℓ0-norm of w will result in a sparse
solution for w, the zero entries of w will not necessarily align
to a same group w̃l to lead to switch off one RRH. As a result,
the conventional ℓ1-norm relaxation [11], [12] to the ℓ0-norm
will not work for our problem. Therefore, we will adopt the
mixed ℓ1/ℓp-norm [14] to induce group sparsity for w. The
details will be presented in Section V. Note that the “group” in
this work refers to the collection of beamforming coefficients
associated with each RRH, but not a subset of RRHs.

Since obtaining the global optimization solutions to problem
P is computationally difficult, in the following sections, we
will propose two low-complexity algorithms to solve it. We
will first propose a greedy algorithm in Section IV, which
can be viewed as an approximation to the iteration procedure
of (13). In order to further reduce the complexity, based on
the GSBF formulation Psparse, a three-stage GSBF framework
will then be developed based on the group-sparsity inducing
norm minimization in Section V.

IV. GREEDY SELECTION ALGORITHM

In this section, we develop a heuristic algorithm to solve P
based on the backward greedy selection, which was success-
fully applied in spare filter design [29] and has been shown to
often yield optimal or near-optimal solutions. The backward
greedy selection algorithm iteratively selects one RRH to
switch off at each step, while re-optimizing the coordinated
transmit beamforming for the remaining active RRH set. The
key design element for this algorithm is the selection rule of
the RRHs to determine which one should be switched off at
each step.

A. Greedy Selection Procedure

Denote the iteration number as i = 0, 1, 2, . . . . At the ith
iteration, A[i] ⊆ L shall denote the set of active RRHs, and
Z [i] denotes the inactive RRH set with Z [i] ∪ A[i] = L. At
iteration i, an additional RRH r[i] ∈ A[i] will be added to
Z [i], resulting in a new set Z [i+1] = Z [i] ∪ {r[i]} after this
iteration. We initialize by setting Z [0] = ∅. In our algorithm,
once an RRH is added to the set Z , it cannot be removed.
This procedure is a simplification of the exact search method
described in Section III-B. At iteration i, we need to solve the
network power minimization problem P(A[i]) in (12) with
the given active RRH set A[i].

1) RRH Selection Rule: How to select r[i] at the ith
iteration is critical for the performance of the greedy selection
algorithm. Based on our objective, we propose to select r[i] to
maximize the decrease in the network power consumption.
Specifically, at iteration i, we obtain the network power
consumption p⋆(A[i]

m) with A[i]
m ∪ {m} = A[i] by removing

any m ∈ A[i] from the active RRH set A[i]. Thereafter, r[i] is
chosen to yield the smallest network power consumption after
switching off the corresponding RRH, i.e.,

r[i] = arg min
m∈A[i]

p⋆(A[i]
m). (19)

We assume that p⋆(A[i]
m) = +∞ if problem P(A[i]

m) is
infeasible. The impact of switching off one RRH is reducing

the transport network power consumption while increasing
the total transmit power consumption. Thus, the proposed
selection rule actually aims at minimizing the impact of
turning off one RRH at each iteration.

Denote J as the set of candidate RRHs that can be turned
off, the greedy selection algorithm is described as follows:

Algorithm 1: The Greedy Selection Algorithm

Step 0: Initialize Z [0] = ∅, A[0] = {1, . . . , L} and i = 0;
Step 1: Solve the optimization problem P(A[i]) (12);

1) If (12) is feasible, obtain p⋆(A[i]);

• If ∀m ∈ A[i], problem P(A[i]
m) is infeasible,

obtain J = {0, . . . , i}, go to Step 2;
• If ∃m ∈ A[i] makes problem P(A[i]

m) feasible,
find the r[i] according to (19) and update the set
Z [i+1] = Z [i] ∪ {r[i]} and the iteration number
i← i+ 1, go to Step 1;

2) If (12) is infeasible, when i = 0, p⋆ =∞, go to End;
when i > 0, obtain J = {0, 1, . . . , i− 1},
go to Step 2;

Step 2: Obtain the optimal active RRH set A[j⋆] with
j⋆ = argminj∈J p⋆(A[j]) and the transmit beamformers
minimizing P(A[j⋆]);
End

B. Complexity Analysis

At the i-th iteration, we need to solve |A[i]| SCOP problems
P(A[i]

m) by removing the RRH m from the set A[i] to
determine which RRH should be selected. For each of the
SOCP problem P(A), using the interior-point method, the
computational complexity is O((K

∑
l∈A Nl)3.5) [27]. The

total number of iterations is bounded by L. As a result,
the total number of SOCP problems required to be solved
grows quadratically with L. Although this reduces the com-
putational complexity significantly compared with the mixed-
integer conic programming based algorithms in [30] and [31],
the complexity is still prohibitive for large-scale networks.
Therefore, in the next section we will propose a group sparse
beamforming framework to further reduce the complexity.

V. GROUP SPARSE BEAMFORMING FRAMEWORK

In this section, we will develop two low-complexity al-
gorithms based on the GSBF formulation Psparse, namely a
bi-section GSBF algorithm and an iterative GSBF algorithm,
for which, the overall number of SOCP problems to solve
grows logarithmically and linearly with L, respectively. The
main motivation is to induce group sparsity in the beamformer,
which corresponds to switching off RRHs.

