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Abstract— The exponential growth of mobile data traffic is
driving the deployment of dense wireless networks, which will
not only impose heavy backhaul burdens, but also generate
considerable power consumption. Introducing caches to the
wireless network edge is a potential and cost-effective solution
to address these challenges. In this paper, we will investigate
the problem of minimizing the network power consumption of
cache-enabled wireless networks, consisting of the base station
(BS) and backhaul power consumption. The objective is to
develop efficient algorithms that unify adaptive BS selection,
backhaul content assignment, and multicast beamforming, while
taking account of user QoS requirements and backhaul capacity
limitations. To address the NP-hardness of the network power
minimization problem, we first propose a generalized layered
group sparse beamforming (LGSBF) modeling framework, which
helps to reveal the layered sparsity structure in the beamformers.
By adopting the reweighted ℓ1

/
ℓ2-norm technique, we further

develop a convex approximation procedure for the LGSBF
problem, followed by a three-stage iterative LGSBF framework to
induce the desired sparsity structure in the beamformers. Simu-
lation results validate the effectiveness of the proposed algorithm
in reducing the network power consumption, and demonstrate
that caching plays a more significant role in networks with higher
user densities and less power-efficient backhaul links.

Index Terms— Wireless caching, content-centric wireless net-
works, multicasting beamforming, layered group sparse beam-
forming, convex approximation, network power minimization,
green communications.

I. INTRODUCTION

TO CATER for the unprecedented explosion of mobile
data traffic [2], cell densification has been regarded

as a key mechanism for further wireless evolution [3].
To effectively manage co-channel interference in dense cellular
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networks, coordinated multipoint (CoMP) technology,
i.e., cooperation among base stations (BSs), has been
proposed [4]. However, it requires data sharing among
cooperative BSs, which will yield considerable backhaul
traffic. Current small cell backhaul solutions, such as
xDSL [5] and non-line-of-sight microwave [6], are far from
adequate to provide sufficient data rate and thus make the
current networks vulnerable to congestion. Caching frequently
requested content at the wireless network edge, especially at
small BSs [7], has been recently proposed as a cost-effective
approach to lower the latency for content delivery and
alleviate the heavy burden on backhaul links. Remarkably,
caching also has the prominent advantage in improving the
network energy efficiency. Since local caching brings the
content closer to mobile users (MUs) and enables content
delivery without using backhaul links, BS transmit power and
backhaul power can be substantially reduced.

Energy efficiency, as an essential concern in green cellular
networks, has attracted global attention [8] since it is related
to maintaining profitability for cellular operators, as well
as reducing the overall environmental effects. Most previous
investigations on energy efficiency of cellular networks either
ignored the backhaul power consumption [9] or employed
simplified models to measure it [10]. As cellular networks will
evolve to be progressively dense and heterogeneous, backhaul
power consumption will play an increasingly important role
in total network power consumption [11]. It is inspiring
that caching can be very effective in fundamentally reducing
backhaul power consumption. Owing to the recent technology
development of caching hardware [12], massive backhaul data
can be reduced with energy-efficient caches. Also, the frequent
reuse of cached contents implies the potential of cache-enabled
networks in energy saving. In this paper, we will investigate
network power minimization for cache-enabled wireless net-
works, by taking both the BS and backhaul power consumption
into consideration.

A. Related Work
Caching popular contents at small BSs has been attract-

ing a lot of attention. The idea of femtocaching was first
proposed in [13] to alleviate backhaul loads for small BSs
with low-capacity backhaul links. The caching content could
be uncoded or coded, and a coded caching scheme can
achieve a global caching gain as discussed in [7]. However,
these initial studies assumed no interference among different
communication links, and did not take the impact of wireless
channels into account. It was demonstrated in [14] that caching
at BSs will not only provide load balancing gain, but also
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bring interference cancellation gain and interference alignment
gain. Follow-up papers [15]–[17] have shed light on cache-
aided wireless communications and interference management
under various performance metrics. Aiming at minimizing the
download delay, distributed caching algorithms were designed
in [15], [16]. The tradeoff between the small BS density
and total cache size under a certain outage probability was
investigated in [17]. Cooperation among multi-antenna cache-
enabled BSs [18]–[20] is promising since caching can reduce
the backhaul requirement. Full cooperation was considered
in [18] to minimize total transmit power. Dynamic cluster-
ing and partial cooperation were adopted in [19]. Moreover,
by employing the cloud processing and edge caching, coopera-
tive transmission and low delivery latency were achieved at the
same time [20].

There is a growing concern on energy efficiency in wireless
networks. Previous works include transmit power minimiza-
tion via coordinated beamforming [21]–[24] and adaptive
selection of active BSs [8], [25]–[27]. After introducing edge
caches, similar approaches have been extended to the cache-
enabled wireless networks [18], [28]. With cell densification,
backhaul power consumption will become a significant com-
ponent of the total network power consumption [29]. In [30],
energy efficiency for cache-aided networks was optimized by
assuming constant transmit power for small cell BSs and
wireless backhaul nodes. In [31], caching content placement
and multicast association were optimized in order to minimize
the overall energy cost. But it only considered the backhaul
power of the macro BS and did not count small BSs. In order
to minimize the network power consumption, joint beamform-
ing and backhaul data assignment problem was investigated
in [1], [10], [19], [24], [32], and [33]. But a comprehensive
consideration of traffic-dependent backhaul power consump-
tion, active BS selection, multicast beamforming, and backhaul
data assignment is still missing.

There are some preliminary studies on developing sparsity-
based approaches for designing wireless networks. Inspired
by the success of sparse signal processing techniques such
as compressed sensing [34], [35], more structured sparsity
patterns have been exploited, including group sparsity [36],
overlapping group sparsity [37], and layered group spar-
sity [38], [39], which yield efficient algorithms. Recent years
have witnessed an increasing prevalence of applying sparse
optimization to design wireless networks, such as the individ-
ual sparsity-inducing norm applied for user admission in [33]
and link admission control in [40], and the group sparsity-
inducing norm applied for active remote radio head selection
of Cloud-RAN in [32]. Sparse optimization is further applied
to joint beamforming and backhaul data assignment design
in caching networks [1], [19], which may provide potential
solutions for 5G wireless networks. As will be revealed in this
paper, network energy minimization in cache-enabled wireless
networks involves more complicated sparsity structures, and
thus more thorough investigations will be needed.

B. Contributions
The main objective of this work is to minimize the

network power consumption for cache-enabled wireless

networks, which mainly consists of the BS and backhaul
power consumption. In this problem, coupled with the non-
convex combinatorial composite objective function, there are
non-convex quadratic QoS constraints due to multicast trans-
mission, as well as the challenging ℓ0-norm per-BS backhaul
capacity constraints. As a result, it is a mixed-integer non-
linear programming problem, and is NP-hard. In this paper,
we propose a systematic framework to develop low-complexity
algorithms to solve this challenging problem. Specifically, our
main contributions are listed as follows:

1) We adopt a realistic model to evaluate the total
network power consumption, incorporating practical
power consumption models for BSs and backhaul links.
In particular, we allow the BS sleep mode, and con-
sider a traffic-dependent backhaul power consumption
model, which is essential to investigate backhaul-limited
networks. To make the network power minimization
problem tractable, we propose a layered group sparse
beamforming (LGSBF) modeling framework, which is
able to jointly select active BSs, assign backhaul data,
and determine the multicast beamformers. This gen-
eralized structured sparse formulation unifies existing
approaches [19], [21], [23], [32], and will assist the
problem analysis and efficient algorithm design.

