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Abstract—In this paper, we present a flexible low-rank matrix
completion (LRMC) approach for topological interference man-
agement (TIM) in the partially connected K -user interference
channel. No channel state information (CSI) is required at the
transmitters except the network topology information. The previ-
ous attempt on the TIM problem is mainly based on its equivalence
to the index coding problem, but so far only a few index coding
problems have been solved. In contrast, in this paper, we present
an algorithmic approach to investigate the achievable degrees-
of-freedom (DoFs) by recasting the TIM problem as an LRMC
problem. Unfortunately, the resulting LRMC problem is known to
be NP-hard, and the main contribution of this paper is to pro-
pose a Riemannian pursuit (RP) framework to detect the rank
of the matrix to be recovered by iteratively increasing the rank.
This algorithm solves a sequence of fixed-rank matrix completion
problems. To address the convergence issues in the existing fixed-
rank optimization methods, the quotient manifold geometry of the
search space of fixed-rank matrices is exploited via Riemannian
optimization. By further exploiting the structure of the low-rank
matrix varieties, i.e., the closure of the set of fixed-rank matrices,
we develop an efficient rank increasing strategy to find good ini-
tial points in the procedure of rank pursuit. Simulation results
demonstrate that the proposed RP algorithm achieves a faster con-
vergence rate and higher achievable DoFs for the TIM problem
compared with the state-of-the-art methods.

Index Terms—Interference alignment, topological interference
management, degrees-of-freedom, index coding, low-rank matrix
completion, Riemannian optimization, quotient manifolds.

I. INTRODUCTION

N ETWORK densification with interference coordination
has been recognized as a promising way to meet the

exponentially growing mobile data traffic in next generation
wireless networks [1]–[3]. In particular, interference align-
ment [4] has been proposed as a powerful tool to understand
the Shannon capacity in various interference-limited scenarios,
e.g., the MIMO interference channel [5] and cellular networks
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[6]. Although interference alignment can serve as a linear inter-
ference management strategy achieving the optimal DoFs in
many scenarios, the overhead of obtaining the required global
instantaneous channel state information (CSI) has hindered its
practical implementation [7]. This motivates numerous research
efforts on CSI overhead reduction for interference alignment,
e.g., with delayed CSI [8] and alternating CSI [9]. However,
the practical applicability of these results remain unclear. More
recently, a new proposal has emerged, namely, topological
interference management (TIM) [10], as a promising solution
for the partially connected interference channels. It is mainly
motivated by the fact that most of the channels in a wireless
network are very weak and can be ignored due to the shad-
owing and pathloss [10]–[12]. It thus provides an opportunity
to manage interference only based on topological information
rather than the instantaneous CSI.

Specifically, in the TIM problem, we assume that no CSI
at the transmitters is available beyond the network topology
knowledge, i.e., the connectivity of the wireless network. Due
to the practical applicability of such CSI assumption and infor-
mation theoretic interest, the TIM problem has received tremen-
dous attentions and been investigated in various scenarios with
partial connectivity, e.g., the fast fading scenarios [11], [13],
transmitter cooperation [14] and MIMO interference channels
[15]. In particular, in a slow fading scenario, by establishing the
connection between the wireless TIM problem and the wired
index coding problem, efficient capacity and DoF analysis was
provided in [10] based on the existing results from index cod-
ing problems. However, the index coding problem itself is an
open problem, and thus the existing solutions are only valid for
some special cases. For general network topologies in the wire-
less TIM problem, the optimal DoF is still unknown. In a fast
fading scenario, a matrix rank-loss approach based on matroid
and graph theories was presented in [13] to characterize the
symmetric DoF for a class of TIM problems.

In this paper, we will present an algorithmic approach to
evaluate the achievable DoFs in the TIM problem for gen-
eral partially connected interference channels. It is achieved
by recasting the original TIM problem as a low rank matrix
completion (LRMC) problem [16]. Then the minimum num-
ber of channel uses for interference-free data transmission will
be equal to the minimum rank of the matrix in the associated
LRMC problem. This approach has recently been applied to
solve the linear index coding problem over the finite field [17]
and the wireless TIM problem with symmetric DoFs [18], [19].
We shall extend the previous results on the symmetric DoF case
with single data transmission for each user [18], [19] to any
achievable DoF region. The presented LRMC approach will
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serve as a flexible way to maximize the achievable DoFs for any
network topology, thereby providing insights on the TIM prob-
lem for general network topologies that are not yet available in
theory.