In the bi-section GSBF algorithm, we will minimize the
weighted mixed ℓ1/ℓ2-norm to induce group-sparsity for
the beamformer. By exploiting the additional prior informa-
tion (i.e., power amplifier efficiency, relative transport link
power consumption, and channel power gain) available in
our setting, the proposed bi-section GSBF algorithm will be
demonstrated through rigorous analysis and simulations to
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Minimize the weighted (or 
re-weighted) group-sparsity 

inducing norm
Order RRHs Fix the active RRH set and 

obtain transmit beamformers

Stage I Stage II Stage III

Fig. 2. A three-stage GSBF framework.

outperform the conventional unweighted mixed ℓ1/ℓp-norm
minimization substantially[17]–[19]. By minimizing the re-
weighted mixed ℓ1/ℓ2-norm iteratively to enhance the group
sparsity for the beamformer, the proposed iterative GSBF
algorithm will further improve the performance.

The proposed GSBF framework is a three-stage approach,
as shown in Fig. 2. Specifically, in the first stage, we minimize
a weighted (or re-weighted) group-sparsity inducing norm to
induce the group-sparsity in the beamformer. In the second
stage, we propose an ordering rule to determine the priority
for the RRHs that should be switched off, based on not only
the (approximately) sparse beamformer obtained in the first
stage, but also some key system parameters. Following the
ordering rule, a selection procedure is performed to determine
the optimal active RRH set, followed by the coordinated
beamforming. The details will be presented in the following
subsections.

A. Preliminaries on Group-Sparsity Inducing Norms

The mixed ℓ1/ℓp-norm has recently received lots of atten-
tion and is shown to be effective to induce group sparsity [14],
which is defined as follows:

Definition 1: Consider the vector w = [wlk] indexed by
l ∈ L and k ∈ S as define in (15). Its mixed ℓ1/ℓp-norm is
defined as follows:

R(w) =
L∑

l=1

βl∥w̃l∥ℓp , p > 1, (20)

where β1,β2, . . . ,βL are positive weights.
Define the vector r = [∥w̃1∥ℓp , . . . , ∥w̃L∥ℓp ]T , then the

mixed ℓ1/ℓp-norm behaves as the ℓ1-norm on the vector r,
and therefore, inducing group sparsity (i.e., each vector w̃l

is encouraged to be set to zero) for w. Note that, within the
group w̃l, the ℓp-norm does not promote sparsity as p > 1.
By setting p = 1, the mixed ℓ1/ℓp-norm becomes a weighted
ℓ1-norm, which will not promote group sparsity. The mixed
ℓ1/ℓ2-norm and ℓ1/ℓ∞-norm are two commonly used norms
for inducing group sparsity. For instance, the mixed ℓ1/ℓ2-
norm is used with the name group least-absolute selection
and shrinkage operator (or Group-Lasso) in machine learning
[15]. In high dimensional statistics, the mixed ℓ1/ℓ∞-norm is
adopted as a regularizer in the linear regression problems with
sparsity constraints for its computational convenience [16].

B. Bi-Section GSBF Algorithm

In this section, we propose a binary search based GSBF
algorithm, in which, the overall number of SOCP problems
required to be solved grows logarithmically with L, instead
of quadratically for the GS algorithm.

1) Group-Sparsity Inducing Norm Minimization: With the
combinatorial function F (·) in the objective function p(w) =
T (w)+F (T (w)), the problem Psparse becomes computation-
ally intractable. Therefore, we first construct an appropriate
convex relaxation for the objective function p(w) as a sur-
rogate objective function, resulting a weighted mixed ℓ1/ℓ2-
norm minimization problem to induce group sparsity for the
beamformer. Specifically, we first derive its tightest positively
homogeneous lower bound ph(w), which has the property
ph(λw) = λph(w), 0 < λ < ∞. Since ph(w) is still not
convex, we further calculate its Fenchel-Legendre biconjugate
p∗∗h (w) to provide a tightest convex lower bound for ph(w).
We call p∗∗h (w) as the convex positively homogeneous lower
bound (the details can be found in [32]) of function p(w),
which is provided in the following proposition:

Proposition 1: The tightest convex positively homogeneous
lower bound of the objective function in Psparse, denoted as
p(w), is given by

Ω(w) = 2
L∑

l=1

√
P c
l

ηl
∥w̃l∥ℓ2 . (21)

Proof: Please refer to Appendix A.
This proposition indicates that the group-sparsity inducing

norm (i.e., the weighted mixed ℓ1/ℓ2-norm) can provide a con-
vex relaxation for the objective function p(w). Furthermore,
it encapsulates the additional prior information in terms of
system parameters into the weights for the groups. Intuitively,
the weights indicate that the RRHs with a higher transport
link power consumption and lower power amplifier efficiency
will have a higher chance being forced to be switched off.
Using the weighted mixed ℓ1/ℓ2-norm as a surrogate for the
objective function, we minimize the weighted mixed ℓ1/ℓ2-
norm Ω(w) to induce the group-sparsity for the beamformer
w:

PGSBF : minimize
w

Ω(w)

subject to C1(L), C2(L), (22)

which is an SOCP problem and can be solved efficiently.
2) RRH Ordering: After obtaining the (approximately)

sparse beamformer ŵ via solving the weighted group-sparsity
inducing norm minimization problem PGSBF, the next ques-
tion is how to determine the active RRH set. We will first
give priorities to different RRHs, so that an RRH with a
higher priority should be switched off before the one with
a lower priority. Most previous works [17]–[19] applying the
idea of group-sparsity inducing norm minimization directly
to map the sparsity to their application, e.g., in [19], the
transmit antennas corresponding to the smaller coefficients
in the group (measured by the ℓ∞-norm) will have a higher
priority to be switched off. In our setting, one might be
tempted to give a higher priority for an RRH l with a smaller
coefficient rl = (

∑K
k=1 ∥ŵlk∥2ℓ2)

1/2, as it may provide a lower
beamforming gain and should be encouraged to be turned off.
It turns out that such an ordering rule is not a good option
and will bring performance degradation.

To get a better performance, the priority of the RRHs should
be determined by not only the beamforming gain but also other
key system parameters that indicate the impact of the RRHs
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on the network performance. In particular, the channel power
gain κl =

∑K
k=1 ∥hkl∥2ℓ2 should be taken into consideration.

Specifically, by the broadcast channel (BC)-multiple-access
channel (MAC) duality [33], we have the sum capacity of
the Cloud-RAN as:

Csum = log det(IN + snr
K∑

k=1

hkh
H
k ), (23)

where we assume equal power allocation to simplify the
analysis, i.e., snr = P/σ2, ∀k = 1, . . . ,K . One way to upper-
bound Csum is through upper-bounding the capacity by the
total receive SNR, i.e., using the following relation

log det(IN + snr
K∑

k=1

hkh
H
k ) ≤ Tr(snr

K∑

k=1

hkh
H
k )

= snr
L∑

l=1

κl, (24)

which relies on the inequality log(1 + x) ≤ x. Therefore,
from the capacity perspective, the RRH with a higher channel
power gain κl contributes more to the sum capacity, i.e., it
provides a higher power gain and should not be encouraged
to be switched off.

Therefore, different from the previous democratic assump-
tions (e.g., [17]–[19]) on the mapping between the sparsity and
their applications directly, we exploit the prior information
in terms of system parameters to refine the mapping on
the group-sparsity. Specifically, considering the key system
parameters, we propose the following ordering criterion to
determine which RRHs should be switched off, i.e.,

θl :=
√

κlηl
P c
l

(
K∑

k=1

∥ŵlk∥ℓ2

)1/2

, ∀l = 1, . . . , L, (25)

where the RRH with a smaller θl will have a higher priority
to be switched off. This ordering rule indicates that the RRH
with a lower beamforming gain, lower channel power gain,
lower power amplifier efficiency, and higher relative transport
link power consumption should have a higher priority to be
switched off. The proposed ordering rule will be demonstrated
to significantly improve the performance of the GSBF algo-
rithm through simulations.

3) Binary Search Procedure: Based on the ordering rule
(25), we sort the coefficients in the ascending order: θπ1 ≤
θπ2 ≤ · · · ≤ θπL to fix the final active RRH set. We set the first
J smallest coefficients to zero, as a result, the corresponding
RRHs will be turned. Denote J0 as the maximum number
of RRHs that can be turned off, i.e., the problem P(A[i])
is infeasible if i > J0, where A[i] ∪ Z [i] = L with Z [i] =
{π0,π1, . . . ,πi} and π0 = ∅. A binary search procedure can
be adopted to determine J0, which only needs to solve no more
than (1 + ⌈log(1 + L)⌉) SOCP problems. In this algorithm,
we regard A[J0] as the final active RRH set and the solution
of P(A[J0]) is the final transmit beamformer.

Therefore, the bi-section GSBF algorithm is presented as
follows:

Algorithm 2: The Bi-Section GSBF Algorithm
Step 0: Solve the weighted group-sparsity inducing norm
minimization problem PGSBF;

1) If it is infeasible, set p⋆ =∞, go to End;
2) If it is feasible, obtain the solution ŵ, calculate

ordering criterion (25), and sort them in the
ascending order: θπ1 ≤ · · · ≤ θπL , go to Step 1;

Step 1: Initialize Jlow = 0, Jup = L, i = 0;
Step 2: Repeat

1) Set i← ⌊Jlow+Jup

2 ⌋;
2) Solve the optimization problem P(A[i]) (12): if it is

infeasible, set Jlow = i; otherwise, set Jup = i;
Step 3: Until Jup − Jlow = 1, obtain J0 = Jlow and
obtain the optimal active RRH set A⋆ with A⋆ ∪ J = L
and J = {π1, . . . ,πJ0};
Step 4: Solve the problem P(A⋆), obtain the minimum
network power consumption and the corresponding
transmit beamformers;
End

C. Iterative GSBF Algorithm

Under the GSBF framework, the main task of the first two
stages is to order the RRHs according to the criterion (25),
which depends on the sparse solution to PGSBF, i.e., {ŵlk}.
However, when the minimum of rl = (

∑K
k=1 ∥ŵlk∥2ℓ2)

1/2 > 0
is not close to zero, it will introduce large bias in estimating
which RRHs can be switched off. To resolve this issue, we
will apply the idea from the majorization-minimization (MM)
algorithm [34] (please refer to appendix B for details on this
algorithm), to enhance group-sparsity for the beamformer to
better estimate which RRHs can be switched off.