2) The LGSBF formulation reveals that adaptive BS selec-
tion (i.e., the decision for active BS set) and backhaul
assignment (i.e., the delivery of uncached content via
backhaul links) can be achieved by controlling the
sparsity structure in multicast beamformers. To solve
the problem, we first propose to convexify the original
problem via structured group sparsity-inducing norm
minimization. The second algorithmic contribution is an
iterative search procedure that can effectively determine
BS selection and backhaul assignment. Finally, coordi-
nated multicast beamforming is adopted to determine the
overall beamformers.

3) Simulation results are provided to demonstrate
the effectiveness of our proposed algorithm, and
show the performance gain compared with existing
approaches, including the coordinated beamforming
algorithm [41] and two sparse multicast beamforming
algorithms [19], [33]. Moreover, we observe that the
network performance can be effectively enhanced by
employing edge caching, which shows the potential
of caches as effective and efficient alternatives for
high-capacity backhaul links. In particular, it is shown
that caching can reduce the network power consumption
more effectively in networks with higher user densities
and with less power-efficient backhaul links.

C. Organization and Notations

The rest of the paper is organized as follows. Section II
presents the system model. Section III provides the problem
formulation and analysis. In Section IV, the LGSBF frame-
work is proposed to minimize the network power consumption.
Simulation results are demonstrated in Section V. Finally,
Section VI concludes the paper.
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Throughout this paper, vectors and matrices are denoted
by lower-case and upper-case bold letters, respectively. The
ℓp-norm is represented by ∥·∥p . The indicator function is
denoted as I (·), where I (e) = 1 if event e is true, and
I (e) = 0 otherwise. We use (·)T, (·)H, Tr (·) and Re {·}
to denote transpose, Hermitian transpose, trace and real part
operators, respectively. Calligraphy letters are used to denote
sets.

II. SYSTEM MODEL

In this section, we will introduce the communication model,
caching and backhaul models, as well as the power con-
sumption model. Then the main performance metrics will be
presented.

A. Communication Model

We consider a downlink multicast network consisting of
NU single-antenna MUs cooperatively served by NB multi-
antenna BSs, where the j -th BS has L j antennas. Each
BS is equipped with a cache storage and connected to the
central controller via a capacity-limited backhaul link. The
central controller has access to the whole data library con-
taining NF pieces of equal-size content objects. Let J =
{1, . . . , NB }, K = {1, . . . , NU } and F = {1, . . . , NF } denote
the sets of BSs, MUs and content objects, respectively.
At the beginning of each interval, each MU makes a content
request which follows a content popularity distribution. The
MUs requesting the same content are grouped together and
served by a cluster of BSs using multicast transmission.
During each interval, the number of multicast groups is NG
(1 ≤ NG ≤ min {NU , NF }), and the set of groups is denoted
as M = {1, . . . , NG }. The set of MUs in group m is denoted
as Gm ,∀m ∈ M . Since each MU is assumed to request one
piece of content during an interval, we have Gm ∩ Gi = ∅,
for m ̸= i , and

∑NG
m=1

∣∣Gm
∣∣ = NU . When BS j caches the

content requested by group m, BS j can directly transmit the
local content to group m. Otherwise, the uncached content
has to be retrieved from the central controller to BS j via the
corresponding backhaul link and then transmitted to group m.
The system model is illustrated in Fig. 1. The propaga-
tion channel from the j -th BS to the k-th MU is denoted
as hkj ∈ CL j ,∀k, j , and the transmit beamforming vector
from the j -th BS to the multicast group m is denoted as
v jm ∈ CL j ,∀ j, m. The transmit signal at the j -th BS is
given by

x j =
NG∑

m=1

v jmsm , (1)

where sm ∈ C stands for the encoded information symbol for
the multicast group m with E

[|sm |2] = 1. The received signal
at the MU k ∈ Gm is given by

ykm =
NB∑

j=1

hH
kj v jmsm +

NG∑

i=1,i ̸=m

NB∑

j=1

hH
kj v j i si + nk,

∀k ∈ Gm , ∀m ∈ M , (2)

Fig. 1. System model. MUs requesting the same content form a group that is
served by a cluster of BSs via multicast transmission. The requested content
is either cached at serving BSs or retrieved from the central controller via
corresponding backhaul links.

where nk ∼ CN
(
0, σ 2

k

)
is the additive Gaussian noise at the

k-th MU. Assume that all MUs adopt single user detection
and thus treat interference as noise. The signal-to-interference-
plus-noise ratio (SINR) at MU k ∈ Gm is given by

SINRk =
∣∣hH

k vm
∣∣2

∑NG
i ̸=m

∣∣hH
k vi

∣∣2 + σ 2
k

,∀k ∈ Gm , ∀m ∈ M , (3)

where hk =
[
hH

k1, hH
k2, . . . , hH

kNB

]H
∈ CN with N =

∑NB
j=1 L j , represents the channel vector from all the BSs to the

k-th MU, and vm =
[
vH

1m, vH
2m, . . . , vH

NB m

]H
∈ CN represents

the beamforming vector from all the BSs to group m. Let
v =

[
ṽ j

]NB
j=1 ∈ CNG N denote the aggregate beamforming

vector with ṽ j = [
v jm

]NG
m=1 ∈ CNG L j as the beamforming

vector from the j -th BS to all multicast groups, i.e.,

v =

⎡

⎢⎢⎢⎣
vH

11, vH
12, . . . , vH

1NG︸ ︷︷ ︸
ṽH

1

, . . . , vH
NB 1, vH

NB 2, . . . , vH
NB NG︸ ︷︷ ︸

ṽH
NB

⎤

⎥⎥⎥⎦

H

.

(4)

To keep the analysis simple, we assume that each BS has the
same number of antennas, i.e., L j = L,∀ j ∈ J . Define the
target SINR vector as γ =

[
γ1, . . . , γNG

]
, where γm stands for

the lowest received SINR threshold for the users in group m.
In order to decode the message successfully, any user k ∈ Gm ,
should satisfy the following QoS constraint

SINRk ≥ γm, ∀k ∈ Gm , ∀m. (5)

Denote the maximum transmit power of the j -th BS as PTX
j ,

and transmit power constraints are given by
NG∑

m=1

∥∥v jm
∥∥2

2 ≤ PTX
j , ∀ j ∈ J . (6)
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B. Caching and Backhaul Models

Caching networks operate in two phases, i.e., the prefetch-
ing phase and the delivery phase. In the prefetching phase,
BSs fetch some contents from the file library of the central
controller and store them at local caches, which usually
happens during off-peak time. In the delivery phase (usually
the busy hours), MUs may request arbitrary content in the file
library. Since some desired contents have already been cached
locally in the prefetching phase, only the rest of the requested
content objects need to be delivered to BSs via backhaul links.

Let us define a caching matrix C =
[
c f, j

]
∈ {0, 1}NF ×NB ,

where c f, j = 1 means that the f -th content is cached at
the j -th BS. Assume that MUs in group m request con-
tent qm ∈ {1, . . . , NF }, and cqm , j = 1 means that the
content requested by MUs in group m is cached at the
j -th BS. The transmit association status matrix is denoted as
T = [

t jm
] ∈ {0, 1}NB ×NG , where t jm = 1 means that the

j -th BS serves group m and t jm = 0 means the opposite.
Let NBA =

[
n jm

]
∈ {0, 1}NB ×NG denote the backhaul data

assignment matrix, where n jm = 1 means that the content
requested by the m-th user group will be assigned to the
j -th BS via its backhaul link. It is not difficult to obtain that

n jm = t jm
(
1 − cqm, j

)
. (7)

Therefore, only when t jm = 1 and cqm, j = 0, it will spawn
backhaul traffic to retrieve the requested content, i.e., n jm = 1,
and otherwise we have n jm = 0.

