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Abstract—Convex optimization is a powerful tool for resource
allocation and signal processing in wireless networks. As the
network density is expected to drastically increase in order to
accommodate the exponentially growing mobile data traffic,
performance optimization problems are entering a new era
characterized by a high dimension and/or a large number of
constraints, which poses significant design and computational
challenges. In this paper, we present a novel two-stage approach to
solve large-scale convex optimization problems for dense wireless
cooperative networks, which can effectively detect infeasibility
and enjoy modeling flexibility. In the proposed approach, the
original large-scale convex problem is transformed into a standard
cone programming form in the first stage via matrix stuffing,
which only needs to copy the problem parameters such as channel
state information (CSI) and quality-of-service (QoS) requirements
to the prestored structure of the standard form. The capability of
yielding infeasibility certificates and enabling parallel computing
is achieved by solving the homogeneous self-dual embedding of
the primal-dual pair of the standard form. In the solving stage,
the operator splitting method, namely, the alternating direction
method of multipliers (ADMM), is adopted to solve the large-scale
homogeneous self-dual embedding. Compared with second-order
methods, ADMM can solve large-scale problems in parallel with
modest accuracy within a reasonable amount of time. Simulation
results will demonstrate the speedup, scalability, and reliability
of the proposed framework compared with the state-of-the-art
modeling frameworks and solvers.
Index Terms—Alternating direction method of multipliers

(ADMM), dense wireless networking, homogeneous self-dual
embedding, large-scale optimization, matrix stuffing, operator
splitting method.

I. INTRODUCTION

T HE proliferation of smart mobile devices, coupled with
new types of wireless applications, has led to an expo-

nential growth of wireless and mobile data traffic. In order to
provide high-volume and diversified data services, ultra-dense
wireless cooperative network architectures have been proposed
for next generation wireless networks [1], e.g., Cloud-RAN

Manuscript received December 02, 2014; revised March 27, 2015; accepted
May 28, 2015. Date of publication June 09, 2015; date of current version August
07, 2015. The associate editor coordinating the review of this manuscript and
approving it for publication was Prof. Walaa Hamouda. This work is supported
by the Hong Kong Research Grant Council under Grant No. 16200214.
Y. Shi, J. Zhang, and K. B. Letaief are with the Department of Electronic

and Computer Engineering, Hong Kong University of Science and Technology,
Hong Kong (e-mail: yshiac@ust.hk; eejzhang@ust.hk; eekhaled@ust.hk).
B. O’Donoghue is with the Electrical Engineering Department, Stanford Uni-

versity, Stanford, CA 94305 USA (e-mail: bodono@stanford.edu).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TSP.2015.2443731

[2], [3], and distributed antenna systems [4]. To enable efficient
interference management and resource allocation, large-scale
multi-entity collaboration will play pivotal roles in dense wire-
less networks. For instance, in Cloud-RAN, all the baseband
signal processing is shifted to a single cloud data center with
very powerful computational capability. Thus the centralized
signal processing can be performed to support large-scale
cooperative transmission/reception among the radio access
units (RAUs).
Convex optimization serves as an indispensable tool for

resource allocation and signal processing in wireless communi-
cation systems [5]–[7]. For instance, coordinated beamforming
[8] often yields a direct convex optimization formulation,
i.e., second-order cone programming (SOCP) [9]. The net-
work max-min fairness rate optimization [10] can be solved
through the bi-section method [9] in polynomial time, wherein
a sequence of convex subproblems are solved. Furthermore,
convex relaxation provides a principled way of developing
polynomial-time algorithms for non-convex or NP-hard prob-
lems, e.g., group-sparsity penalty relaxation for the NP-hard
mixed integer nonlinear programming problems [3], semidef-
inite relaxation [6] for NP-hard robust beamforming [11],
[12] and multicast beamforming [13], and sequential convex
approximation to the highly intractable stochastic coordinated
beamforming [14].
Nevertheless, in dense wireless cooperative networks [1],

which may possibly need to simultaneously handle hundreds
of RAUs, resource allocation and signal processing problems
will be dramatically scaled up. The underlying optimization
problems will have high dimensions and/or large numbers
of constraints (e.g., per-RAU transmit power constraints and
per-MU (mobile user) QoS constraints). For instance, for a
Cloud-RAN with 100 single-antenna RAUs and 100 single-an-
tenna MUs, the dimension of the aggregative coordinated
beamforming vector (i.e., the optimization variables) will
be . Most advanced off-the-shelf solvers (e.g., SeDuMi
[15], SDPT3 [16] and MOSEK [17]) are based on the inte-
rior-point method. However, the computational burden of such
second-order method makes it inapplicable for large-scale
problems. For instance, solving convex quadratic programs
has cubic complexity [18]. Furthermore, to use these solvers,
the original problems need to be transformed to the standard
forms supported by the solvers. Although the parser/solver
modeling frameworks like CVX [19] and YALMIP [20] can
automatically transform the original problem instances into
standard forms, it may require substantial time to perform
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Fig. 1. The proposed two-stage approach for large-scale convex optimization.
The optimal solution or the certificate of infeasibility can be extracted from
by the ADMM solver.

such transformation [21], especially for problems with a large
number of constraints [22].
One may also develop custom algorithms to enable efficient

computation by exploiting the structures of specific problems.
For instance, the uplink-downlink duality [8] is exploited to ex-
tract the structures of the optimal beamformers [23] and en-
able efficient algorithms. However, such an approach still has
the cubic complexity to perform matrix inversion at each itera-
tion [24]. First-order methods, e.g., the ADMM algorithm [25],
have recently attracted attention for their distributed and par-
allelizable implementation, as well as the capability of scaling
to large problem sizes. However, most existing ADMM based
algorithms cannot provide the certificates of infeasibility [11],
[24], [26]. Furthermore, some of them may still fail to scale
to large problem sizes, due to the SOCP subproblems [26] or
semidefinite programming (SDP) subproblems [11] needed to
be solved at each iteration.
Without efficient and scalable algorithms, previous studies of

wireless cooperative networks either only demonstrate perfor-
mance in small-size networks, typically with less than 10 RAUs,
or resort to sub-optimal algorithms, e.g., zero-forcing based ap-
proaches [27], [28]. Meanwhile, from the above discussion, we
see that the large-scale optimization algorithms to be developed
should possess the following two features:
• To scale well to large problem sizes with parallel com-
puting capability;

• To effectively detect problem infeasibility, i.e., provide
certificates of infeasibility.