The MM algorithms have been successfully applied in
the re-weighted ℓ1-norm (or mixed ℓ1/ℓ2-norm) minimization
problem to enhance sparsity [18], [19], [35]. However, these
algorithms failed to exploit the additional system prior infor-
mation to improve the performance. Specifically, they used
the un-weighted ℓ1-norm (or mixed ℓ1/ℓp-norm) minimization
as the start point of the iterative algorithms and re-weighted
the ℓ1-norm (or mixed ℓ1/ℓp-norm) only using the estimate
of the coefficients obtained in the last minimization step.
Different from the above conventional re-weighted algorithms,
we exploit the additional system prior information at each step
(including the start step) to improve the estimation on the
group sparsity of the beamformer.

1) Re-weighted Group-Sparsity Inducing Norm Minimiza-
tion: One way to enhance the group-sparsity compared with
using the weighted mixed ℓ1/ℓ2 norm Ω(w) in (21) is to
minimize the following combinatorial function directly:

R(w) = 2
L∑

l=1

√
P c
l

ηl
I(∥w̃l∥ℓ2 > 0), (26)

for which the convex function Ω(w) in (21) can be regarded as
an ℓ1-norm relaxation. Unfortunately, minimizing R(w) will
lead to a non-convex optimization problem. In this subsection,
we will provide a sub-optimal algorithm to solve (25) by
adopting the idea from the MM algorithm to enhance sparsity.
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Based on the following fact in [36]

lim
ϵ→0

log(1 + xϵ−1)

log(1 + ϵ−1)
=

{
0 if x = 0,
1 if x > 0,

(27)

we rewrite the indicator function in (26) as

I(∥w̃l∥ℓ2 > 0) = lim
ϵ→0

log(1 + ∥w̃l∥ℓ2ϵ−1)

log(1 + ϵ−1)
, ∀l ∈ L. (28)

The surrogate objective function R(w) can then be approxi-
mated as

f(w) = λϵ

L∑

l=1

√
P c
l

ηl
log(1 + ∥w̃l∥ℓ2ϵ−1), (29)

by neglecting the limit in (28) and choosing an appropriate
ϵ > 0, where λϵ =

2
log(1+ϵ−1) . Compared with Ω(w) in (21),

the log-sum penalty function f(w) has the potential to be
much more sparsity-encouraging. The detailed explanations
can be found in [35].

Since log(1 + x), x ≥ 0, is a concave function, we can
construct a majorization function for f by the first-order
approximation of log(1 + ∥w̃l∥ℓ2ϵ−1), i.e.,

f(w) ≤ λϵ

L∑

l=1

√
P c
l

ηl

⎛

⎜⎜⎜⎜⎝
∥w̃l∥ℓ2

∥w̃[m]
l ∥ℓ2 + ϵ

+ c(w[m])

︸ ︷︷ ︸
g(w|w[m])

⎞

⎟⎟⎟⎟⎠
, (30)

where w[m] is the minimizer at the (m− 1)-th iteration, and
c(w[m]) = log(1+∥w̃[m]

l ∥ℓ2)−∥w̃
[m]
l ∥ℓ2/(∥w̃

[m]
l ∥ℓ2+ϵ) is a

constant provided that w[m] is already known at the current
m-th iteration.

By omitting the constant part of g(w|w[m]) at the m-th
iteration, which will not affect the solution, we propose a re-
weighted GSBF framework to enhance the group-sparsity:

P [m]
iGSBF :{w̃

[m+1]
l }Ll=1=argmin

L∑

l=1

β[m]
l ∥w̃l∥ℓ2

subject to C1(L), C2(L), (31)

where

β[m]
l =

√
P c
l

ηl

1

(∥w̃[m]
l ∥ℓ2 + ϵ)

, ∀l = 1, . . . , L, (32)

are the weights for the groups at the m-th iteration. At
each step, the mixed ℓ1/ℓ2-norm optimization is re-weighted
using the estimate of the beamformer obtained in the last
minimization step.

As this iterative algorithm cannot guarantee the global
minimum, it is important to choose a suitable starting point
to obtain a good local optimum. As suggested in [18], [19],
[35], this algorithm can be initiated with the solution of the un-
weighted ℓ1-norm minimization, i.e., β[0]

l = 1, ∀l = 1, . . . , L.
In our setting, however, the prior information on the system
parameters can help us generate a high quality stating point for
the iterative GSBF framework. Specifically, with the available
channel state information, we choose the ℓ2-norm of the initial
beamformer at the l-th RRH ∥w̃[0]

l ∥ℓ2 to be proportional to its
corresponding channel power gain κl, arguing that the RRH

with a low channel power gain should be encouraged to be
switched off as justified in Section V-B. Therefore, from (32),
we set the following weights as the initiation weights for
P [0]

iGSBF:

β[0]
l =

√
P c
l

ηlκl
, ∀l = 1, . . . , L. (33)

The weights indicate that the RRHs with a higher relative
transport link consumption, lower power amplifier efficiency
and lower channel power gain should be penalized more
heavily.