For ease of discussion, we consider fixed and feasible target
SINR requirements as in [19]. The transmission data rate for
group m is given by Rm = B0 log2 (1 + γm) (bps) , where B0
is the available bandwidth. The data rate (i.e., the traffic load)
of backhaul link j is then given by

RBH
j =

NG∑

m=1

Rmn jm (bps) , ∀ j ∈ J . (8)

Since the capacity of each backhaul link is limited, we con-
sider the following backhaul capacity constraints

RBH
j ≤ CBH

j , ∀ j ∈ J . (9)

C. Power Consumption Model

We focus on the network power consumption of the delivery
phase, for which the signal processing and optimization are
much more challenging than the prefetching phase. Owing
to the advances in caching hardwares [12], caches have
been made very energy-efficient. Moreover, once the cache
placement is finished in the prefetching phase, it will remain
unchanged for a period of time, e.g., several days or weeks,
since the file popularity evolves slowly, while user requests
happen much more frequently. Therefore, the frequent reuse
of cached contents can save considerable backhaul power
consumption, which makes the power consumption in the
prefetching phase negligible. Also, the cache placement is
usually conducted during off-peak hours when the electric-
ity resource is abundant and with a low price. Therefore,
we focus on the network power consumption for the delivery
phase, and omit the power consumption for caching. The

main components of network power consumption, i.e, BS
power consumption and backhaul power consumption, will be
modeled as follows.

1) BS Power Consumption Model: We adopt the empirical
linear model [25] to describe the power consumption of BS j :

PBS
j =

{
PBS

A, j + δ j Pout
j , if 0 < Pout

j ≤ PTX
j ,

PBS
S, j , if Pout

j = 0,
(10)

where PBS
A, j (PBS

S, j ) stands for the active (sleep) mode power
consumption, δ j represents the slope of the load-dependent
power consumption, and Pout

j is the BS transmit power,

i.e., Pout
j = ∑NG

m=1

∥∥v jm
∥∥2

2 =
∥∥ṽ j

∥∥2
2. Although a BS’s

power consumption can be arbitrarily close to zero Watt in
the deepest sleep level, it may cause an undesirable long
delay to wake up the BS from this low power mode [26].
In practice, when a BS has no transmission tasks, a less
deep sleep mode is usually adopted, where only some well-
selected parts of the hardware may be inactivated, in order to
fasten the activation process. As a result, it is typical to have
PBS

S, j ̸= 0. For instance, according to the survey on BS power
consumption [25], for a 2-antenna pico-BS, the typical values
are PBS

A, j = 6.8 W, PBS
S, j = 4.3 W and δ j = 4. Let A ⊆ J

and Z ⊆ J denote the sets of active BSs and inactive BSs,
respectively. Then, the total BS power consumption is given by

p̂1 =
∑

j∈A

⎛

⎝PBS
A, j + δ j

NG∑

m=1

∥∥v jm
∥∥2

2

⎞

⎠ +
∑

j∈Z

PBS
S, j . (11)

Based on the BS power consumption model, we conclude that
it is essential to put BSs into sleep mode whenever possible
in order to save the power consumption.

2) Backhaul Transport Power Consumption Model: The
total backhaul transport power consumption is given by

p̂2 =
NB∑

j=1

PBH
j , (12)

where PBH
j is the power consumption of the backhaul link

corresponding to BS j . Similar to the BS power consumption
model, we need to consider both active and sleep modes
for backhaul links. The power consumption of an active
backhaul link turns out to be traffic-dependent [42]. Therefore,
the backhaul transport power consumption of BS j is

PBH
j =

⎧
⎪⎨

⎪⎩

PBH
A, j +

RBH
j

CBH
j

Pmax
j , if 0 < RBH

j ≤ CBH
j ,

PBH
S, j , if RBH

j = 0,

(13)

where CBH
j denotes the maximum data rate (i.e., capacity)

of the backhaul link, Pmax
j represents the backhaul power

consumption when supporting the maximum data rate, and
EBH

j ! Pmax
j

/
CBH

j is the backhaul transport energy coeffi-

cient. For a backhaul link, typical values are PBH
A, j = 3.85 W,

PBH
S, j = 0.75 W. The typical value for EBH

j is around
10−7 J/bit for microwave backhaul link [42], and around
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10−5 J/bit for copper DSL [5]. The power consumption of
all backhaul links can be calculated as

p̂2 =
∑

j∈A

(
PBH

A, j + EBH
j RBH

j

)
+

∑

j∈Z

PBH
S, j . (14)

Combining formula (8), (11) and (14), we have the total
network power consumption as

p̃ (A, T, v) = p̂1 + p̂2 (15)

=
∑

j∈A

NG∑

m=1

(
δ j

∥∥v jm
∥∥2

2 + EBH
j Rmn jm

)

+
∑

j∈A

PD
j +

∑

j∈J

(
PBS

S, j + PBH
S, j

)
, (16)

where

PD
j =

(
PBS

A, j − PBS
S, j

)
+

(
PBH

A, j − PBH
S, j

)
(17)

is the difference of static state power consumption between
active and sleep modes for BS j and its corresponding
backhaul link, and is named as the relative power consumption
for simplification. As a matter of fact, usually we have
PBS

A, j > PBS
S, j and PBH

A, j > PBH
S, j , and thus PD

j > 0. Let
β jm = EBH

j Rm denote the backhaul power consumption for
BS j for serving user group m. Since constant terms will not
influence the optimization, we can equivalently minimize the
re-defined network power consumption instead of (16):

p
(

A, NBA, v
)

=
∑

j∈A

⎡

⎣
NG∑

m=1

(
δ j

∥∥v jm
∥∥2

2 + β jmn jm

)
+ PD

j

⎤

⎦,

(18)

which consists of BS transmit power consumption, traffic-
dependent backhaul power consumption, and relative power
consumption of active BSs and corresponding backhaul links.

III. PROBLEM FORMULATION AND ANALYSIS

In this section, we will first formulate the network power
minimization problem, which will then be analyzed and refor-
mulated to reveal the layered group sparsity structure in the
optimization variables. Based on (18), there are three strategies
minimizing the network power consumption: i) to reduce the
relative power consumption by switching off as many BSs
and corresponding backhaul links as possible; ii) to reduce
the transmit power consumption of BSs with coordinated
beamforming by having more active BSs; and iii) to reduce
the traffic-dependent backhaul power consumption by min-
imizing backhaul delivery of uncached content. Obviously,
these strategies cannot be achieved at the same time. Hence,
the network power consumption minimization problem will be
a joint design across BS selection, backhaul data assignment
and coordinated transmit beamforming.

A. Problem Formulation

In this work, we assume that perfect channel state informa-
tion (CSI) {hk}, cache placement C, and overall user requests

{
cqm , j

}
are known a priori at the central controller. Consid-

ering MU QoS requirements, BS transmit power constraints
and per-BS backhaul capacity constraints, we formulate the
network power consumption minimization problem as a joint
active BS selection, backhaul data assignment and transmit
beamforming design problem:

P : minimize
A,{n jm},{v jm}

p
(

A, NBA, v
)

(19)

subject to

∣∣hH
k vm

∣∣2

∑NG
i ̸=m

∣∣hH
k vi

∣∣2+σ 2
k

≥γm, ∀k ∈Gm , ∀m ∈M ,

(19a)
NG∑

m=1

∥∥v jm
∥∥2

2 ≤ PTX
j , ∀ j ∈ J, (19b)

NG∑

m=1

Rmn jm ≤ CBH
j , ∀ j ∈ J, (19c)

NBA =
[
n jm

]
∈ {0, 1}NB ×NG . (19d)

In the following subsection, we will analyze problem P ,
which will motivate us to reformulate it for developing low-
complexity algorithms.