To address these two challenges in a unified way, in this paper,
we shall propose a two-stage approach as shown in Fig. 1. The
proposed framework is capable to solve large-scale convex op-
timization problems in parallel, as well as providing certificates
of infeasibility. Specifically, the original problemP will be first
transformed into a standard cone programming formP [18]
based on the Smith form reformulation [29], via introducing a
new variable for each subexpression in the disciplined convex
programming form [30] of the original problem. This will even-
tually transform the coupled constraints in the original problem
into the constraint only consisting of two convex sets: a sub-
space and a convex set formed by a Cartesian product of a fi-
nite number of standard convex cones. Such a structure helps
to develop efficient parallelizable algorithms and enable the in-
feasibility detection capability simultaneously via solving the
homogeneous self-dual embedding [31] of the primal-dual pair
of the standard form by the ADMM algorithm.
As the mapping between the standard cone program and the

original problem only depends on the network size (i.e., the
numbers of RAUs, MUs and antennas at each RAU), we can
pre-generate and store the structures of the standard forms with

different candidate network sizes. Then for each problem in-
stance, that is, given the channel coefficients, QoS requirements,
and maximum RAU transmit powers, we only need to copy the
original problem parameters to the standard cone programming
data. Thus, the transformation procedure can be very efficient
and can avoid repeatedly parsing and re-generating problems
[19], [20]. This technique is called matrix stuffing [21], [22],
which is essential for the proposed framework to scale well
to large problem sizes. It may also help rapid prototyping and
testing for practical equipment development.

A. Contributions

The major contributions of the paper are summarized as
follows:
1) We formulate main performance optimization problems in

dense wireless cooperative networks into a general frame-
work. It is shown that all of them can essentially be solved
through solving one or a sequence of large-scale convex
optimization or convex feasibility problems.

2) To enable both the infeasibility detection capability and
parallel computing capability, we propose to transform the
original convex problem to an equivalent standard cone
program. The transformation procedure scales very well
to large problem sizes with the matrix stuffing technique.
Simulation results will demonstrate the effectiveness of the
proposed fast transformation approach over the state-of-art
parser/solver modeling frameworks.

3) The operator splitting method is then adopted to solve
the large-scale homogeneous self-dual embedding of the
primal-dual pair of the transformed standard cone program
in parallel. This first-order optimization algorithm makes
the second stage scalable. Simulation results will show
that it can speedup several orders of magnitude over the
state-of-art interior-point solvers.

4) The proposed framework enables evaluating various co-
operation strategies in dense wireless networks, and helps
reveal new insights numerically. For instance, simulation
results demonstrate a significant performance gain of
optimal beamforming over sub-optimal schemes, which
shows the importance of developing large-scale optimal
beamforming algorithms.

This work will serve the purpose of providing practical and
theoretical guidelines on designing algorithms for generic large-
scale optimization problems in dense wireless networks.

B. Organization

The remainder of the paper is organized as follows.
Section II presents the system model and problem formulations.
In Section III, a systematic cone programming form transfor-
mation procedure is developed. The operator splitting method
is presented in Section IV. The practical implementation issues
are discussed in Section V. Numerical results will be demon-
strated in Section VI. Finally, conclusions and discussions are
presented in Section VII. To keep the main text clean and free
of technical details, we divert most of the proofs, derivations
to the Appendix.
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II. LARGE-SCALE OPTIMIZATION IN DENSE WIRELESS
COOPERATIVE NETWORKS

In this section, we will first present two representative op-
timization problems in wireless cooperative networks, i.e., the
network power minimization problem and the network utility
maximization problem. We will then provide a unified formu-
lation for large-scale optimization problems in dense wireless
cooperative networks.

A. Signal Model
Consider a dense fully cooperative network1 with RAUs

and single-antenna MUs, where the -th RAU is equipped
with antennas. The centralized signal processing is per-
formed at a central processor, e.g., the baseband unit pool
in Cloud-RAN [2], [3] as shown in Fig. 2. The propagation
channel from the -th RAU to the -th MU is denoted as

. In this paper, we focus on the downlink trans-
mission for illustrative purpose. But our proposed approach can
also be applied in the uplink transmission, as we only need to
exploit the convexity of the resulting performance optimization
problems. The received signal at MU is given by

(1)

where is the encoded information symbol for MU with
is the transmit beamforming vector

from the -th RAU to the -th MU, and is
the additive Gaussian noise at MU . We assume that ’s and
’s are mutually independent and all the users apply single

user detection. Thus the signal-to-interference-plus-noise ratio
(SINR) of MU is given by

(2)

where with
and .

We assume that each RAU has its own power constraint,

(3)

where is the maximum transmit power of the -th RAU.
In this paper, we assume that the full and perfect CSI is avail-
able at the central processor and all RAUs only provide uni-
cast/broadcast services.

B. Network Power Minimization
Network power consumption is an important performance

metric for the energy efficiency design in wireless cooperative
networks. Coordinated beamforming is an efficient way to de-
sign energy-efficient systems [8], in which, beamforming vec-
tors ’s are designed to minimize the total transmit power
among RAUs while satisfying the QoS requirements for all the

1The full cooperation among all the RAUs with global CSI and full user data
sharing is used as an illustrative example. The proposed framework can be ex-
tended to more general cooperation scenarios, e.g., with partial user data sharing
among RAUs as presented in ([7], Section 1.3.1).

Fig. 2. The architecture of Cloud-RAN, in which, all the RAUs are connected
to a BBU pool through high-capacity and low-latency optical fronthaul links.
To enable full cooperation among RAUs, it is assumed that all the user data and
CSI are available at the BBU pool.

MUs. Specifically, given the target SINRs for
all the MUs with , we will solve the following total
transmit power minimization problem:

P (4)

where is the intersection of the sets formed by transmit power
constraints and QoS constraints, i.e.,

(5)

where ’s are feasible sets of that satisfy the per-RAU
transmit power constraints, i.e.,

(6)

and ’s are the feasible sets of that satisfy the per-MU QoS
constraints, i.e.,

(7)

As all the sets ’s and ’s can be reformulated into second-
order cones as shown in [3], problem P can be reformu-
lated as an SOCP problem.
However, in dense wireless cooperative networks, the mo-

bile hauling network consumption can not be ignored. In [3], a
two-stage group sparse beamforming (GSBF) framework is pro-
posed to minimize the network power consumption for Cloud-
RAN, including the power consumption of all optical fronthaul
links and the transmit power consumption of all RAUs. Spe-
cially, in the first stage, the group-sparsity structure of the ag-
gregated beamformer is induced by minimizing the weighted
mixed -norm of , i.e.,

P (8)
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where is the aggregated beam-
forming vector at RAU , and is the corresponding
weight for the beamformer coefficient group . Based on the
(approximated) group sparse beamformer , which is the op-
timal solution to P , in the second stage, an RAU selection
procedure is performed to switch off some RAUs so as to min-
imize the network power consumption. In this procedure, we
need to check if the remaining RAUs can support the QoS re-
quirements for all the MUs, i.e., check the feasibility of problem
P given the active RAUs. Please refer to [3] for more de-
tails on the group sparse beamforming algorithm.