Unfortunately, the resulting LRMC problem is NP-hard due
to the non-convex rank objective. Although the widely used
nuclear norm based convex relaxation provides an effective
way to solve the LRMC problem with polynomial time com-
plexity and optimality guarantees with well structured affine
constraints [16], it is inapplicable to our problem as it always
returns a full rank solution [18]. Another category of algorithms
is based on alternating minimization [20], [21] by recasting
the original LRMC problem as a fixed-rank optimization prob-
lem. Although the optimality can be guaranteed with standard
assumptions (e.g., the original data matrix should be incoher-
ent [16]), the existing fixed-rank methods may converge slowly
[22], [23] and require the optimal rank of the matrix as a prior
information [24].

A. Contributions

We present a low-rank matrix completion approach to maxi-
mize the achievable DoFs for the TIM problem. In particular,
we extend the results in [19], [18] for the symmetric DoF
with single data transmission for each user to any DoF region.
To address the limitations of existing fixed-rank approaches,
we propose a Riemannian pursuit (RP) algorithm to solve the
LRMC problem for the TIM problem. This is achieved by iter-
atively increasing the rank of the matrix to be recovered. In
particular, the developed RP algorithm possesses the following
properties:
• We can efficiently solve the fixed-rank optimization prob-

lems to address the convergence issues in the existing
fixed-rank methods;
• We design an efficient rank increasing strategy to find a

good initial point in the next iteration for rank pursuit.
In the proposed RP framework, by exploiting the Riemannian

quotient manifold geometry of the search space of fixed-rank
matrices via low-rank matrix factorization [23], [25]–[27], the
nonlinear conjugate gradient (a first-order method with super-
linear convergence rate endowed with a good Riemannian
metric [26], [27]) and trust-region (a second-order method with
quadratic convergence rate [28]) based Riemannian optimiza-
tion algorithms [29] are developed to solve the smooth fixed-
rank optimization problems. These algorithms can achieve
faster convergence rates and higher precision solutions com-
pared with the existing fixed-rank methods, such as the alternat-
ing minimization method [20], [21] and the embedded manifold
based Riemannian optimization algorithm [22]. Furthermore,
by exploiting the structures of low-rank matrix varieties [24],
[30], [19], i.e., the closure of the set of fixed-rank matrices, an
efficient rank increasing strategy is proposed to find a high qual-
ity initial point and to guarantee that the objective decreases
monotonically in the procedure of rank pursuit.

In summary, the major contributions of the paper are as
follows:

1) A Riemannian pursuit framework is proposed to solve
the resulting LRMC problem by solving a sequence of

fixed-rank optimization problems with an efficient rank
increasing strategy.

2) To address the convergence issues in the existing fixed-
rank based methods, we present a versatile Riemannian
optimization framework by exploiting the quotient man-
ifold geometry of the fixed-rank matrices and the least-
squares structure of the cost function [26] as well as the
second-order information of the problem.

3) A novel rank increasing strategy is proposed, which
considers intrinsic manifold structures in the developed
Riemannian optimization algorithms. In particular, by
exploiting the structures of low-rank varieties, we extend
the results in[24], [19] for the embedded manifold to the
framework of the quotient manifold.

Simulation results will demonstrate the superiority of the
proposed RP algorithms with faster convergence rates and
the capability of automatic rank detection compared with the
existing fixed-rank optimization algorithms to maximize the
achievable DoFs for the TIM problem.

B. Organization

The remainder of the paper is organized as follows. Section II
presents the system model and problem formulations. In
Section III, the low-rank matrix completion approach with
Riemannian pursuit is developed. The Riemannian optimization
algorithms are developed in Section IV. The rank increas-
ing strategy is presented in Section V. Numerical results will
be demonstrated in Section VI. Finally, conclusions and dis-
cussions are presented in Section VII. The derivations of the
Riemannian optimization related ingredients are diverted to the
appendix.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. Channel Model

Consider the topological interference management
(TIM) problem in the partially connected K -user interfer-
ence channel with K single-antenna transmitters and K
single-antenna receivers [10]. Specifically, let V be the index
set of the connected transceiver pairs such that (i, j) ∈ V rep-
resenting the i-th receiver is connected to the j-th transmitter.
That is, the channel propagation coefficients belonging to the
set V are nonzero and are set to be zeros otherwise. Each
transmitter j wishes to send a message W j to its corresponding
receiver j . Here, W j is uniformly chosen in the corresponding
message set W j .