B. Problem Analysis

In this subsection, we will identify the main challenges of
the network power minimization problem P . We first consider
the case with a given active BS set A and a given backhaul
data assignment matrix NBA, resulting in a transmit power
minimization problem given by

P
(

A, NBA
)

: minimize
{v jm}

∑

j∈A

δ j

NG∑

m=1

∥∥v jm
∥∥2

2

subject to (19a) , (19b), (20)

which is a multicast beamforming problem as discussed
in [43]. This implies that once the optimal A and NBA are
identified, the solution v can be determined by solving problem
P

(
A, NBA)

. Thus, problem P can be solved by searching
over all the possible active BS sets and NBA’s, i.e.,

p⋆ = minimize
Q ∈ {A, . . . , NB }

p⋆ (Q), (21)

where A ≥ 1 is the minimum number of active BSs to meet
the QoS constraints, and p⋆ (Q) is determined by

p⋆ (Q) = minimize
A ⊆ J, |A| = Q

NBA ∈ {0, 1}NB ×NG

p⋆
(

A, NBA
)
, (22)

where p⋆
(
A, NBA)

is the optimal value of problem
P

(
A, NBA)

and |A| is the cardinality of set A. Since the
number of subsets A of size a is

(NB
a

)
and we need to search

over 2NB NG possible NBA’s for each subset A, the complexity
of the overall search procedure will grow exponentially with
NB (NG + 1), which makes this approach unscalable. There-
fore, the key to solve the problem is to effectively determine
A⋆ and NBA⋆. This problem needs to be reformulated to
develop more efficient algorithms.
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C. Layered Group Sparse Beamforming Formulation

In the following, we will reformulate the original problem.
First, let us present several key observations, aiming at exploit-
ing the unique structure of the problem, which will help us
address the main challenges. The original objective can be
decomposed into three parts, i.e.,

p
(

A, NBA, v
)

= T (v) + F1 (A) + F2

(
A, NBA

)
, (23)

where T (v) = ∑NB
j=1

∑NG
m=1 δ j

∥∥v jm
∥∥2

2 is the BS transmit
power consumption, F1 (A) = ∑

j∈A PD
j is the relative power

consumption, and F2
(
A, NBA)

= ∑
j∈A

∑NG
m=1 β jmn jm is the

backhaul power consumption. We will show that F1 and F2
can be expressed as functions of the aggregate beamforming
vector v, which are able to indicate the group sparsity of v at
different layers.

1) BS-Layer Group Sparsity of v: All the coefficients in
a given vector ṽ j =

[
v jm

]NG
m=1 ∈ CNG L j form a BS-layer

group and
∑NB

j=1 I
(∥∥ṽ j

∥∥
2 > 0

)
can be considered as a group

sparsity measure of v. When the j -th BS is switched off, all
the coefficients in vector ṽ j will be set to zero, i.e., ṽ j = 0.
It is possible that multiple BSs can be switched off and the
corresponding beamformers will be set to zero, which means
that v has a BS-layer group sparsity structure. It is observed
that if

∥∥ṽ j
∥∥

2 > 0, then we have j ∈ A, and if
∥∥ṽ j

∥∥
2 = 0,

we have j ∈ Z. Therefore, for a given beamformer v,
the relative power consumption F1 (A) can be rewritten as

F1 (v) =
NB∑

j=1

PD
j I

(∥∥ṽ j
∥∥

2 > 0
)
. (24)

2) Data Assignment-Layer Group Sparsity of v: The back-
haul data assignment matrix NBA can be fully specified with
the knowledge of the beamformer v as

n jm = (
1 − cqm, j

)
I
(∥∥v jm

∥∥
2 > 0

)
. (25)

From (25), we observe that for a given user group m, when
BS j does not serve it, i.e., v jm = 0, there is no need to assign
the content requested by this user group to BS j , and n jm will
be set to zero; when the content requested by user group m
happens to be cached at BS j , i.e., cqm, j = 1, regardless of
whether BS j serves this user group or not, there is no need
to assign the content requested by this user group to BS j ,
and hence n jm will always be set to zero. It is likely that we
can reduce the number of backhaul data assignments and the
corresponding n jm values will be set to zero, from which we
can infer that the backhaul data assignment matrix NBA has a
sparsity structure. In addition, we observe

∥∥∥NB A
∥∥∥

0
≤

NB∑

j=1

NG∑

m=1

I
(∥∥v jm

∥∥
2 > 0

)
, (26)

which means that minimizing
∑NB

j=1
∑NG

m=1 I
(∥∥v jm

∥∥
2 > 0

)

can imply the minimization of
∥∥NBA

∥∥
0. All the coeffi-

cients in a given vector v jm ∈ CL j form a group and∑NB
j=1

∑NG
m=1 I

(∥∥v jm
∥∥

2 > 0
)

can be considered as another
group sparsity measure of v. Since this measure is related to

the backhaul data assignment, it can be regarded to represent
the “data assignment-layer” group sparsity. Hence, the back-
haul power consumption F2

(
A, NBA)

can be rewritten as

F2 (v) =
NB∑

j=1

NG∑

m=1

β jm
(
1 − cqm , j

)

·I
(∥∥v jm

∥∥
2 > 0

)
I
(∥∥ṽ j

∥∥
2 > 0

)
. (27)

For a given BS j ,
{
v jm

}
are non-overlapping subgroups of ṽ j ,

and
∥∥v jm

∥∥
2 > 0 is a sufficient condition for

∥∥ṽ j
∥∥

2 > 0. As a
result, F2 (v) can be simplified as

F2 (v) =
NB∑

j=1

NG∑

m=1

β jm
(
1 − cqm , j

)
I
(∥∥v jm

∥∥
2 > 0

)
. (28)

Based on the above discussions, the network power mini-
mization problem P can be equivalently reformulated as the
following group sparse beamforming problem:

PLGSBF : minimize
v

pLGSBF (v) (29)

subject to (19a) , (19b),
NG∑

m=1

Rm
(
1 − cqm, j

)
I
(∥∥v jm

∥∥
2 > 0

)

≤ CBH
j , ∀ j ∈ J, (29a)

with pLGSBF (v) = T (v) + F1 (v) + F2 (v). The equiv-
alence between problem P and problem PLGSBF means
that if v⋆ is a solution to problem PLGSBF, then(

A⋆,
{

n⋆
jm

}
,
{

v⋆
jm

})
with A⋆ =

{
j
∣∣∣
∥∥∥ṽ⋆

j

∥∥∥
2

> 0, j ∈ J
}

and

n⋆
jm =

(
1 − cqm, j

)
I
(∥∥∥v⋆

jm

∥∥∥
2

> 0
)

is a solution to prob-
lem P , and vice versa.

The incorporation of two group-sparsity measures in
our problem formulation generalizes those in previous
works [19], [32] which considered only one group-sparsity
measure. Notice that all these group sparse beamforming
problems can be unified in the following generalized group
structured optimization problem:

minimize
v

T (v) + λ1

NB∑

j=1

α j I
(∥∥ṽ j

∥∥
2 > 0

)

+ λ2

NB∑

j=1

NG∑

m=1

η jm I
(∥∥v jm

∥∥
2 > 0

)
(30)

subject to (19a) , (19b) , (29a),

where T (v) = ∑NB
j=1

∑NG
m=1 δ j

∥∥v jm
∥∥2

2 is a smoothed convex
function, and λk ≥ 0,∀k ∈ {1, 2} are regularization parameters
for groups at different layers. When {λk} take variant com-
binations, the model falls into different problems, as shown
in Table I. In our formulation, we have λ1 > 0,λ2 > 0, which
means that we incorporate multiple sparsity-inducing regular-
izers into the objective function, and therefore enable joint
optimization of BS selection and backhaul data assignment,
which generalizes the previous works. Specifically, the entries
of v are partitioned into different groups at two layers: i) the
BS-layer where the beamforming coefficients sent from each
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TABLE I

GENERALIZED GROUP SPARSE BEAMFORMING MODEL

Fig. 2. Proposed generalized three-stage LGSBF framework.