C. Network Utility Maximization
Network utility maximization is a general approach to op-

timize network performance. We consider maximizing an ar-
bitrary network utility function that is
strictly increasing in the SINR of each MU [7], i.e.,

P (9)

where is the intersection of the sets of the
per-RAU transmit power constraints (6). It is generally very
difficult to solve, though there are tremendous research efforts
on this problem [7]. In particular, Liu et al. in [32] proved
that P is NP-hard for many common utility functions, e.g.,
weighted sum-rate. Please refer to ([7], Table 2.1) for details on
classification of the convexity of utility optimization problems.
Assume that we have the prior knowledge of SINR values

that can be achieved by the optimal solution to
problem P . Then the optimal solution to problem P
with target SINRs as is an optimal solution
to problem P as well [23]. The difference between problem
P and problem P is that the SINRs in P are pre-de-
fined, while the optimal SINRs in P need to be searched. For
the max-min fairness maximization problem, optimal SINRs
can be searched by the bi-section method [22], which can be
accomplished in polynomial time. For the general increasing
utility maximization problem P , the corresponding optimal
SINRs can be searched as follows

(10)

where is the achievable performance region

(11)

Problem (10) is a monotonic optimization problem [33] and thus
can be solved by the polyblock outer approximation algorithm
[33] or the branch-reduce-and-bound algorithm [7]. The gen-
eral idea of both algorithms is iteratively improving the lower-
bound and upper-bound of the objective function of
problem (10) such that

(12)

for a given accuracy in finite iterations. In particular, at the
-iteration, we need to check the convex feasibility problem

of P given the target SINRs .
However, the number of iterations scales exponentially with the
number of MUs [7]. Please refer to the tutorial ([7], Section

2.3) for more details. Furthermore, the network achievable rate
region [34] can also be characterized by the rate profile method
[35] via solving a sequence of such convex feasibility problems
P .

D. A Unified Framework of Large-Scale Network Optimization
In dense wireless cooperative networks, the central processor

can support hundreds of RAUs for simultaneously transmis-
sion/reception [2]. Therefore, all the above optimization prob-
lems are shifted into a new domain with a high problem dimen-
sion and a large number of constraints. As presented previously,
to solve the performance optimization problems, we essentially
need to solve a sequence of the following convex optimiza-
tion problem with different problem instances (e.g., different
channel realizations, network sizes and QoS targets)

P (13)

where is convex in as shown in P and P .
Solving problem P means that the corresponding algorithm
should return the optimal solution or the certificate of infeasi-
bility.
For all the problems discussed above, problem P can be re-

formulated as an SOCP problem, and thus it can be solved in
polynomial time via the interior-point method, which is imple-
mented in most advanced off-the-shelf solvers, e.g., public soft-
ware packages like SeDuMi [15] and SDPT3 [16] and commer-
cial software packages like MOSEK [17]. However, the compu-
tational cost of such second-order methods will be prohibitive
for large-scale problems. On the other hand, most custom algo-
rithms, e.g., the uplink-downlink approach [8] and the ADMM
based algorithms [11], [24], [26], however, fail to either scale
well to large problem sizes or detect the infeasibility effectively.
To overcome the limitations of the scalability of the state-

of-art solvers and the capability of infeasibility detection of
the custom algorithms, in this paper, we propose to solve the
homogeneous self-dual embedding [31] (which aims at pro-
viding necessary certificates) of problemP via a first-order op-
timization method [25] (i.e., the operator splitting method). This
will be presented in Section IV. To arrive at the homogeneous
self-dual embedding and enable parallel computing, the orig-
inal problem will be first transformed into a standard cone pro-
gramming form as will be presented in Section III. This forms
the main idea of the two-stage based large-scale optimization
framework as shown in Fig. 1.

III. MATRIX STUFFING FOR FAST STANDARD CONE
PROGRAMMING TRANSFORMATION

Although the parser/solver modeling language framework,
like CVX [19] and YALMIP [20], can automatically transform
the original problem instance into a standard form, it requires
substantial time to accomplish this procedure [21], [22]. In par-
ticular, for each problem instance, the parser/solver modeling
frameworks need to repeatedly parse and canonicalize it. To
avoid such modeling overhead of reading problem data and re-
peatedly parsing and canonicalizing, we propose to use the ma-
trix stuffing technique [21], [22] to perform fast transformation
by exploiting the problem structures. Specifically, we will first
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generate the mapping from the original problem to the cone
program, and then the structure of the standard form will be
stored. This can be accomplished offline. Therefore, for each
problem instance, we only need to stuff its parameters to data of
the corresponding pre-stored structure of the standard cone pro-
gram. Similar ideas were presented in the emerging parse/gener-
ator modeling frameworks like CVXGEN [36] and QCML [21],
which aim at embedded applications for some specific problem
families. In this paper, we will demonstrate in Section VI that
matrix stuffing is essential to scale to large problem sizes for
fast transformation at the first stage of the proposed framework.