As observed in the simulations, this algorithm converges
very fast (typically within 20 iterations). We set the maximum
number of iterations as mmax = L in our simulations.

2) Iterative Search Procedure: After obtaining the (ap-
proximately) sparse beamformers using the above re-weighted
GSBF framework, we still adopt the same ordering criterion
(25) to fix the final active RRH set.

Different from the aggressive strategy in the bi-section
GSBF algorithm, which assumes that the RRH should be
switched off as many as possible and thus results a minimum
transport network power consumption, we adopt a conservative
strategy to determine the final active RRH set by realizing that
the minimum network power consumption may not be attained
when the transport network power consumption is minimized.

Specifically, denote J0 as the maximum number of RRHs
that can be switched off, the corresponding inactive RRH set
is J = {π0,π1, . . . ,πJ0}. The minimum network power con-
sumption should be searched over all the values of P∗(A[i]),
where A[i] = L\{π0,π1, . . . ,πi} and 0 ≤ i ≤ J0. This can be
accomplished using an iterative search procedure that requires
to solve no more than L SOCP problems.

Therefore, the overall iterative GSBF algorithm is presented
as Algorithm 3.

Algorithm 3: The Iterative GSBF Algorithm

Step 0: Initialize the weights β[0]
l , l = 1, . . . , L as in (33)

and the iteration counter as m = 0;
Step 1: Solve the weighted GSBF problem P [m]

iGSBF (31):
if it is infeasible, set p⋆ =∞ and go to End; otherwise,
set m = m+ 1, go to Step 2;
Step 2: Update the weights using (32);
Step 3: If converge or m = mmax, obtain the solution ŵ
and calculate the selection criterion (25), and sort them
in the ascending order: θπ1 ≤ · · · ≤ θπL , go to Step 4;
otherwise, go to Step 1;
Step 4: Initialize Z [0] = ∅, A[0] = {1, . . . , L}, and i = 0;
Step 5: Solve the optimization problem P(A[i]) (12);

1) If (12) is feasible, obtain p∗(A[i]), update the set
Z [i+1] = Z [i] ∪ {πi+1} and i = i+ 1, go to Step 5;

2) If (12) is infeasible, obtain J = {0, 1, . . . , i− 1}, go
to Step 6;

Step 6: Obtain optimal RRH set A[j⋆] and beamformers
minimizing P(A[j⋆]) with j⋆ = argminj∈J p∗(A[j]);
End
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TABLE I
SIMULATION PARAMETERS

Parameter Value

Path-loss at distance dkl (km) 148.1+37.6 log2(dkl) dB

Standard deviation of log-norm shadowing σs 8 dB

Small-scale fading distribution gkl CN (0, I)

Noise power σ2
k [1] (10 MHz bandwidth) -102 dBm

Maximum transmit power of RRH Pl [1] 1 W

Power amplifier efficiency ηl [23] 25%

Transmit antenna power gain 9 dBi

D. Complexity Analysis and Optimality Discussion

We have demonstrated that the maximum number of it-
erations is linear and logarithmical to L for the “Iterative
GSBF Algorithm” and the “Bi-Section GSBF Algorithm,”
respectively. Therefore, the convergence speed of the proposed
GSBF algorithms scales well for large-scale Cloud-RAN (e.g.,
with L = 100). However, the main computational complexity
of the proposed algorithms is related to solving an SOCP
problem at each iteration. In particular, with a large number
of RRHs, the computational complexity of solving an SOCP
problem using the interior-point method is proportional to
O(L3.5). Therefore, in order to solve a large-sized SOCP
problem, other approaches need to be explored (e.g., the
alternating direction method of multipliers (ADMM) method
[37]). This is an on-going research topic, and we will leave it
as our future research direction.

Furthermore, the proposed group sparse beamforming al-
gorithm is a convex relaxation to the original combinatorial
optimization problem using the group-sparsity inducing norm,
i.e., the mixed ℓ1/ℓ2-norm. It is very challenging to quan-
tify the performance gap due to the convex relaxation, for
which normally specific prior information is needed, e.g., in
compressive sensing, the sparse signal is assumed to obey a
power law (see Eq.(1.8) in [12]). However, we do not have
any prior information about the optimal solution. This is the
fundamental difference between our problem and the existing
ones in the field of sparse signal processing. The optimality
analysis of the group sparse beamforming algorithms will be
left to our future work.