Each transmitter j encodes its message W j into a vector
x j ∈ C

N of length N and transmits the signal over N time slots.
Therefore, the input-output relationship is given by

yi = H[i i]xi +
∑

(i, j)∈V,i �= j

H[i j]x j + ni ,∀i = 1, . . . , K , (1)

where ni ∼ CN(0, IN ) and yi ∈ C
N are the additive isotropic

white Gaussian noise and received signal at receiver i ,
respectively; H[i j] = diag{Hi j } = Hi j IN is an N × N diago-
nal matrix with Hi j ∈ C as the channel coefficient between
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transmitter j and receiver i in the considered block. We con-
sider the block fading channel model, and thus the channel
stays constant during the N time slots, i.e., all the diagonal
entries in H[i j] are the same. The matrix representation for
the channel coefficients in (1) is mainly for the comparison
of different channel models to establish the interference align-
ment conditions, which will be explained in Section II-C. In
this paper, following the TIM setting [10], we assume that
only the network topology information V is available at trans-
mitters. Furthermore, each transmitter has an average power
constraint, i.e., 1

N E[‖xi‖2] ≤ ρ with ρ > 0 as the maximum
transmit power.

B. Achievable Rates and DoF

We assume that transmitters 1, 2, . . . , K have independent
messages W1, W2, . . . , WK intended for receivers 1, 2, . . . , K ,
respectively. The rate tuple (R1, R2, . . . , RK ) with Ri =
log |Wi |

N is achievable if there exists an encoding and decoding
scheme such that the probability of decoding error for all the
messages can be made arbitrarily small simultaneously as the
codewords length N approaches infinity [31].

The degrees of freedom (DoF) in the partially connected K -
user interference channel is defined as [10], [4]

di = lim sup
ρ→∞

Ri

log(ρ)
,∀i. (2)

The DoF region D is defined as the closure of the set of achiev-
able DoF tuples. In particular, the symmetric DoF dsym is the
highest value d0, such that the DoF allocation di = d0,∀i , is
inside the DoF region. This is given by [10]

dsym = lim sup
ρ→∞

[
sup(Rsym,...,Rsym)∈D

Rsym

log(ρ)

]
. (3)

In this paper, we choose the DoF as the performance metric
and design the corresponding linear interference management
strategies to maximize the achievable DoFs [10], [5].

C. Topological Interference Management

Linear schemes become particular interesting for interfer-
ence management due to their low-complexity and the DoF
optimality in many scenarios [10], [4], [5]. We thus restrict
the class of interference management strategies to linear
schemes to maximize the achievable DoFs as the signal-to-
noise ratio (SNR) approaches infinity. Specifically, for mes-
sage W j , let V j ∈ C

N×M j and Ui ∈ C
N×Mi be the precoding

matrix at transmitter j and the receiver combining matrix
at receiver i , respectively. Assume that each message W j is
split into M j independent scalar data streams, denoted as
s j = [s1(W j ), s2(W j ), . . . , sM j (W j )]T ∈ C

M j . And sm(W j )’s
are independent Gaussian codebooks, each of which carries
one symbol and is transmitted along the column vectors of the
precoding matrix V j . Therefore, over the N channel uses, the
input-output relationship (1) is rewritten as

yi = H[i i]Vi si +
∑

(i, j)∈V,i �= j

H[i j]V j s j + ni ,∀i. (4)

In the regime of asymptotically high SNR, to accomplish
decoding, we impose the constraints that, at each receiver i , the
desired signal space H[i i]Vi is complementary to the interfer-
ence space

∑
(i, j)∈V,i �= j H[i j]V j . That is, after projecting the

received signal vector yi onto the space Ui , the interference
terms should be aligned and then cancelled while the desired
signal should be preserved [5], [32], [4], i.e.,

UH
i H[i j]V j = 0,∀i �= j, (i, j) ∈ V, (5)

det
(

UH
i H[i i]Vi

)
�= 0,∀i. (6)

If conditions (5) and (6) are satisfied, the parallel interference-
free channels can be obtained over N channel uses. Therefore,
the DoF of Mi/N is achieved for message Wi . However,
this requires instantaneous CSI and its acquisition is chal-
lenging in dense networks with a large number of transceiver
pairs [7], [10].

Observe that the channel matrix H[i j] equals Hi j IN for the
constant channel over the N channel uses. The conditions (5)
and (6) can be rewritten as the following channel independent
conditions:

UH
i V j = 0,∀i �= j, (i, j) ∈ V, (7)

det
(

UH
i Vi

)
�= 0,∀i. (8)

Therefore, we can design the transceivers Ui ’s and V j ’s only
based on the knowledge of the network topology without
requiring the instantaneous CSI. This is fundamentally differ-
ent from the conventional interference alignment approach [5],
[4], [33], in which the global instantaneous CSI is required.
In contrast, the channel independent topological interference
management conditions (7) and (8) make the corresponding
interference management approach much more practical.