BS form a group (the number of groups of this layer is NB ),
and ii) the data assignment-layer where the beamforming
coefficients associated with one BS and one user group are
considered as a group (the number of groups of this layer
is NB NG ). Furthermore, the previous works [19], [32] failed
to take the per-BS backhaul capacity constraints into consid-
eration, which restricts their practical applications. In order to
solve problem PLGSBF, we are confronted with several unique
challenges which are highlighted as follows.

3) Combinatorial Objective Function: There are two indi-
cator functions in pLGSBF (v), acting as two group-sparsity
measures inducing group sparsity at different layers to the
problem. Moreover, the variables in the two group-sparsity
measures are non-separable. All the existing group sparse
beamforming methods [19], [24], [32], [33] can only deal
with one group-sparsity measure and are not applicable to our
problem.

4) Non-Convex Quadratic QoS Constraints: The non-
convex quadratic QoS constraints are yielded by the physical-
layer multicast beamforming problem. Consider problem
P

(
A, NBA)

as an example. On one hand, a ready approach to
deal with these constraints is to apply a semidefinite relaxation
(SDR) technique [43], and relax problem P

(
A, NBA)

into a
semidefinite programming (SDP) problem by removing the
rank-one constraints, at the price of lifting the variables
to higher dimensions. On the other hand, the non-convex
quadratic QoS constraints can also be rewritten into the DC
form [19]. Compared to the SDP transformation, the DC
transformation will not incur loss of optimality since it does
not involve rank-one constraints. Moreover, the number of
variables in the SDP transformation is almost the square of
that in problem P

(
A, NBA)

, while the number of variables
in the DC transformation nearly remains the same as that in
problem P

(
A, NBA)

.
5) Non-Convex Per-BS Backhaul Capacity Constraints:

Besides the aforementioned difficulties, the discrete indicator
function I

(∥∥v jm
∥∥

2 > 0
)

in per-BS backhaul capacity con-
straint, which characterizes whether BS j serves user group m,
makes the problem much more challenging. A key observation
is that the indicator function can be equivalently expressed as
an ℓ0-norm of a scalar. The ℓ0-norm stands for the number
of nonzero entries in a vector, and reduces to an indicator
function in the scalar case. By using ideas from previous

literature [24], we may further approximate the non-convex
ℓ0-norm by a convex reweighted ℓ1-norm.

Based on the challenges identified above, we will propose
a low-complexity algorithm to solve the problem efficiently
based on the formulation PLGSBF in the following section.

IV. LAYERED GROUP SPARSE

BEAMFORMING FRAMEWORK

In this section, based on the formulation PLGSBF, we will
develop a low-complexity algorithm. The main motivation is to
induce group sparsity in the aggregate beamformer v at both
the BS-layer and the data assignment-layer to minimize the
total network power consumption. The proposed framework
has three stages, as shown in Fig. 2. At the first stage,
we solve a reweighted group sparsity-inducing norm mini-
mization problem, so as to induce a group sparsity structure in
the aggregate beamformer. Then, in the second stage, based on
the approximately sparse beamformer obtained from the first
stage, we will conduct a two-layer iterative search procedure,
which can efficiently identify the active BSs and backhaul data
assignment, respectively. In the last stage, with the knowledge
of the active BS set and backhaul data assignment, coordinated
multicast beamforming will be adopted to obtain the final
beamformers. The details will be presented in the following
subsections.

A. Preliminaries and Motivation of LGSBF Framework

In order to induce group sparsity in the aggre-
gate beamformer v, we first replace indicator functions
by the ℓ0-norm, which are thereafter relaxed into the mixed
ℓ1

/
ℓp-norm (p > 1) [44]. The mixed ℓ1

/
ℓ2-norm

and ℓ1
/

ℓ∞-norm are two commonly used norms (also
called regularizers) for inducing group sparsity. The mixed
ℓ1

/
ℓ2-norm is the most common choice and known as the

group least-absolute selection and shrinkage operator (group
Lasso). In this study, we also adopt p = 2, and obtain a convex
approximation for the objective pLGSBF (v) as

p̂ (v) =
NB∑

j=1

NG∑

m=1

δ j
∥∥v jm

∥∥2
2 +

NB∑

j=1

PD
j ω̃ j

∥∥ṽ j
∥∥

2

+
NB∑

j=1

NG∑

m=1

β jm
(
1 − cqm , j

)
ω jm

∥∥v jm
∥∥

2 , (31)
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where
{
ω̃ j

}
and

{
ω jm

}
, j = 1, . . . , NB , m = 1, . . . , NG ,

are positive weights. Compared with existing sparse beam-
forming methods dealing with only one sparsity-inducing
regularizer [19], [33], the problem PLGSBF is even more
complicated since its objective function has incorporated two
sparsity-inducing regularizers. The multiple sparsity-inducing
regularizers indicate that the solution has a layered group
sparse pattern, based on which we name the proposed frame-
work as a layered group sparse beamforming (LGSBF)
framework. Moreover, in our problem, we are facing non-
covex constraints as discussed in Section III, which add more
challenges.

B. Stage I: Group Structured Sparsity Inducing
Norm Minimization

In this subsection, we propose a convex relaxation for prob-
lem PLGSBF. To start with, we adopt the DC transformation
to deal with the non-convex quadratic QoS constraints, which
are rewritten as

γk

⎛

⎝
NG∑

i ̸=m

∣∣∣hH
k vi

∣∣∣
2
+ σ 2

k

⎞

⎠ −
∣∣∣hH

k vm

∣∣∣
2

≤ 0, ∀k ∈Gm , ∀m ∈M .

(32)

Then, we need to address indicator functions in both the
objective function and backhaul capacity constraints. Indicator
functions can be equivalently expressed as the ℓ0-norm of
scalar functions, i.e.,

I
(∥∥ṽ j

∥∥
2 > 0

) =
∥∥∥
∥∥ṽ j

∥∥2
2

∥∥∥
0
,

I
(∥∥v jm

∥∥
2 > 0

)
=

∥∥∥
∥∥v jm

∥∥2
2

∥∥∥
0
, (33)

and then the mixed ℓ1
/

ℓ2-norm can be used to approximate
the nonconvex ℓ0-norm. In order to further enhance spar-
sity, we employ an iterative re-weighted ℓ1

/
ℓ2-minimization,

inspired by the reweighted ℓ1-minimization proposed in [45].
The surrogate objective is rewritten as

p̃
(
v

∣∣ω̃ j ,ω jm
)

=
NB∑

j=1

NG∑

m=1

δ j
∥∥v jm

∥∥2
2 +

NB∑

j=1

PD
j ω̃ j

∥∥ṽ j
∥∥2

2

+
NB∑

j=1

NG∑

m=1

β jm
(
1 − cqm, j

)
ω jm

∥∥v jm
∥∥2

2 ,

(34)

and thus the problem is reformulated as

PDC : minimize
v

p̃
(
v

∣∣ω̃ j ,ω jm
)

(35)

subject to
NG∑

m=1

Rm
(
1 − cqm, j

)
ω jm

∥∥v jm
∥∥2

2 ≤ CBH
j ,

∀ j ∈ J, (35a)

(19b) , (32),

where ω̃ j is a weight associated with the j -th BS, and ω jm is
a weight associated with the j -th BS and the m-th user group.