VI. SIMULATION RESULTS

In this section, we simulate the performance of the proposed
algorithms. We consider the following channel model

hkl = 10−L(dkl)/20√ϕklsklgkl, (34)

where L(dkl) is the path-loss at distance dkl, , as given in
Table I, skl is the shadowing coefficient, ϕkl is the antenna
gain and gkl is the small scale fading coefficient. We use the
standard cellular network parameters as showed in Table I.
Each point of the simulation results is averaged over 50
randomly generated network realizations. The network power
consumption is given in (7). We set P rrh

s,l = 4.3W and
P tl
s,l = 0.7W , ∀l, and Polt = 20W .
The proposed algorithms are compared to the following

algorithms:
• Coordinated beamforming (CB) algorithm: In this

algorithm, all the RRHs are active and only the total
transmit power consumption is minimized [7].
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Fig. 3. Average network power consumption versus target SINR.

• Mixed-integer nonlinear programming (MINLP) al-
gorithm: This algorithm [30], [31] can obtain the global
optimum. Since the complexity of the algorithm grows
exponentially with the number of RRHs L, we only run
it in a small-size network.

• Conventional sparsity pattern (SP) based algo-
rithm: In this algorithm, the unweighted mixed ℓ1/ℓp-
norm is adopted to induce group sparsity as in [17]
and [19]. The ordering of RRHs is determined only
by the group-sparsity of the beamformer, i.e., θl =
(
∑K

k=1 ∥ŵlk∥ℓ2)1/2, ∀l = 1, . . . , L, instead of (25). The
complexity of the algorithm grows logarithmically with
L.

• Relaxed mixed-integer nonlinear programming
(RMINLP) based algorithm: In this algorithm, a
deflation procedure is performed to switch off RRHs
one-by-one based on the solutions obtained via solving
the relaxed MINLP by relaxing the integers to the unit
intervals [31]. The complexity of the algorithm grows
linearly with L.

A. Network Power Consumption versus Target SINR

Consider a network with L = 10 2-antenna RRHs and
K = 15 single-antenna MUs uniformly and independently
distributed in the square region [−1000 1000]× [−1000 1000]
meters. We set all the relative transport link power consump-
tion to be P c

l = (5 + l)W, l = 1, . . . , L, which is to indicate
the inhomogeneous power consumption on different transport
links and RRHs. Fig. 3 demonstrates the average network
power consumption with different target SINRs.

This figure shows that the proposed GS algorithm can
always achieve global optimum (i.e., the optimal value from
the MINLP algorithm), which confirms the effectiveness of the
proposed RRH selection rule for the greedy search procedure.
With only logarithmic complexity, the proposed bi-section
GSBF algorithm achieves almost the same performance as the
RMINLP algorithm, which has a linear complexity. Moreover,
with the same complexity, the gap between the conventional
SP based algorithm and the proposed bi-section GSBF al-
gorithm is large. Furthermore, the proposed iterative GSBF
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algorithm always outperforms the RMINLP algorithm, while
both of them have the same computational complexity. These
confirm the effectiveness of the proposed GSBF framework to
minimize the network power consumption. Overall, this figure
shows that our proposed schemes have the potential to reduce
the power consumption by 40% in the low QoS regime, and
by 20% in the high QoS regime.

This figure also demonstrates that, when the target SINR
increases2, the performance gap between the CB algorithm and
the other algorithms becomes smaller. In particular, when the
target SINR is relatively high (e.g., 8 dB), all the other algo-
rithms achieve almost the same network power consumption as
the CB algorithm. This implies that almost all the RRHs need
to be switched on when the QoS requirements are extremely
high. In the extreme case with all the RRHs active, all the
algorithms will yield the same network power consumption,
as all of them will perform coordinated beamforming with all
the RRHs active, resulting in the same total transmit power
consumption.

1) Impact of Different Components of Network Power Con-
sumption: Consider the same network setting as in Fig. 3.
The corresponding average total transmit power consumption
p1(A) =

∑
l∈A

1
ηl

∑K
k=1 ∥wlk∥2ℓ2 is demonstrated in Fig. 4,

and the corresponding average total relative transport link
power consumption p2(A) =

∑
l∈A P c

l is shown in Fig. 5.
Table II shows the average numbers of RRHs that are switched
off with different algorithms. From Fig. 4 and Fig. 5, we
see that the CB algorithm, which intends to minimize the
total transmit power consumption, achieves the lowest total
transmit power consumption due to the highest beamforming
gain with all the RRH active, but it has the highest total
relative transport link power consumption. This implies that a
joint RRH selection and power minimization beamforming is
required to minimize the network power consumption.

From Table II, we see that the proposed GS algorithm can
switch off almost the same number of RRHs as the MINLP
algorithm. Furthermore, the proposed GSBF algorithms can
switch off more RRHs than the RMINLP based algorithm
and the conventional SP based algorithm on average. Over-
all, the proposed algorithms achieve a lower total relative
transport link power consumption, as shown in Fig. 5. In
particular, the proposed iterative GSBF algorithm can achieve
a higher beamforming gain to minimize the total transmit
power consumption, as shown in Fig. 4. Therefore, the results
in Fig. 4, Fig. 5, and Table II demonstrate the effectiveness
of our proposed RRH selection rule and RRH ordering rule
for the GS algorithm and the GSBF algorithms, respectively.
Furthermore, the results in Table II verify the group sparsity
assumption in the GSBF algorithms.