Remark 1: In this paper, we consider the block fading chan-
nel model to capture the channel coherence phenomenon in
a slow fading scenario. Specifically, we assume that channel
gains stay constant over N time slots such that the effec-
tive channel matrix H[i j] is a diagonal matrix with identical
diagonal entries, which plays a key role to yield the channel
independent interference alignment conditions (7) and (8). This
further motives the low-rank matrix completion approach in
Section III. However, in a fast fading scenario, i.e., the chan-
nel gains change at each time instant, the approaches presented
in this paper may not be applicable, and other approaches (e.g.,
the rank-loss approach [13]) are required.

The problem of studying the DoFs in the partially connected
interference channels based on the network topology infor-
mation is known as the topological interference management
(TIM) problem [10], [11], [34]. Most of the existing works on
the TIM problem are trying to establish the topology conditions
under which the desired DoF is achievable based on graph the-
ory [11], [34], or applying the existing results from the index
coding problem [10]. In contrast, in this paper, by generaliz-
ing the preliminary results in [18], [19] for the case of single
data stream transmission, we present a novel approach based on
the low-rank matrix completion [16] to solve the TIM problem
based on conditions (7) and (8) for arbitrary network topologies
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with arbitrary number of data streams. Furthermore, novel algo-
rithms will be developed based on Riemannian optimization
techniques [29] to solve the resulting NP-hard LRMC problem.

III. LOW-RANK MATRIX COMPLETION FOR TOPOLOGICAL

INTERFERENCE MANAGEMENT VIA RIEMANNIAN PURSUIT

In this section, we present a low-rank matrix completion
approach to solve the TIM problem, i.e., finding the minimum
channel uses N such that the interference alignment conditions
(7) and (8) are feasible. Specifically, define Xi j = UH

i V j ∈
C

Mi×M j . Then, conditions (7) and (8) can be rewritten as

P�(X) = IM , (9)

where X = [Xi j ] ∈ C
M×M with M =∑

i Mi , IM is the
M × M identity matrix, and P� : RM×M → R

M×M is the
orthogonal projection operator onto the subspace of matrices
which vanish outside � such that the (i, j)-th component
of P�(X) equals to Xi j if (i, j) ∈ � and zero otherwise.
Here, the set � is defined as � = {Gi × G j , (i, j) ∈ V}, where
Gi = {∑i−1

k=1 Mk + 1, . . . ,
∑i

k=1 Mk}. For example, given the
network topology adjacency matrix V = {(1, 1), (1, 2), (2, 2)}
and M1 = M2 = 2, the set � is given as � =
{(1, 1), (1, 2), (2, 1), (2, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 3),

(3, 4), (4, 3), (4, 4)}. To yield a nontrivial solution, we
assume that N ≤ M . As X = [UH

i V j ] = UHV ∈ C
M×M with

U = [U1, . . . , UK ]H ∈ C
M×N , V = [V1, . . . , VK ] ∈ C

N×M ,
we have rank(X) = N .

Remark 2: To assist numerical algorithm design, we specify
UH

i Vi = I,∀i for condition (8) to recover the desired signal.
Specifically, for the desired message Wi , as UH

i Vi is invertible,
by projecting yi onto the Ui space, we have

ỹi = 1

Hii

[
UH

i Vi

]−1
UH

i yi (10)

= 1

Hii

[
UH

i Vi

]−1 (
Hii UH

i Vi si + UH
i ni

)
(11)

= si + 1

Hii

[
UH

i Vi

]−1
UH

i ni (12)

= si + 1

Hii
UH

i ni , (13)

where the second equation is based on condition (7) to elim-
inate the interference contributed by other messages, and the
last equation is obtained by setting UH

i Vi = I. Based on (13),
we have the following parallel interference-free channels for
each desired symbol steam:

ỹi,m = si,m + ñi,m, m ∈ {1, 2, . . . , Mi }, (14)

where ỹi = [ỹi,m], si = [si,m] and 1
Hii

UH
i ni = [ñi,m]. As each

interference-free channel contributes 1/N DoF, we have Mi/N
DoFs for the desired message Wi . Note that for the generic
invertible matrix UH

i Vi , we can always obtain the parallel
interference-free channels (14) with different noise terms to
achieve Mi/N DoF in the high SNR regime.