A. Conic Formulation of Convex Programs

In this section, we describe a systematic way to transform
the original problem P to the standard cone program. To
enable parallel computing, a common way is to replicate some
variables through either exploiting problem structures [11],
[24] or using the consensus formulation [25], [26]. However,
directly working on these reformulations is difficult to pro-
vide computable mathematical certificates of infeasibility.
Therefore, heuristic criteria are often adopted to detect the
infeasibility, e.g., the underlying problem instance is reported
to be infeasible when the algorithm exceeds the pre-defined
maximum iterations without convergence [24]. To unify the
requirements of parallel and scalable computing and to provide
computable mathematical certificates of infeasibility, in this
paper, we propose to transform the original problem P to the
following equivalent cone program P :

P

(14)
(15)

where and are the optimization variables,
with as the standard second-order

cone of dimension

(16)

and is defined as the cone of nonnegative reals, i.e., .
Here, each has dimension such that

. The equivalence means that the
optimal solution or the certificate of infeasibility of the original
problem P can be extracted from the solution to the equivalent
cone program P . To reduce the storage and memory over-
head, we store the matrix , vectors and in the sparse form
[37] by only storing the non-zero entries.
The general idea of such transformation is to rewrite the

original problem P into a Smith form by introducing a new
variable for each subexpression in disciplined convex program-
ming form [30] of problem P . The details are presented in
the Appendix 1. Working with this transformed standard cone
program P has the following two advantages:
• The homogeneous self-dual embedding of the primal-dual
pair of the standard cone program can be induced, thereby
providing certificates of infeasibility. This will be pre-
sented in Section IV-A.

• The feasible set (5) formed by the intersection of a finite
number of constraint sets ’s and ’s in the original
problem P can be transformed into two sets in P : a
subspace (14) and a convex cone , which is formed by
the Cartesian product of second-order cones. This salient
feature will be exploited to enable parallel and scalable
computing, as will be presented in Section IV-B.

B. Matrix Stuffing for Fast Transformation
Inspired by the work [21] on fast optimization code deploy-

ment for embedding second-order cone program, we propose to
use thematrix stuffing technique [21], [22] to transform the orig-
inal problem into the standard cone program quickly. Specifi-
cally, for any given network size, we first generate and store the
structure that maps the original problemP to the standard form
P . Thus, the pre-stored standard form structure includes the
problem dimensions (i.e., and ), the description of (i.e.,
the array of the cone sizes ), and the sym-
bolic problem parameters and . This procedure can be
done offline.
Based on the pre-stored structure, for a given problem in-

stance P , we only need to copy its parameters (i.e., the channel
coefficients ’s, maximum transmit powers ’s, SINR targets
’s) to the corresponding data in the standard formP (i.e.,
and ). Details of the exact description of copying data for

transformation are presented in the Appendix. As the procedure
for transformation only needs to copy memory, it thus is suit-
able for fast transformation and can avoid repeated parsing and
generating as in parser/solver modeling frameworks like CVX.
Remark 1: As shown in the Appendix, the dimension of the

transformed standard cone program P becomes
, which is much

larger than the dimension of the original problem, i.e.,
in the equivalent real-field. But as discussed above, there are
unique advantages of working with this standard form, which
compensate for the increase in the size, as will be explicitly
presented in later sections.

IV. THE OPERATOR SPLITTING METHOD FOR LARGE-SCALE
HOMOGENEOUS SELF-DUAL EMBEDDING

Although the standard cone program P itself is suitable
for parallel computing via the operator splitting method [38], di-
rectly working on this problem may fail to provide certificates
of infeasibility. To address this limitation, based on the recent
work by O’Donoghue et al. [39], we propose to solve the ho-
mogeneous self-dual embedding [31] of the primal-dual pair of
the cone program P . The resultant homogeneous self-dual
embedding is further solved via the operator splitting method,
a.k.a. the ADMM algorithm [25].

A. Homogeneous Self-Dual Embedding of Cone Programming
The basic idea of the homogeneous self-dual embedding is

to embed the primal and dual problems of the cone program
P into a single feasibility problem (i.e., finding a feasible
point of the intersection of a subspace and a convex set) such
that either the optimal solution or the certificate of infeasibility
of the original cone program P can be extracted from the
solution of the embedded problem.
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The dual problem of P is given by [39]

D

(17)

where and are the dual variables, is the
dual cone of the convex cone . Note that , i.e.,
is self dual. Define the optimal values of the primal program
P and dual program D are and , respectively.
Let and indicate primal infeasibility
and unboundedness, respectively. Similarly, let and

indicate the dual infeasibility and unboundedness, re-
spectively. We assume strong duality for the convex cone pro-
gram P , i.e., , including cases when they are in-
finite. This is a standard assumption for practically designing
solvers for conic programs, e.g., it is assumed in [15]–[17], [31],
[39]. Besides, we do not make any regularity assumption on the
feasibility and boundedness assumptions on the primal and dual
problems.
1) Certificates of Infeasibility: Given the cone program

P , a main task is to detect feasibility. In ([40], Theorem 1),
a {sufficient} condition for the existence of strict feasible solu-
tion was provided for the transmit power minimization problem
without power constraints. However, for the general problem
P with per-MU QoS constraints and per-RAU transmit power
constraints, it is difficult to obtain such a feasibility condition
analytically. Therefore, most existing works either assume that
the underlying problem is feasible [8] or provide heuristic ways
to handle infeasibility [24].
Nevertheless, the only way to detect infeasibility effectively

is to provide a certificate or proof of infeasibility as presented
in the following proposition.
Proposition 1 (Certificates of Infeasibility): The following

system

(18)

is infeasible if and only if the following system is feasible

(19)

Therefore, any dual variable satisfying the system (19)
provides a certificate or proof that the primal program P
(equivalently the original problem P ) is infeasible.
Similarly, any primal variable satisfying the following

system

(20)

is a certificate of the dual program D infeasibility.
Proof: This result directly follows the theorem of strong

alternatives ([9], Section 5.8.2).
2) Optimality Conditions: If the transformed standard cone

program P is feasible, then are optimal
if and only if they satisfy the following Karush-Kuhn-Tucker
(KKT) conditions

(21)

(22)
(23)
(24)

In particular, the complementary slackness condition (23) can
be rewritten as

(25)

which explicitly forces the duality gap to be zero.
3) Homogeneous Self-Dual Embedding: We can first detect

feasibility by Proposition 1, and then solve the KKT system if
the problem is feasible and bounded. However, the disadvantage
of such a two-phase method is that two related problems (i.e.,
checking feasibility and solving KKT conditions) need to be
solved sequentially [31]. To avoid such inefficiency, we propose
to solve the following homogeneous self-dual embedding [31]:

(26)
(27)
(28)
(29)

to embed all the information on the infeasibility and optimality
into a single system by introducing two new nonnegative vari-
ables and , which encode different outcomes. The homo-
geneous self-dual embedding thus can be rewritten as the fol-
lowing compact form

F

(30)

where

(31)

and . This system has
a trivial solution with all variables as zeros.
The homogeneous self-dual embedding problem F is

thus a feasibility problem finding a nonzero solution in the inter-
section of a subspace and a convex cone. Let be
a non-zero solution of the homogeneous self-dual embedding.
We then have the following remarkable trichotomy derived in
[31]:
• Case 1: , then

(32)

are the primal and dual solutions to the cone program
P .