Similar to [45], we develop the iterative weight update rules as

ω̃ j = 1
∥∥ṽ j

∥∥2
2 + τ

, ω jm = 1
∥∥v jm

∥∥2
2 + τ

, ∀ j ∈ J, ∀m ∈ M ,

(36)

with ṽ j and v jm obtained from the previous iteration and
a small constant parameter τ > 0. Since the beamformer
ṽ j (or v jm) with a lower transmit power usually has less
impact, its transmit power should be encouraged to be further
reduced, and eventually forced to zero, in order to switch
off this BS (and its backhaul data delivery). Consequently,
we are motivated to design weight updating rules (36) where
ω̃ j and ω jm are inversely proportional to the transmit power.
The small parameter τ > 0 is introduced to provide stability,
and to ensure that a zero-valued component ṽ j (or v jm) does
not strictly prohibit a nonzero estimate at the next step. Similar
heuristic updating rules were also adopted in [24].

It is observed that problem PDC has a convex objective
function, as well as DC constraints and convex constraints, and
thus falls into the category of the general DC programming
problems which take the following form:

minimize
x

f0 (x) − h0 (x)

subject to fi (x) − hi (x) ≤ 0, i = 1, . . . , m, (37)

where fi (·) and hi (·), for i = 0, . . . , m, are convex functions.
The concave-convex procedure (CCCP) [46] has been devel-
oped to reach a local minimum of DC programming problems
with a guaranteed convergence, where xt can be updated by
solving the convex subproblem:

minimize
x

g0 (x |xt )

subject to gi (x |xt ) ≤ 0, i = 1, . . . , m, (38)

where

gi (x |xt ) = fi (x) −
[
hi (xt ) + ∇hi (xt )

T (x − xt )
]
, (39)

for all i = 0, . . . , m. To be specific, for problem PDC,
the subproblem in the t-th iteration of the CCCP takes the
following form:

minimize
v

p̃
(

v
∣∣∣ω̃[t ]

j ,ω[t ]
jm

)
(40)

subject to γm

⎛

⎝
NG∑

i ̸=m

∣∣∣hH
k vi

∣∣∣
2
+ σ 2

k

⎞

⎠ − 2Re
{(

v[t ]
m

)H
hkhH

k vm

}

+
(
v[t ]

m
)H

hkhH
k v[t ]

m ≤ 0, ∀k ∈ Gm , ∀m ∈ M ,

(40a)
NG∑

m=1

Rm
(
1 − cqm , j

)
ω[t ]

jm

∥∥v jm
∥∥2

2 ≤ CBH
j , ∀ j ∈ J,

(40b)
NG∑

m=1

∥∥v jm
∥∥2

2 ≤ PTX
j , ∀ j ∈ J, (40c)

where the coefficients

ω̃[t ]
j = 1

∥∥∥ṽ[t ]
j

∥∥∥
2

2
+ τ

, and ω[t ]
jm = 1

∥∥∥v[t ]
jm

∥∥∥
2

2
+ τ

(41)
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are updated with the solution v[t ] obtained in the previous
iteration. In the t-th iteration, we obtain the solution v[t+1] by
solving problem (40). Problem (40) is a convex quadratically
constrained quadratic program (QCQP), which can be regarded
as a special case of a second-order cone program (SOCP)
and can be readily solved by interior-point methods with
complexity as O

(
N3.5

G N3.5
B L3.5) [47]. To solve our problem

efficiently, we need to carefully choose an initial feasible
point for the CCCP algorithm. Therefore, an initialization
step is proposed by solving a transmit power minimization
problem P0 with SDR technique [43], i.e.,

P0 : minimize
{Wm }

NG∑

m=1

Tr (Wm) (42)

subject to
NG∑

m=1

Tr
(
WmJ j

) ≤ Pj , ∀ j ∈ J, (42a)

Tr (WmHk)
∑NG

i=1,i ̸=m Tr (Wi Hk) + σ 2
k

≥ γm, ∀k ∈Gm , ∀m ∈M ,

(42b)
NG∑

m=1

Rm
(
1 − cqm , j

)
ω jmTr

(
WmJ j

)
≤ CBH

j , ∀ j ∈ J,

(42c)

Wm ≽ 0, ∀m ∈ M , (42d)

where we define two matrices Wm = vmvH
m ∈ CN×N ,

∀m ∈ M and Hk = hkhH
k ∈ CN×N ,∀k ∈ K , to lift

the quadratic constraints into higher dimensions. Moreover,
we define a set of selective matrices J j ∈ {0, 1}N×N ,∀ j ∈ J ,
with J j = diag

(
0( j−1)L , 1L, 0(NB− j )L

)
as a diagonal matrix.

All {Wm} are rank-one constrained. If the solution {Wm}
are all rank-one, the feasible beamformers {vm} obtained by
applying the eigenvalue decomposition (EVD) on {Wm} can
be directly employed as the initial feasible point for the CCCP
algorithm. If the solutions {Wm} are not rank-one, {vm} are
obtained through randomizing and scaling. If problem P0
is infeasible, the original problem P is infeasible and the
optimization has to terminate.

After solving problem PDC, we will obtain the sparse
beamforming vector v̂ as the output of the first stage, as shown
in Fig. 2. The algorithm solving the group sparsity-inducing
norm minimization problem for the first stage is presented as
Algorithm 1, which will converge to local minima or saddle
points of problem PDC [46], [48], if it is feasible.

C. Stage II: Iterative Search Procedure

Inducing the sparsity structure in the solution is critical
to problem PLGSBF. As illustrated in Fig. 3, the layered
group sparse pattern can be mapped to a hierarchy tree.
Generally, the solution v̂ obtained from Stage I is not
strictly sparse, and thus we propose to trim the entries of
v̂ to obtain the group sparse solution. Although backhaul
capacity constraints can help us filter some sparsity patterns
(i.e, prune some nodes in the hierarchy tree), finding the

Algorithm 1 The Group Sparsity-Inducing Norm Minimiza-
tion Algorithm

Step 1: Find an initial feasible point
{
v[0]} by solving

problem P0;
Step 2: Initialize

{
ω[0]

jm

}
,
{
ω̃[0]

j

}
, and set the iteration counter

as t = 0;
Step 3: Repeat

1) Solve problem (40), and obtain the beamformer v[t+1];
2) Set t = t + 1, and update the weights according to (41);

Step 4: Until stopping criterion is met and obtain the
beamformer v̂;
End

Fig. 3. The layered group sparse pattern in the aggregate beamformer.

optimal sparsity pattern in v brings about high computa-
tional complexity. In this subsection, we develop an efficient
search procedure to identify active BSs and backhaul data
assignment.