Fig. 1. (a) The topological interference management problem in a partially
connected network with no CSI at transmitters (except the network topol-
ogy information). The desired channel links are black and interference links
are red. (b) Associated incomplete matrix with “�” representing arbitrary val-
ues. For example, as there is no interference from transmitter 2 to receiver 1,
X12 = uH

1 v2 can take any value; while X13 = uH
1 v3 must be 0 as it represents

the equivalent interference channel from user 3 to user 1.

Given the number of data streams M1, . . . , MK , to maximize
the achievable DoFs, i.e., M1/N , . . . , MK /N , it is equivalent to
minimizing N , or the rank of the matrix X, subject to constraint
(9). Thus the linear TIM problem can be reformulated as the
following matrix completion problem [18], [19]:

P : minimize
X∈RM×M

rank(X)

subject toP�(X) = IM . (15)

Note that, we only need to consider problem P in the real field
without losing any performance in terms of achievable DoFs,
as the problem parameter IM is a real matrix and the matri-
ces UH

i V j ,∀i �= j, (i, j) /∈ V can be further restricted to the
real field, whose corresponding signals will not contribute any
interference. Let X� be the solution of problem P , and we can
extract the precoding matrices V j ’s and decoding matrices Ui ’s
by performing matrix factorization as X� = UHV = [UH

i V j ],
which can be obtained by the QR decomposition for matrix X�

using the Gram-Schmidt process.
The achievable DoFs will then be given by

M1/rank(X�), . . . , M1/rank(X�) with X� as the optima
of problem P . This LRMC approach for the TIM problem
has been presented in [18], [19] for the single data stream
transmission with the performance metric as the symmetric
DoF, i.e., Mi = 1,∀i . While problem P in (15) provides a
clean formulation of the TIM problem, compared to existing
matrix completion problems, unique challenges arise with the
poorly structured affine constraint, as will be illustrated in the
next subsection. An example of the idea of transforming the
TIM problem to the corresponding matrix completion problem
is illustrated in Fig. 1. For this special case, we can rewrite the
conditions (7) and (8) as the incomplete matrix X = [Xi j ] with
Xi j = uH

i v j .

A. Problem Analysis

The problem of rank minimization with affine constraints has
received enormous attention in areas such as collaborative fil-
tering, statistical machine learning, as well as image and signal
processing [16], [35]. Recently, the rank minimization approach
has been proposed to solve the design problem of transmit and
receive beamformers for interference alignment in MIMO inter-
ference channels [36]. However, the non-convex rank objective
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function in the LRMC problem P makes it NP-hard. Enormous
progress has been made recently to address the NP-hardness of
the LRMC problem with elegant theoretical results using con-
vex relaxation approaches [16] and non-convex optimization
approaches [21]. However, most of the results highly rely on
the assumptions of well structured affine constraints, e.g., the
set � is uniformly sampled [16], [21] and the original matrix to
be recovered is incoherent [16].

Unfortunately, with the poorly structured affine constraint in
problem P , none of the above standard assumptions in the liter-
ature is satisfied. This brings unique challenges for solving and
analyzing the LRMC problem P for topological interference
management. In this subsection, we will first review the exist-
ing algorithms for the LRMC problem and then motivate our
proposed algorithm based on Riemannian optimization [29].

1) Nuclear Norm Minimization: Let X =∑M
i=1 σi ui vH

i be
the singular value decomposition (SVD) of the matrix X with
σi ’s as the singular values and ui ’s and vi ’s as the left and right
singular vectors, respectively. The rank function rank(X) =
‖σ‖0 with σ = (σ1, . . . , σM ) is often relaxed with the nuclear
norm ‖X‖∗ = ‖σ‖1 as a convex surrogate [16], which can be
regarded as an analogy with convex �1-norm relaxation of the
non-convex �0-norm in sparse signal recovery. If we apply this
relaxation to problem P , it will give the following problem,

minimize ‖X‖∗
subject to P�(X) = IM . (16)

Unfortunately, based on the following fact [18]:

|Tr(X)| =
∣∣∣Tr

(∑
i
σi ui vH

i

)∣∣∣ = ∣∣∣∑
i

Tr
(
σi ui vH

i

)∣∣∣
=

∣∣∣∑
i
σi vH

i ui

∣∣∣ ≤∑
i
σi |vH

i ui |
≤

∑
i
σi = ‖X‖∗, (17)

problem (16) will always return the solution X = IM , which
is full rank. As a consequence, with the poorly structured
affine constraint in problem P , the nuclear norm based convex
relaxation approach is inapplicable to problem P .