• Case 2: ; this implies , then
1) If , then is a certificate of the

primal infeasibility as

(33)
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2) If , then is a certificate of the
dual infeasibility as

(34)

• Case 3: ; no conclusion can be made about the
cone problem P .

Therefore, from the solution to the homogeneous self-dual
embedding, we can extract either the optimal solution (based on
(60)) or the certificate of infeasibility for the original problem.
Furthermore, as the set (29) is a Cartesian product of a finite
number of sets, this will enable parallelizable algorithm design.
With the distinct advantages of the homogeneous self-dual em-
bedding, in the sequel, we focus on developing efficient algo-
rithms to solve the large-scale feasibility problemF via the
operator splitting method.

B. The Operator Splitting Method

Conventionally, the convex homogeneous self-dual embed-
ding F can be solved via the interior-point method, e.g.,
[15]–[17], [31]. However, such second-order method has cubic
computational complexity for the second-order cone programs
[18], and thus the computational cost will be prohibitive for
large-scale problems. Instead, O’Donoghue et al. [39] develop
a first-order optimization algorithm based on the operator split-
ting method, i.e., the ADMM algorithm [25], to solve the large-
scale homogeneous self-dual embedding. The key observation
is that the convex cone constraint in F is the Cartesian
product of standard convex cones (i.e., second-order cones, non-
negative reals and free variables), which enables parallelizable
computing. Furthermore, we will show that the computation of
each iteration in the operator splitting method is very cheap and
efficient.
Specifically, the homogeneous self-dual embedding F

can be rewritten as

(35)

where is the indicator function of the set , i.e., is
zero for and it is otherwise. By replicating variables
and , problem (35) can be transformed into the following

consensus form ([25], Section 7.1)

P

(36)

which is readily to be solved by the operator splitting method.
Applying the ADMM algorithm ([25], Section 3.1) to

problem P and eliminating the dual variables by ex-
ploiting the self-dual property of the problem F (Please
refer to ([39], Section 3) on how to simplify the ADMM
algorithm), the final algorithm is shown as follows:

(37)

where denotes the Euclidean projection of onto the set
. This algorithm has the convergence rate [41] with

as the iteration counter (i.e., the accuracy can be achieved
in iterations) and will not converge to zero if a nonzero
solution exists ([39], Section 3.4). Empirically, this algorithm
can converge to modest accuracy within a reasonable amount
of time. As the last step is computationally trivial, in the sequel,
we will focus on how to solve the first two steps efficiently.
1) Subspace Projection via Factorization Caching: The first

step in the algorithm is a subspace projection. After
simplification ([39], Section 4), we essentially need to solve the
following linear equation at each iteration, i.e.,

(38)

for the given and at iteration , where with
is a symmetric quasidefinite matrix [42]. To en-

able quicker inversions and reduce memory overhead via ex-
ploiting the sparsity of the matrix , the sparse permuted
factorization [37] method can be adopted. Specifically, such
factor-solve method can be carried out by first computing the
sparse permuted factorization as follows

(39)

where is a lower triangular matrix, is a diagonal matrix
[38] and with is a permutation matrix to fill-in of
the factorization [37], i.e., the number of nonzero entries in .
Such factorization exists for any permutation , as the matrix
is symmetric quasidefinite ([42], Theorem 2.1). Computing

the factorization costs much less than flops, while
the exact value depends on and the sparsity pattern of in
a complicated way. Note that such factorization only needs to
be computed once in the first iteration and can be cached for
re-using in the sequent iterations for subspace projections. This
is called the factorization caching technique [39].
Given the cached factorization (39), solving subsequent pro-

jections (38) can be carried out by solving the fol-
lowing much easier equations:

(40)

which cost zero flops, flops by forward substitution with
as the number of nonzero entries in flops,

flops by backward substitution, and zero flops, respectively ([9],
Appendix C).
2) Cone Projection via Proximal Operator Evaluation: The

second step in the algorithm is to project a point
onto the cone . As is the Cartesian product of the fi-

nite number of convex cones , we can perform projection
onto by projecting onto separately and in parallel. Further-
more, the projection onto each convex cone can be done with
closed-forms. Specifically, for nonnegative real , we
have that ([43], Section 6.3.1])

(41)
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TABLE I
TIME AND SOLUTION RESULTS FOR DIFFERENT CONVEX OPTIMIZATION FRAMEWORKS

where the nonnegative part operator is taken elementwise.
For the second-order cone ,
we have that ([43], Section 6.3.2)

(42)

In summary, we have presented that each step in the algorithm
can be computed efficiently. In particular, from both

(41) and (42), we see that the cone projection can be carried
out very efficiently with closed-forms, leading to parallelizable
algorithms.

V. PRACTICAL IMPLEMENTATION ISSUES
In previous sections, we have presented the unified two-stage

framework for large-scale convex optimization in dense wire-
less cooperative networks. In this section, we will focus on the
implementation issues of the proposed framework.

A. Automatic Code Generation for Fast Transformation
In the Appendix, we describe a systematic way to transform

the original problem to the standard cone programming form.
The resultant structure that maps the original problem to the
standard form can be stored and re-used for fast transforming
via matrix stuffing. This can significantly reduce the modeling
overhead compared with the parse/solver modeling frameworks
like CVX. However, it requires tedious manual works to find
the mapping and may not be easy to verify the correctness of
the generated mapping. Chu et al. [21] gave such an attempt in-
tending to automatically generate the code for matrix stuffing.
However, the corresponding software package QCML [21], so
far, is far from complete and may not be suitable for our ap-
plications. Extending the numerical-based transformation mod-
eling frameworks like CVX to the symbolic-based transforma-
tion modeling frameworks like QCML is not trivial and re-
quires tremendous mathematical and technical efforts. In this
paper, we derive the mapping in the Appendix manually and
verify the correctness by comparing with CVX through exten-
sive simulations.