1) BS Ordering and Selection: With the knowledge of the
input v̂, the next step is to determine the active BS set.
After giving proper priorities to BSs, we can obtain an
ordering list to switch them off. Previous works have con-
sidered different ways to calculate the priorities. For exam-
ple, Mehanna et al. [49] directly mapped the group-sparsity
obtained by the group-sparsity inducing norm minimization
to their application, i.e., the transmit antennas with smaller
coefficients in the group were determined to be turned off
with a higher priority. Following this idea, in our setting,
the priorities might be given as θ̃ j =

∥∥ṽ j
∥∥

2 ,∀ j, which implies
that the BS with a lower transmit beamforming gain should
be encouraged to be switched off. However, such a direct
mapping might bring performance degradation, as shown
in [32]. To get a better performance, it is essential to consider
not only the transmit beamforming gain but also other key
system parameters indicating the impact of the BSs on the
network performance. Similar to the one employed in [32],
to assign priorities to BSs, we propose the following ordering
criteria that incorporates channel power gain, BS power ampli-
fier efficiency, relative power consumption, backhaul power
consumption, caching status and beamforming gain, that is,

θ̃ j =
√√√√

κ̃ j

δ j

(
P D

j +∑NG
m=1 β jm

(
1−cqm, j

))
∥∥ṽ j

∥∥
2 , ∀ j, (43)

where κ̃ j = ∑NU
k=1

∥∥hkj
∥∥2 is the channel gain from the

j -th BS to all MUs. The BS with a higher priority
(i.e., smaller θ̃ j ) will be switched off before the one with a
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lower priority (i.e., larger θ̃ j ). This ordering criteria implies
that the BS with a lower channel power gain, lower BS power
amplifier efficiency (i.e., higher δ j ), higher relative transport
link power consumption, higher backhaul power consumption
and lower cache hit ratio should have a higher priority to be
switched off. Once BS j is decided to be switched off, all its
corresponding beamforming coefficients will be set to zero,
i.e, ṽ j = 0. Based on the ordering criteria rule, we sort the
coefficients in ascending order. Each time a BS is decided to
be switched off, the inactive BS set ZBS will be updated and
we check a feasibility problem:

F1 (ZBS) : find v (44)

subject to
NG∑

m=1

∥∥v jm
∥∥2

2 ≤ PTX
j , ∀ j /∈ ZBS,

(44a)

ṽ j = 0, if j ∈ ZBS, (44b)

(32) , (35a),

which is a DC programming that can be solved by the CCCP
algorithm.

2) Backhaul Data Assignment for Active BSs: If problem
F1 (ZBS) is feasible, the next question is to determine the
backhaul data assignment for the active BSs in order to further
reduce the power consumption. Similar to the design idea
for (43), we calculate priorities of backhaul data assignment
for the active BSs by taking the aforementioned key system
parameters into consideration. Consequently, we propose the
following ordering criteria to determine which backhaul data
assignment should be turned off, i.e.,

θ jm =

⎧
⎪⎨

⎪⎩

√ κ jm

δ j

(
P D

j +β jm
(
1−cqm, j

))
∥∥v jm

∥∥
2 , if j /∈ ZBS

0, if j ∈ ZBS,

(45)

where κ jm = ∑
k∈Gm

∥∥hkj
∥∥2 is the channel gain from the

j -th BS to the MUs in the m-th user group. Based on the
ordering criteria, we delete a piece of data assignment each
time and update the inactive data assignment set ZD A. With
ZBS and ZD A, the subproblem that we need to solve takes the
following form:

F2 (ZBS, ZD A) : find v (46)

subject to v jm = 0, ∀ ( j, m)∈ZD A, (46a)

(32) , (35a) , (44a) , (44b),

which is also a DC program, and can be solved by the CCCP
algorithm.

Realizing that switching off as many BSs as possible may
not result in a minimum total network power consumption,
we are motivated to adopt a conservative strategy to determine
the final active BS set and backhaul data assignment. To obtain
the minimum network power consumption, we iteratively
search over all possible ZBS and ZD A, and record the cor-
responding network power. By comparing all the recorded
values, we can determine

(
Z⋆

BS, Z⋆
D A

)
that corresponds to the

minimal network power consumption. Overall, the iterative

search method can be accomplished via solving no more than
NG NB (NB +1)

2 DC problems.

D. Stage III: Obtain Transmit Beamformers

With the obtained inactive BS set Z⋆
BS and inactive data

assignment set Z⋆
D A, we can obtain the final beamforming

vector by solving the following problem:

PFinal (Z⋆
BS, Z⋆

D A
)

:

minimize
v

NB∑

j=1

NG∑

m=1

δ j
∥∥v jm

∥∥2
2 (47)

subject to ṽ j = 0, ∀ j ∈ Z⋆
BS, (47a)

v jm = 0, ∀ ( j, m) ∈ Z⋆
D A, (47b)

NG∑

m=1

∥∥v jm
∥∥2

2 ≤ PTX
j , ∀ j /∈ Z⋆

BS, (47c)

(32) , (35a),

which is also a DC program. In principle, problem (47)
can be globally solved via the branch-and bound algorithm
by extending the method developed in [50]. Such global
optimization algorithms have high computational complexity,
and cannot be applied in dense networks. Therefore, the CCCP
algorithm is adopted to efficiently obtain a local optimal
solution. The overall iterative LGSBF algorithm is summarized
in Algorithm 2. Note that the proposed approach provides a
general framework for a multi-layer GSBF problem, where
various group sparsity-inducing algorithms, e.g., the smoothed
ℓp-minimization [33], can be applied in Stage I.

E. Complexity and Convergence Analysis

It has been shown that for the iterative search procedure,
the number of general DC problems to be solved is no more
than NG NB (NB +1)

2 . To obtain a local optimal solution for
general DC programs, at each iteration of the CCCP-based
algorithm, we need to solve a convex QCQP (or equivalently
SOCP) problem with a complexity of O

(
N3.5

G N3.5
B L3.5) by

interior-point methods, which constitutes the main compu-
tational complexity of the proposed LGSBF algorithm. For
large-scale networks, other approaches for solving large-sized
SOCPs, e.g., the alternating direction method of multipli-
ers (ADMM) method [51], need to be explored. For uncon-
strained DC programs with differentiable objectives, it could
converge superlinearly [48], while the convergence rate of
general DC programs is still an open problem.

V. SIMULATION RESULTS

In this section, we simulate the performance of the proposed
algorithm. We consider a hexagonal multicell network, where
each BS is located at the center of a hexagonal cell whose
radius is set to be 500 m, and MUs are uniformly and indepen-
dently distributed in the network, excluding an inner circle of
50 m around each BS. The channel between the j -th BS and
the k-th user is modeled as hkj = 10− L(dkj )

/
20√ϕkj skj gkj ,

where L
(
dkj

)
is the path-loss at distance dkj , skj is the

shadowing coefficient, ϕkj is transmit antenna power gain and
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Algorithm 2 The Iterative LGSBF Algorithm

Step 1: Solve problem PLGSBF by applying Algorithm 1:
if it is infeasible, go to End; otherwise, obtain v̂;
Step 2: Calculate the ordering criterion (43), and sort the
values in the ascending order θ̃π1 ≤ · · · ≤ θ̃πNB

;
Step 3: Initialize Z[0]

BS = ∅, and i = 0;

Step 4: Solve the optimization problem F1

(
Z[i]

BS

)

1) If F1

(
Z[i]

BS

)
is feasible,

a) Calculate the ordering criterion (45), and sort the
values in the ascending order θ̃ϖ1 ≤ · · · ≤ θ̃ϖNB NG

;
b) Initialize Z[0]

D A = ∅, and k = 0;
c) Repeat Solve the optimization problem

F2

(
Z[i]

BS, Z[k]
D A

)
, update the set Z[k+1]

D A =
Z[k]

D A ∪ {ϖk+1} and k = k + 1;
d) Until infeasible, obtain SK

[i] = {0, 1, . . . , k − 1};
e) Update the set Z[i+1]

BS = Z[i]
BS ∪{πi+1} and i = i +1,

go to Step 4;

2) If F1

(
Z[i]

BS

)
is infeasible, obtain SI = {0, 1, . . . , i − 1},

go to Step 5;
Step 5: Obtain the optimal inactive BS set Z⋆

BS and inac-
tive data assignment set Z⋆

D A by solving
(
Z⋆

BS, Z⋆
D A

)
=

arg min
i∈SI ,k∈SK [i]

p⋆
(

Z[i]
BS, Z[k]

D A

)
;

Step 6: Obtain beamformers by solving problem
PFinal (Z⋆

BS, Z⋆
D A

)
;

End

TABLE II

SIMULATION PARAMETERS

gkj is the small scale fading coefficient. We adopt the standard
cellular network parameters as presented in Table II.