2) Alternating Optimization Approaches: Alternating min-
imization [20], [21] is another popular non-convex optimization
approach to solve the LRMC problem. Specifically, the alter-
nating minimization approach involves expressing the unknown
rank-r matrix X as the product of two smaller matrices UVT ,
where U ∈ R

M×r and V ∈ R
M×r , such that the low-rank prop-

erty of the matrix X is automatically satisfied. Based on this
factorization, the original LRMC problem P with the optimal
rank as a prior information can be reformulated as the following
non-convex optimization problem:

minimize
U∈RM×r ,V∈RM×r

‖P�(UVT )− IM‖2F . (18)

The alternating minimization algorithm for problem (18) con-
sists of alternatively solving for U and V while fixing the other
factor.

However, the fixed-rank based alternating minimization
approach has a low convergence rate [22], [26]. It also fails

Algorithm 1. Riemannian Pursuit (RP) for LRMC prob-
lem P

1: Input: M , �, desired accuracy ε.
2: Initialize: X[1]

0 ∈ R
M×M , r = 1.

3: while not converged do
4: Compute a critical point X[r ] for the smooth fixed rank-r

problem Pr with initial point X[r ]
0 with the Riemannian

optimization algorithm in Section IV.
5: Update the rank r ← r + 1. Compute the initial point

X[r ]
0 for the next iteration based on the rank increasing

algorithm in Section V.
6: end while
7: Output: X[r ] and the detected minimum rank r .

to utilize the second-order information to improve the con-
vergence rate, e.g., the Hessian of the objective function.
Moreover, it requires the optimal rank as a prior information,
which is, however, not available in problem P .

B. Riemannian Pursuit

In this paper, we propose a Riemannian pursuit algorithm
based on the Riemannian optimization technique [29] to solve
the LRMC problem P by alternatively performing the fixed-
rank optimization and rank increase, thereby detecting the
minimum rank of matrix X in problem P . The proposed algo-
rithm is described as Algorithm (1). It will well address the
limitations of the existing fixed-rank based methods [18], [20],
[21], [37] by

1) Designing efficient algorithms for fixed-rank optimiza-
tion to minimize the squared errors of the affine constraint
in problem P;

2) Designing an effective rank increasing strategy to find
good initial points in the procedure of rank pursuit,
thereby detecting the minimum rank of matrix X such that
the affine constraint in problem P is satisfied.

Specifically, by fixing the rank of matrix X as r(1 ≤ r ≤
M), we propose to solve the following smooth fixed-rank
constrained optimization problem,

Pr : minimize
X∈Mr

f (X), (19)

where f (X) := 1
2‖P�(X)− IM‖2F is the cost function repre-

senting the squared errors of the affine constraint in problem
P , and Mr is a smooth (C∞) manifold given by

Mr := {X ∈ R
M×M : rank(X) = r}. (20)

Observing that the least-squared cost function in problem
Pr is also smooth, we thus adopt the Riemannian optimiza-
tion technique [29] to solve it. Riemannian optimization has
recently gained popularity due to its capability of exploiting
the geometry of well structured search spaces based on matrix
factorization [29], [22], [23], [38], [25]–[27], thereby being
competitive with alternative approaches, e.g., convex relaxation
and alternating minimization. In particular, the Riemannian
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optimization is the generalization of standard unconstrained
optimization, where the search space is Rn , to optimization of a
smooth objective function on the search space of a Riemannian
manifold. The details of Riemannian optimization for the fixed-
rank optimization problem Pr will be presented in Section IV.

The rank increasing strategy plays an important role in the
proposed algorithm. In particular, by embedding the critical
point X[r ] in the current iteration into the manifold Mr+1 in
the next iteration, we propose an efficient rank increasing strat-
egy to generate good initial points and guarantee monotonic
decrease of the objective function for fixed-rank optimization
in the procedure of rank pursuit. This is achieved by exploiting
the structures of the low-rank matrix varieties and the manifold
geometry of fixed-rank matrices. The rank increasing strategy
will be presented in Section V.

IV. A RIEMANNIAN OPTIMIZATION FRAMEWORK FOR

SMOOTH FIXED-RANK OPTIMIZATION

In this section, we present a versatile framework of
Riemannian optimization for the fixed-rank matrix comple-
tion problem Pr . It is performed on the quotient manifolds
and exploits the symmetry structure (i.e., the quotient mani-
fold geometry) in the search space of the fixed-rank constraint
and the Hessian of the least-squares structure of the cost func-
tion. Specifically, the problem structures will be presented in
Section IV-A. The framework of Riemannian optimization on
the quotient manifolds will be demonstrated in Section IV-B.
In particular, the matrix representations of all the optimization
ingredients and algorithm implementation details will be pro-
vided in Section Section IV-C and in Section IV-D, respectively.