B. Implementation of the Operator Splitting Algorithm

Theoretically, the presented operator splitting algorithm
is compact, parameter-free, with parallelizable com-

puting and linear convergence. Practically, there are typically
several ways to improve the efficiency of the algorithm. In
particular, there are various tricks that can be employed to im-
prove the convergence rate, e.g., over-relaxation, warm-staring
and problem data scaling as described in [39]. In the dense
wireless cooperative networks with multi-entity collaborative
architecture, we are interested in two particular ways to speed
up the subspace projection of the algorithm , which
is the main computational bottleneck. Specifically, one way
is to use the parallel algorithms for the factorization (39) by
utilizing the distributed computing and memory resources
[44]. For instance, in the cloud computing environments in
Cloud-RAN, all the baseband units share the computing,
memory and storage resources in a single baseband unit pool
[2], [3]. Another way is to leverage symbolic factorization
(39) to speed up the numerical factorization for each problem
instance, which is a general idea for the code generation system
CVXGEN [36] for realtime convex quadratic optimization
[45] and the interior-point method based SOCP solver [46] for
embedded systems. Eventually, the ADMM solver in Fig. 1 can
be symbolic based so as to provide numerical solutions for
each problem instance extremely fast and in a realtime way.
However, this requires further investigation.

VI. NUMERICAL RESULTS

In this section, we simulate the proposed two-stage based
large-scale convex optimization framework for performance op-
timization in dense wireless cooperative networks. The corre-
sponding MATLAB code that can reproduce all the simulation
results using the proposed large-scale convex optimization al-
gorithm is available online2.
We consider the following channelmodel for the link between

the -th MU and the -th RAU:

(43)

2https://github.com/ShiYuanming/large-scale-convex-optimization
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where is the path-loss in dB at distance as shown in
([3], Table I), is the shadowing coefficient, is the antenna
gain and is the small-scale fading coefficient. We use the
standard cellular network parameters as showed in ([3], Table I).
All the simulations are carried out on a personal computer with
3.2 GHz quad-core Intel Core i5 processor and 8 GB of RAM
running Linux. The reference implementation of the operator
splitting algorithm SCS is available online3, which is a general
software package for solving large-scale convex cone problems
based on [39] and can be called by the modeling frameworks
CVX and CVXPY [47]. The settings (e.g., the stopping criteria)
of SCS can be found in [39].
The proposed two-stage approach framework, termed

“ ”, is compared with the following
state-of-art frameworks:
• : This category adopts
second-order methods. The modeling framework CVX
will first automatically transform the original problem
instance (e.g., the problem P written in the disciplined
convex programming form) into the standard cone pro-
gramming form and then call an interior-point solver, e.g.,
SeDuMi [15], SDPT3 [16] or MOSEK [17].

• : In this first-order method based framework,
CVX first transforms the original problem instance into the
standard form and then calls the operator splitting solver
SCS.

We define the “modeling time” as the transformation time
for the first stage, the “solving time” as the time spent for the
second stage, and the “total time” as the time of the two stages
for solving one problem instance. As the large-scale convex
optimization algorithm should scale well to both the modeling
part and the solving part simultaneously, the time comparison of
each individual stage will demonstrate the effectiveness of the
proposed two-stage approach.
Given the network size, we first generate and store the

problem structure of the standard formP , i.e., the structure
of and the descriptions of . As this procedure can be
done offline for all the candidate network sizes, we thus ignore
this step for time comparison. We repeat the following pro-
cedures to solve the large-scale convex optimization problem
P with different parameters and sizes using the proposed
framework “ ”:
1) Copy the parameters in the problem instanceP to the data

in the pre-stored structure of the standard cone program
P .

2) Solve the resultant standard cone programming instance
P using the solver SCS.

3) Extract the optimal solutions of P from the solutions to
P by the solver SCS.

Finally, note that all the interior-point solvers are multiple
threaded (i.e., they can utilize multiple threads to gain extra
speedups), while the operator splitting algorithm solver SCS
is single threaded. Nevertheless, we will show that SCS per-
forms much faster than the interior-point solvers. We also em-
phasize that the operator splitting method aims at scaling well
to large problem sizes and thus provides solutions to modest ac-

3https://github.com/cvxgrp/scs

curacy within reasonable time, while the interior-point method
intends to provide highly accurate solutions. Furthermore, the
modeling framework CVX aims at rapid prototyping and pro-
viding a user-friendly tool for automatically transformations for
general problems, while the matrix-stuffing technique targets at
scaling to large-scale problems for the specific problem family
P . Therefore, these frameworks and solvers are not really com-
parable with different purposes and application capabilities. We
mainly use them to verify the effectiveness and reliability of our
proposed framework in terms of the solution time and the solu-
tion quality.

A. Effectiveness and Reliability of the Proposed Large-Scale
Convex Optimization Framework
Consider a network with -antenna RAUs and single-

antenna MUs uniformly and independently distributed4. in the
square region meters with
. We consider the total transmit power minimization problem
P with the QoS requirements for each MU as dB,
. Table I demonstrates the comparison of the running time and

solutions using different convex optimization frameworks. Each
point of the simulation results is averaged over 100 randomly
generated network realizations (i.e., one small scaling fading
realization for each large-scale fading realization).
For the modeling time comparisons, this table shows that

the value of the proposed matrix stuffing technique ranges be-
tween 0.01 and 30 seconds5 for different network sizes and can
speedup about 15x to 60x compared to the parser/solver mod-
eling framework CVX. In particular, for large-scale problems,
the transformation using CVX is time consuming and becomes
the bottleneck, as the “modeling time” is comparable and even
larger than the “solving time”. For example, when ,
the “modeling time” using CVX is about 3 minutes, while the
matrix stuffing only requires about 10 seconds. Therefore, the
matrix stuffing for fast transformation is essential for solving
large-scale convex optimization problems quickly.
For the solving time (which can be easily calculated by sub-

tracting the “modeling time” from the “total time”) using dif-
ferent solvers, this table shows that the operator splitting solver
can speedup by several orders of magnitude over the interior-
point solvers. For example, for , it can speedup about
20x and 130x over MOSEK6 and SDPT3, respectively, while
SeDuMi is inapplicable for this problem size as the running
time exceeds the pre-defined maximum value, i.e., one hour. In
particular, all the interior-point solvers fail to solve large-scale
problems (i.e., ), denoted as “N/A”, while
the operator splitting solver SCS can scale well to large problem
sizes. For the largest problems with , the operator split-
ting solver can solve them in about 5 minutes.

4Consider the CSI acquisition overhead, our proposed approach is mainly
suitable in the low user mobility scenarios

5This value can be significantly reduced in practical implementations, e.g., at
the BBU pool in Cloud-RAN, which, however, requires substantial further in-
vestigation. Meanwhile, the results effectively confirm that the proposed matrix
stuffing technique scales well to large-scale problems.