2We will show, in Table II and Fig. 4, both the number of active RRHs and
the total transmit power consumption will increase simultaneously to meet the
QoS requirements.
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Fig. 4. Average total transmit power consumption versus target SINR.
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Fig. 5. Average total relative transport link power consumption versus target
SINR.

B. Network Power Consumption versus Transport Links
Power Consumption

Consider a network involving3L = 20 2-antenna RRHs and
K = 15 single-antenna MUs uniformly and independently
distributed in the square region [−2000 2000]× [−2000 2000]
meters. We set all the relative transport link power consump-
tion to be the same, i.e., Pc = P c

l , ∀l = 1, . . . , L and set
the target SINR as 4 dB. Fig. 6 presents average network
power consumption with different relative transport link power
consumption.

This figure shows that both the GS algorithm and the
iterative GSBF algorithm significantly outperform other algo-
rithms, especially in the high transport link power consump-
tion regime. Moreover, the proposed bi-section GSBF algo-
rithm provides better performance than the conventional SP
based algorithm and is close to the RMINLP based algorithm,
while with a lower complexity. This result clearly indicates the
importance of considering the key system parameters when

3In [4, Section 6.1], some field trials were demonstrated to verify the
feasibility of Cloud-RAN, in which, a BBU pool can typically support 18
RRHs.
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TABLE II
THE AVERAGE NUMBER OF INACTIVE RRHS WITH DIFFERENT

ALGORITHMS

Target SINR [dB] 0 2 4 6 8

Proposed GS Algorithm 5.00 4.00 3.02 2.35 1.40

Proposed Bi-Section GSBF Algorithm 4.92 3.98 2.96 2.04 1.13

Proposed Iterative GSBF Algorithm 4.94 4.00 2.94 2.15 1.25

RMINLP Based Algorithm 4.88 3.90 2.79 1.85 1.00

Conventional SP Based Algorithm 4.88 3.90 2.81 1.94 1.10

CB Algorithm 0.00 0.00 0.00 0.00 0.00

MINLP Algorithm 5.00 4.00 3.08 2.42 1.44
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Fig. 6. Average network power consumption versus relative transport links
power consumption.

applying the group sparsity beamforming framework.
Furthermore, this figure shows that all the algorithms

achieve almost the same network power consumption when
the relative transport link power consumption is relatively low
(e.g., 2W ). This implies that almost all the RRHs need to be
switched on to get a high beamforming gain to minimize the
total transmit power consumption when the relative transport
link power consumption can be ignored, compared to the RRH
transmit power consumption.

C. Network Power Consumption versus the Number of Mobile
Users

Consider a network with L = 20 2-antenna RRHs uni-
formly and independently distributed in the square region
[−2000 2000] × [−2000 2000] meters. We set all the rela-
tive transport link power consumption to be the same, i.e.,
P c
l = 20W, ∀l = 1, . . . , L and set the target SINR as 4

dB. Fig. 7 presents the average network power consumption
with different numbers of MUs, which are uniformly and
independently distributed in the same region.

Overall, this figure further confirms the following conclu-
sions:

1) With the O(L2) computational complexity, the proposed
GS algorithm has the best performance among all the
low-complexity algorithms.

2) With the O(L) computational complexity, the proposed
iterative GSBF algorithm outperforms the RMINLP
algorithm, which has the same complexity.
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Fig. 7. Average network power consumption versus the number of mobile
users.

3) With O(log(L)) computational complexity, the pro-
posed bi-section GSBF algorithm has almost the same
performance with the RMINLP algorithm and outper-
forms the conventional SP based algorithm, which has
the same complexity. Therefore, the bi-section GSBF
algorithm is very attractive for practical implementation
in large-scale Cloud-RAN.

VII. CONCLUSIONS AND DISCUSSIONS

In this paper, we proposed a new framework to improve the
energy efficiency of cellular networks with the new architec-
ture of Cloud-RAN. It was shown that the transport network
power consumption can not be ignored when designing green
Cloud-RAN. By jointly selecting the active RRHs and mini-
mizing the transmit power consumption through coordinated
beamforming, the overall network power consumption can
be significantly reduced, especially in the low QoS regime.
The proposed group sparse formulation Psparse serves as a
powerful design tool for developing low complexity GSBF
algorithms. Through rigorous analysis and careful simulations,
the proposed GSBF framework was demonstrated to be very
effective to provide near-optimal solutions. Especially, for
the large-scale Cloud-RAN, the proposed bi-section GSBF
algorithm will be a prior option due to its low complexity,
while the iterative GSBF algorithm can be applied to provide
better performance in a medium-size network. Simulation also
showed that the proposed GS algorithm can always achieve
nearly optimal performance, which makes it very attractive in
the small-size clustered deployment of Cloud-RAN.