A. Problem Structures

To develop efficient algorithms for the smooth fixed-rank
optimization problem Pr , we exploit two fundamental struc-
tures: one is the symmetry in the fixed-rank constraint; and
the other is the least-squares structure of the cost function.
All the structures will be incorporated into the Riemannian
optimization framework.

1) Matrix Factorization and Quotient Manifold: The set
Mr is known to be a smooth submanifold of dimension
(2M − r)r embedded in the Euclidean space R

M×M [22].
Based on the SVD-type factorization, we represent X ∈Mr

as [25]

X = U�VT , (21)

where U, V ∈ St(r, M) and � ∈ GL(r). Here, St(r, M) = {Y ∈
R

M×r : YT Y = Ir } denotes the Stiefel manifold of orthonor-
mal M × r matrices and GL(r) = {Y ∈ R

r×r : rank(Y) = r} is
the set of all r × r invertible matrices. However, the factoriza-
tion in (21) is not unique as we have the symmetry structures
X = (UQU )(QT

U �QV )(VQV )T , QU , QV ∈ Q(r), where Q(r)

is the set of all r × r orthogonal matrices given by O(r) = {Q ∈
R

r×r : QT Q = Ir }. Therefore, the search space for problem
Pr should be the set of equivalence classes as follows:

[X] =
{
(UQU , QT

U �QV , VQV ) : QU , QV ∈ Q(r)
}
. (22)

In particular, denote the computation space (or the total
space) as Mr := St(r, M)× GL(r)× St(r, M). The abstract
quotient space Mr/ ∼ makes the optima isolated as Mr/ ∼:=
Mr/(O(r)× O(r)), where O(r)× O(r) is the {fiber space} and
∼ represents the equivalence relation. More details of the quo-
tient manifolds can be found in [29]. As the quotient manifold
Mr/ ∼ is an abstract space, to design algorithms, the matrix
representation in the computation space is required.

2) Least-Squares Structures and Riemannian Metric: To
optimize on the abstract search space Mr/ ∼, a Riemannian
metric in the computation space Mr is required such that
Mr/ ∼ is a Riemannian submersion [29, Section 3.6.2]. In
particular, the only constraint imposed on the metric is that it
should be invariant along the set of equivalence classes [X] (22).
The Riemannian metric gX : TXMr × TXMr → R defines an
inner product between the tangent vectors on the tangent space
TXMr in the computation space Mr .

Furthermore, by encoding the Hessian (the second-order
information) of the cost function into the metric gX, superlinear
convergence rates can be achieved for the first-order optimiza-
tion algorithms [39], [27]. However, calculating the Hessian of
the cost function f in problem P is computationally costly.
We thus propose a valid Riemannian metric based on the block
diagonal approximation of the Hessian of the simplified cost
function as presented in the following proposition.

Proposition 1 (Riemannian Metric): By exploiting the sec-
ond order information of the least-squares cost function, the
Riemannian metric gX : TXMr × TXMr → R is given by

gX(ξX, ζX) = 〈ξU , ζU ��T 〉 + 〈ξ�, ζ�〉
+ 〈ξ V , ζ V �T �〉, (23)

where ξX := (ξU , ξ�, ξ V ) ∈ TXMr , ζ X := (ζU , ζ�, ζ V ) ∈
TXMr and X := (U,�, V).

Proof: Please refer to Appendix A for details. �
Note that, different from the conventional metric [38], which

only takes the search space into consideration, the novel met-
ric (23) can encode the second-order information of the cost
function, thus leads to a faster convergence speed for the first-
order algorithms [27], [39]. This will be further justified in the
simulation section.

B. Riemannian Optimization on Quotient Manifolds

The main idea of Riemannian optimization is to encode the
constraints on the manifold into the search space, and then per-
form descent on this manifold search space rather than in the
ambient Euclidean space. In particular, the Euclidean gradient
and Euclidean Hessian need to be converted to the Riemannian
gradient and Riemannian Hessian, respectively, to implement
the conjugate gradient method and trust-region method in the
Riemannian optimization framework. This will be explicitly
presented in Section IV-C. For the quotient manifold Mr/ ∼,
the abstract geometric objects call for concrete matrix repre-
sentations in the computation space Mr , which is achieved by
the principle of the Riemannian submersion [29, Section 3.6.2].
Therefore, essentially, the algorithms are implemented in the
computation space. Specifically, with the Riemannian metric
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(23), the quotient manifold Mr/ ∼ is submersed into Mr . We
now have the Riemannian quotient manifold as follows:

Definition 1 (Riemannian Quotient Manifold [29, Section
3.6.2]): Endowed with the Riemannian metric (23), Mr/ ∼ is
called a Riemannian quotient manifold of Mr .