6Although SeDuMi, SDPT3 and MOSEK (commercial software) are all
based on the interior-point method, the implementation efficiency of the corre-
sponding software packages varies substantially. In the following simulations,
we mainly compare with the state-of-art public solver SDPT3.
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Fig. 3. The empirical probability of feasibility versus target SINR with dif-
ferent network sizes.

For the quality of the solutions, this table shows that the
propose framework can provide a solution to modest accuracy
within much less time. For the two problem sizes, i.e.,

and , which can be solved by the interior-point
method based frameworks, the optimal values attained by the
proposed framework are within 0.03% of that obtained via the
second-order method frameworks.
In summary, the proposed two-stage based large-scale convex

optimization framework scaleswell to large-scale problemmod-
eling and solving simultaneously.Therefore, it provides an effec-
tive way to evaluate the system performance via large-scale op-
timization in dense wireless networks. However, its implemen-
tation and performance in practical systems still need further in-
vestigation. In particular, this set of results indicate that the scale
of cooperation in densewireless networksmay be fundamentally
constrained by the computation complexity/time.

B. Infeasibility Detection Capability
A unique property of the proposed framework is its infeasi-

bility detection capability, which will be verified in this part.
Consider a network with single-antenna RAUs and

single-antenna MUs uniformly and independently
distributed in the square region
meters. The empirical probabilities of feasibility in Fig. 3 show
that the proposed framework can detect the infeasibility ac-
curately compared with the second-order method framework
“ ” and the first-order method framework
“ ”. Each point of the simulation results is av-
eraged over 200 randomly generated network realizations.
The average (“total time”, “solving time”) for obtaining
a single point with “ ”, “ ” and
“ ” are (101.7635, 99.1140) seconds,
(5.0754, 2.3617) seconds and (1.8549, 1.7959) seconds, re-
spectively. This shows that the operator splitting solver can
speedup about 50x over the interior-point solver.
We further consider a larger-sized network with

single-antenna RAUs and single-antenna MUs
uniformly and independently distributed in the square region

meters. As the second-order

Fig. 4. Average normalized network power consumption (i.e., the obtained op-
timal total network power consumption over the maximum network power con-
sumption with all the RAUs active and full power transmission) versus target
SINR with different network sizes.

method framework fails to scale to this size, we only compare
with the first-order method framework. Fig. 3 demonstrates that
the proposed framework has the same infeasibility detection
capability as the first-order method framework. This verifies
the correctness and the reliability of the proposed fast transfor-
mation via matrix stuffing. Each point of the simulation results
is averaged over 200 randomly generated network realizations.
The average (“solving time”, “modeling time”) for obtaining a
single point with “ ” and “ ”
are (41.9273,18.6079) seconds and (31.3660,0.5028) seconds,
respectively. This shows that the matrix stuffing technique
can speedup about 40x over the numerical based parser/solver
modeling framework CVX. We also note that the solving time
of the proposed framework is smaller than the framework
“ ”, the speedup is due to the warm-staring ([39],
Section 4.2).

C. Group Sparse Beamforming for Network Power
Minimization

In this part, we simulate the network power minimization
problem using the group sparse beamforming algorithm ([3],
Algorithm 2). We set each fronthaul link power consumption as
5.6 W and set the power amplifier efficiency coefficient for each
RAU as 25%. In this algorithm, a sequence of convex feasibility
problems need to be solved to determine the active RAUs and
one convex optimization problem needs to be solved to deter-
mine the transmit beamformers. This relies on the infeasibility
detection capability of the proposed framework.
Consider a network with 2-antenna RAUs and

single-antenna MUs uniformly and independently
distributed in the square region
meters. Each point of the simulation results is averaged over
50 randomly generated network realizations. Fig. 4 demon-
strates the accuracy of the solutions in the network power
consumption obtained by the proposed framework compared
with the second-order method framework “ ”
and the first-order method framework “ ”. The
average (“total time”, “solving time”) for obtaining a
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single point with “ ”, “ ” and
“ ” are (48.6916, 41.0316) seconds,
(9.4619, 1.7433) seconds and (2.4673, 2.3061) seconds, re-
spectively. This shows that the operator splitting solver can
speedup about 20x over the interior-point solver.
We further consider a larger-sized network with

2-antenna RAUs and single-antenna MUs uni-
formly and independently distributed in the square region

meters. As the second-order
method framework is not applicable to this problem size, we
only compare with the first-order method framework. Each
point of the simulation results is averaged over 50 randomly
generated network realizations. Fig. 4 shows that the pro-
posed framework can achieve the same solutions in network
power consumption as the first-order method framework
“ ”. The average (“solving time”, “modeling
time”) for obtaining a single point with “ ” and
“ ” are (11.9643,69.0520) seconds and
(14.6559,2.1567) seconds, respectively. This shows that the
matrix stuffing technique can speedup about 30x over the
numerical based parser/solver modeling framework CVX.
In summary, Fig. 4 demonstrates the capability of infeasi-

bility detection (as a sequence of convex feasibility problems
need to be solved in the RAU selection procedure), the accu-
racy of the solutions, and speedups provided by the proposed
framework over the existing frameworks.

D. Max-Min Rate Optimization
We will simulate the minimum network-wide achievable

rate maximization problem using the max-min fairness opti-
mization algorithm in ([22], Algorithm 1) via the bi-section
method, which requires to solve a sequence of convex fea-
sibility problems. We will not only show the quality of the
solutions and speedups provided by the proposed framework,
but also demonstrate that the optimal coordinated beamformers
significantly outperform the low-complexity and heuristic
transmission strategies, i.e., zero-forcing beamforming (ZFBF)
[48], [28], regularized zero-forcing beamforming (RZF) [49]
and maximum ratio transmission (MRT) [50].
Consider a network with single-antenna RAUs and

single-antenna MUs uniformly and independently dis-
tributed in the square region
meters. Fig. 5 demonstrates the minimum network-wide achiev-
able rate versus different SNRs (which is defined as the transmit
power at all the RAUs over the receive noise power at all the
MUs) using different algorithms. Each point of the simulation
results is averaged over 50 randomly generated network realiza-
tions. For the optimal beamforming, this figure shows the accu-
racy of the solutions obtained by the proposed framework com-
pared with the first-order method framework “ ”.
The average (“solving time”, “modeling time”) for obtaining
a single point for the optimal beamforming with “ ”
and “ ” are (176.3410, 55.1542) seconds
and (82.0180, 1.2012) seconds, respectively. This shows that the
proposed framework can reduce both the solving time and mod-
elling time via warm-starting and matrix stuffing, respectively.
Furthermore, this figure also shows that the optimal beam-

forming can achieve quite an improvement for the per-user

Fig. 5. The minimum network-wide achievable versus transmit SNR with 55
single-antenna RAUs and 50 single-antenna MUs.