This initial investigation demonstrated the advantage of
Cloud-RAN in terms of the network energy efficiency. More
works will be needed to exploit the full benefits and over-
come the main challenges of Cloud-RAN. Future research
directions include theoretical analysis of the optimality of
the proposed group sparse beamforming algorithms, more
efficient beamforming algorithms for very large-scale Cloud-
RAN deployment, joint beamforming and compression when
considering the limited-capacity transport links, joint user
scheduling, and effective CSI acquisition methods.
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APPENDIX A
PROOF OF PROPOSITION 1

We begin by deriving the tightest positively homogeneous
lower bound of p(w), which is given by [32], [38]

ph(w) = inf
λ>0

p(λw)

λ
= inf

λ>0
λT (w) +

1

λ
F (T (w)). (35)

Setting the gradient of the objective function to zero, the
minimum is obtained at λ =

√
F (T (w))/T (w). Thus, the

positively homogeneous lower bound of the objective function
becomes

ph(w) = 2
√
T (w)F (T (w)), (36)

which combines two terms multiplicatively.
Define diagonal matrices U ∈ RN×N , V ∈ RN×N

with N = K
∑L

l=1 Nl, for which the l-th block elements
are ηlIKNl and 1

ηl
IKNl , respectively. Next, we calculate the

convex envelope of ph(w) via computing its conjugate:

p∗h(y) = sup
w∈CN

(
yTUTVw − 2

√
T (w)F (T (w))

)
,

= sup
I⊆V

sup
wI∈C|I|

(
yT
IU

T
IIVIIwI−2

√
T (wI)F (I)

)

=

{
0 if Ω∗(y) ≤ 1
∞, otherwise.

(37)

where yI is the |I|-dimensional vector formed with the entries
of y indexed by I (similarly for w), and UII is the |I|× |I|
matrix formed with the rows and columns of U indexed by I
(similarly for V), and Ω∗(y) defines a dual norm of Ω(w):

Ω∗(y) = sup
I⊆V,I ̸=∅

∥yIUI∥ℓ2
2
√

F (I)
=

1
2

max
l=1,...,L

√
ηl
P c
l

∥yGl∥ℓ2 . (38)

The first equality in (38) can be obtained by the Cauchy-
Schwarz inequality:

yT
IU

T
IIVIIwI ≤ ∥yIUI∥ℓ2 · ∥VIIwI∥ℓ2

= ∥yIUI∥ℓ2 ·
√
T (wI). (39)

The second equality in (38) can be justified by

Ω∗(y) ≥ sup
I⊆V,I ̸=∅

(
1

2
√
F (I)

max
l=1,...,L

∥yI∩GlUI∩Gl∥ℓ2

)

=
1

2
max

l=1,...,L

√
ηl
P c
l

∥yGl∥ℓ2 , (40)

and

Ω∗(y) ≤ sup
I⊆V,I ̸=∅

(
∥yIUI∥ℓ2

2minl=1,...,L

√
F (I ∩ Gl)

)

=
1

2
max

l=1,...,L

√
ηl
P c
l

∥yGl∥ℓ2 . (41)

Therefore, the tightest convex positively homogeneous lower

bound of the function p(w) is

Ω(w) = sup
Ω∗(y)≤1

wTy

≤ sup
Ω∗(y)≤1

L∑

l=1

∥wGl∥ℓ2∥yGl∥ℓ2

≤ sup
Ω∗(y)≤1

(
L∑

l=1

√
P c
l

ηl
∥wGl∥ℓ2

)(
max

l=1,...,L

√
ηl
P c
l

∥yGl∥ℓ2
)

=2
L∑

l=1

√
P c
l

ηl
∥wGl∥ℓ2 . (42)

This upper bound actually holds with equality. Specifically,

we let ȳGl = 2
√

P c
l

ηl

w†
Gl

∥w†
Gl

∥ℓ2

, such that Ω∗(ȳ) = 1. Therefore,

Ω(w) = sup
Ω∗(y)≤1

wTy

≥
L∑

l=1

wT
Gl
ȳGl = 2

L∑

l=1

√
P c
l

ηl
∥wGl∥ℓ2 . (43)

APPENDIX B
PRELIMINARIES ON MAJORIZATION-MINIMIZATION

ALGORITHMS

The majorization-minimization (MM) algorithm, being a
powerful tool to find a local optimum by minimizing a surro-
gate function that majorizes the objective function iteratively,
has been widely used in statistics, machine learning, etc., [34].
We introduce the basic idea of MM algorithms, which allows
us to derive our main results.

Consider the problem of minimizing f(x) over F . The
idea of MM algorithms is as follows. First, we construct a
majorization function g(x|x[m]) for f(x) such that

g(x|x[m]) ≥ f(x), ∀ x ∈ F , (44)

and the equality is attained when x = x[m]. In an MM algo-
rithm, we will minimize the majorization function g(x|x[m])
instead of the original function f(x). Let x[m+1] denote the
minimizer of the function g(x|x[m]) over F at the m-th
iteration, i.e.,

x[m+1] = argmin
x∈F

g(x|x[m]), (45)

then we can see that this iterative procedure will decrease the
value of f(x) monotonically after each iteration, i.e.,

f(x[m+1]) ≤ g(x[m+1]|x[m]) ≤ g(x[m]|x[m]) = f(x[m]), (46)

which is a direct result from the definitions (44) and (45).
The decreasing property makes an MM algorithm numerically
stable. More details can be found in a tutorial on MM
algorithms [34] and references therein.
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