The file library contains 100 pieces of content, whose
popularity follows a Zipf distribution with parameter γz = 1.2.
In this popularity model, a small γz implies a flat pop-
ularity distribution, while a large γz means the opposite.
BSs are assumed to have equal cache sizes. We shall
briefly show the role of cache by varying the cache size
and caching strategies via simulations. Herein, we con-
sider two widely-employed heuristic caching strategies,
i.e., the most popular caching (MPC) [52] and probabilistic
caching (ProbC) [19], [53]. For MPC, each BS caches as
many popular files as possible in accordance with the file
popularity rank in the descending order. As for ProbC, each
BS randomly caches files with the same probabilities as their
request probabilities. Assume that the SINR requirements for

different user groups are the same, i.e., γm = γ ,∀m ∈
{1, . . . , NG }.

A. Network Power Consumption

Consider a network with NB = 7 BSs, each of which has
two antennas, and NU = 15 single-antenna MUs. We set
the relative power consumption as P D

j = [5.6 + j − 1] W,

∀ j ∈ J , backhaul energy coefficient as EBH
j = 1×10−7 J

/
bit,

and per-BS backhaul capacity as 500 Mbps. Each BS has a
cache size of 10 files [53], i.e., c f j = 1,∀ f = 1, . . . , 10,
∀ j ∈ J .

The proposed algorithm is compared with the following
algorithms:

• Coordinated beamforming (CB) algorithm: In this algo-
rithm [41], all BSs are in the active mode and only the
total BS transmit power consumption is minimized.

• Sparse multicast beamforming algorithm with adaptive
BS selection: This algorithm [33] develops a procedure
to switch off as many BSs as possible. The non-convex
smoothed ℓp-norm is adopted to replace the convex mixed
ℓ1

/
ℓ2-norm in the objective function. The non-convex

quadratic forms of beamforming vectors in the objective
function and the non-convex quadratic QoS constraints
are relaxed by leveraging SDR technique. Then an iter-
ative reweighted-ℓ2 algorithm is employed to solve the
problem.

• Sparse multicast beamforming algorithm with adaptive
backhaul content assignment: In this algorithm [19],
the number of backhaul content assignments is mini-
mized. Smooth approximated functions are employed to
approximate the ℓ0-norm terms and a generalized CCCP
algorithm is applied to solve the problem. The arctangent
function is adopted since [19] shows it gives the best
approximation performance.

Fig. 4 demonstrates the total network power consumption
with different target SINR values under MPC and ProbC,
respectively. It shows that the proposed iterative LGSBF
algorithm outperforms existing algorithms with both caching
strategies, which confirms the effectiveness of the proposed
algorithm. When the target SINR increases, it is observed that
the gap between different algorithms becomes smaller, while
benchmark 2 converges to CB faster than benchmark 3 and the
proposed algorithm. It is because that more and more BSs need
to be switched on to support the increasing QoS requirements,
which decreases the benefit of active BS selection. Whereas,
a careful design for backhaul content assignment can still help
reduce network power consumption, since it can bring some
cooperation chance for BSs and avoid unnecessary backhaul
consumption at the same time.

Remark 1: The proposed algorithm achieves a better per-
formance than those of [33] and [19] by considering a two-
layer adaptive selection for both active BS and actual backhaul
assignment instead of the existing one-layer approaches. This
indicates that the joint adaptive decision of BS selection and
backhaul content assignment can effectively reduce network
power consumption for a wide range of target SINRs.

Remark 2: Comparing two caching strategies, we observe
that MPC performs better than ProbC in reducing network
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Fig. 4. Total Network power consumption versus target SINR.

power consumption, and the gap becomes larger when the
target SINR increases. In general, MPC provides better per-
formance than ProbC for normal network settings, and similar
findings are also observed in [19].

B. Impact of Cache Size

In Fig. 5(a) and Fig. 5(b), we compare the performance
of the proposed algorithm with benchmarks in terms of the
tradeoff between total network power consumption and per-
BS cache size under target SINR = 5 dB and SINR = 10 dB,
respectively. Other settings are the same as those in Fig. 4.
From Fig. 5, it is observed that the proposed algorithm
outperforms benchmarks under different cache sizes. More-
over, the advantage of adaptive backhaul content assignment
will gradually be surpassed by adaptive BS selection when
the cache size increases; at a higher target SINR regime,
the crosspoint will occur at a larger cache size. Besides this,
the proposed algorithm achieves a better performance in a low
SINR regime. It can be inferred that the increase in the cache
size allows more BSs to be switched off, especially when the
QoS requirement is comparatively low.

With the same network setting as in Fig. 5(a), the details
of the impact of caching on the BSs and backhaul links
are demonstrated in Fig. 6. This figure shows that the CB
algorithm, which intends to minimize the BS transmit power

Fig. 5. The tradeoff between the total network power consumption and the
cache size of each BS.

consumption, has the highest backhaul power consumption.
This is because all the BSs are active in the CB algorithm
in order to achieve the highest beamforming gain. Moreover,
by comparing Benchmark 2, Benchmark 3 and the proposed
algorithm, it can be inferred that minimizing either the number
of active BSs or the number of backhaul content delivery
cannot be the optimal strategy to save power. Since both the
backhaul power consumption and BS power consumption hold
a nontrivial share, a joint adaptive BS selection, backhaul data
assignment and power minimization beamforming is crucial
for minimizing the total network power consumption.

C. Impact of the Number of Mobile Users and
Backhaul Energy Coefficient

We also investigate the impact of other important network
parameters, i.e., the number of MUs and backhaul energy
coefficient, as shown in Fig. 7. The figure demonstrates that
when the number of MUs increases, the performance gap
between the zero-cache case and full-cache case becomes
larger. On the other hand, Fig. 7 also shows that the per-
formance gap between the zero-cache case and full-cache
case is larger for the network with a higher backhaul energy
coefficient. Actually, different backhaul energy coefficients
represent different types of backhaul links: a higher backhaul
energy coefficient stands for less power-efficient backhaul
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Fig. 6. The impact of the cache size.

Fig. 7. Total Network power consumption versus cache size under different
MU densities.

links, and vice versa. To enhance the performance in total
network power consumption, the operators can either upgrade
the backhaul links, which is expensive, or simply install cost-
effective caches. From the simulation, we can infer that caches
will play a more significant part in networks with higher user
densities, and less power-efficient backhaul links.

VI. CONCLUSIONS

In this study, we developed an effective framework to min-
imize the total network power consumption of cache-enabled

wireless networks. The proposed LGSBF formulation general-
ized existing works on group sparse beamforming, for which
an effective algorithm was developed. The proposed algorithm
can significantly reduce the total network power consumption
via a joint design of adaptive BS selection, backhaul content
assignment and multicast beamforming. From the simulations,
the proposed LGSBF framework was demonstrated to out-
perform existing algorithms by striking a balance between
the BS power consumption and backhaul power consumption.
Furthermore, it was shown that caching tends to play a more
significant part in networks with higher user densities and less
power-efficient backhaul links. For future research directions,
it would be interesting to optimize the caching placement in
the prefetching phase, and incorporate it when minimizing
the total network power consumption. It is also important but
challenging to develop more efficient distributed algorithms
for practical implementation in large-scale networks.
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