rate compared to suboptimal transmission strategies RZF,
ZFBF and MRT, which clearly shows the importance of de-
veloping optimal beamforming algorithms for such networks.
The average (“solving time”, “modeling time”) for a single
point using “ ” for the RZF, ZFBF and MRT
are (2.6210, 30.2053) seconds, (2.4592, 30.2098) seconds and
(2.5966, 30.2161) seconds, respectively. Note that the solving
time is very small, which is because we only need to solve a
sequence of linear programming problems for power control
when the directions of the beamformers are fixed during the
bi-section search procedure. The main time consuming part is
from transformation using CVX.

VII. CONCLUSIONS AND FURTHER WORKS

In this paper, we proposed a unified two-stage framework
for large-scale optimization in dense wireless cooperative net-
works. We showed that various performance optimization prob-
lems can be essentially solved by solving one or a sequence
of convex optimization or feasibility problems. The proposed
framework only requires the convexity of the underlying prob-
lems (or subproblems) without any other structural assumptions,
e.g., smooth or separable functions. This is achieved by first
transforming the original convex problem to the standard form
viamatrix stuffing and then using the ADMMalgorithm to solve
the homogeneous self-dual embedding of the primal-dual pair
of the transformed standard cone program. Simulation results
demonstrated the infeasibility detection capability, themodeling
flexibility and computing scalability, and the reliability of the
proposed framework.
In principle, one may apply the proposed framework to any

large-scale convex optimization problems and only needs to
focus on the standard form reformulation as shown in Appendix,
as well as to compute the proximal operators for different cone
projections in (42). However, in practice, we need to address
the following issues to provide a user-friendly framework and
to assist practical implementation:
• Although the parse/solver frameworks like CVX can au-
tomatically transform an original convex problem into the
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standard form numerically based on the graph implementa-
tion, extending such an idea to the automatic and symbolic
transformation, thereby enabling matrix stuffing, is desir-
able but challenging in terms of reliability and correctness
verification.

• Efficient projection algorithms are highly desirable. For
the subspace projection, as discussed in Section V.B,
parallel factorization and symbolic factorization are espe-
cially suitable for the cloud computing environments as
in Cloud-RAN [2], [3]. For the cone projection, although
the projection on the second-order cone is very efficient,
as shown in (42), projecting on the semidefinite cone
(which is required to solve the semidefinite programming
problems) is computationally expensive, as it requires to
perform eigenvalue decomposition [13]. The structure of
the cone projection should be exploited to make speedups.

• It is interesting to apply the proposed framework to various
non-convex optimization problems. For instance, the well-
known majorization-minimization optimization provides
a principled way to solve the general non-convex prob-
lems, whereas a sequence of convex subproblems need to
be solved at each iteration. Enabling scalable computation
at each iteration will hopefully lead to scalability of the
overall algorithm.

APPENDIX A
CONIC FORMULATION FOR CONVEX PROGRAMS

We shall present a systematic way to transform the original
problem to the standard convex cone programming form. We
first take the real-field problem P with the objective function

as an example. At the end of this subsection, we
will show how to extend it to the complex-field.
According to the principle of the disciplined convex program-

ming [30], the original problem P can be rewritten as the fol-
lowing disciplined convex programming form [30]

P

(44)

(45)

where with

, and
with . It

is thus easy to check the convexity of problem P , following
the disciplined convex programming ruleset [30].

A. Smith Form Reformulation
To arrive at the standard convex cone program P , we

rewrite problem P as the following Smith form [29] by in-
troducing a new variable for each subexpression in P ,

(46)

where is the Smith form reformulation for the transmit
power constraint for RAU (44) as follows

(47)

and is the Smith form reformulation for the QoS con-
straint for MU (45) as follows

(48)

Nevertheless, the Smith form reformulation (46) is not convex
due to the non-convex constraint . We thus relax the
non-convex constraint as , yielding the following
relaxed Smith form

(49)

where

(50)

It can be easily proved that the constraint has to be
active at the optimal solution; otherwise, we can always scale
down such that the cost function can be further minimized
while still satisfying the constraints. Therefore, we conclude
that the relaxed Smith form (49) is equivalent to the original
problem P .

B. Conic Reformulation
Now, the relaxed Smith form reformulation (49) is readily to

be reformulated as the standard cone programming formP .
Specifically, define the optimization variables with the
same order of equations as in , then can be rewritten as

(51)

where the slack variables belong to the following convex set

(52)

and and are given as
follows

(53)

respectively. Define the optimization variables with the
same order of equations as in , then can be rewritten
as

(54)

where the slack variables belongs to the fol-
lowing convex set formed by the Cartesian product of two
convex sets

(55)
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and and are given as
follows

(56)

respectively. Define the optimization variables with the
same order of equations as in , then can be rewritten
as

(57)

where the slack variables belong to the following
convex set formed by the Cartesian product of two convex sets

(58)

and and are given as
follows

(59)

respectively.
Therefore, we arrive at the standard form P by writing

the optimization variables as follows

(60)

and . The structure of the standard cone program-
ming P is characterized by the following data

(61)

(62)

(63)

where is the Cartesian product of second-order
ones, and and are given as shown in (64), shown at the
bottom of the page, respectively.

C. Matrix Stuffing

Given a problem instance P , to arrive at the standard cone
program form, we only need to copy the parameters of the max-
imum transmit power ’s to the data of the standard form, i.e.,

’s in , copy the parameters of the SINR thresholds to
the data of the standard form, i.e., ’s in , and copy the pa-
rameters of the channel realizations ’s to the data of the stan-
dard form, i.e., ’s and ’s in . As we only need to per-
form copying the memory for the transformation, this procedure
can be very efficient compared to the state-of-the-art numerical
based modeling frameworks like CVX.

D. Extension to the Complex Case

For , we have

(65)

where and . Therefore, the complex-
field problem can be changed into the real-field problem by the
transformations: and .

. . .

. . .
...

...
...

...

...
...

...

...

...

...

(64)
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