Let T[X](Mr/ ∼) denote the abstract tangent space in the
quotient manifold Mr/ ∼, which has the matrix representa-
tion in TXMr . The abstract tangent vectors in T[X](Mr/ ∼)

are restricted to the directions that do not produce a displace-
ment along the equivalence class [X] (22). This is achieved
by decomposing the tangent space TXMr in the computa-
tion space into complementary spaces as follows: TXMr =
VXMr ⊗HXMr , where VXMr and HXMr are the vertical
space and horizontal space, respectively. In particular, the hor-
izontal space HXMr , which is the orthogonal complement of
VXMr in the sense of the Riemannian metric gX, provides
a valid matrix representation of the abstract tangent space
T[X](Mr/ ∼) [29, Section 3.5.8]. The vertical space VXMr is
obtained from the tangent space of the equivalence class [X]
(22). We call it the horizontal lift given that any element in
the abstract tangent space ξ [X] ∈ T[X](Mr/ ∼) has a unique
element in the horizontal space ξX ∈ HXMr .

As gX is constrained to be invariant along the equiv-
alent class [X] (22), it can define a Riemannian met-
ric g[X](ξ [X], ζ [X]) : T[X](Mr/ ∼)× T[X](Mr/ ∼)→ R in the
quotient space Mr/ ∼ as

g[X](ξ [X], ζ [X]) := gX(ξX, ζ X), (24)

where ξ [X], ζ [X] ∈ T[X](Mr/ ∼) and ξX, ζ X ∈ HXMr are the
horizontal lifts or matrix representations of ξ [X] and ζ [X]. Note
that both ξX and ζX belong to the tangent space TXMr . In
summary, we have Riemannian submersion as follows:

Definition 2 (Riemannian Submersion [29, Section 3.6.2]:
The choice of the metric (23), which is invariant along the
equivalent class [X], and of the horizontal space HXMr as the
orthogonal complement of VX, in the sense of the Riemannian
metric (23), makes the search space Mr/ ∼ a Riemannian
submersion.

Therefore, with the metric (23), the Riemannian optimiza-
tion algorithms on the quotient manifold Mr/ ∼ call for matrix
representation (horizontal lifts) in the computation space Mr .
Specifically, let 	i ∈ HXiMr be the search direction at the
i-th iteration. Define RX : HXMr →Mr as the retraction map-
ping operator that maps the element in the horizontal space
�i ∈ HXMr to the points on the computation space Mr .
The Riemannian optimization framework for the smooth opti-
mization problem Pr is presented in Algorithm 2 and the
corresponding schematic view is shown in Fig. 2. In particular,
the parameter αi in Algorithm 2 denotes the step size, which we
will explain in Section IV-D.

C. Quotient Manifold Representation

In this subsection, we derive the concrete matrix representa-
tions (horizontal lifts) in the computation space Mr for abstract
geometric objects on the quotient manifold Mr/ ∼, thereby
implementing the Riemannian optimization algorithms.

1) Riemannian Gradient: To design an algorithm using the
conjugate gradient method on he quotient space Mr/ ∼, we

Algorithm 2. A Riemannian Optimization Framework for the
Fixed-Rank Optimization Problem Pr

1: Input: M , r , �, desired accuracy ε.
2: Initialize: X0 = Xinitial, 	0 = 0, i = 0.
3: while not converged do
4: Compute the search direction 	i ∈ HXiMr .
5: Update Xi+1 = RXi (αi	i ). Update i = i + 1.
6: end while
7: Output: X� = Xi .

Fig. 2. A schematic view of Riemannian optimization framework: abstract geo-
metric objects (shown in dotted line) on a quotient manifold Mr / ∼ call for
matrix representatives (shown in solid lines) in the computation space (or total
space) Mr . The points x and y in Mr belong to the same equivalence class
(shown in solid blue color) and they represent a single point [x] = {y ∈Mr :
y ∼ x} on the quotient manifold Mr / ∼. Figure courtesy of Mishra et al. [27].

need to define the Riemannian gradient grad[X] f for the objec-
tive function f (X) on this space, which is the generalization
of the Euclidean gradient ∇ f (X) = P�(X)− IM of f (X).
To achieve this goal, we first provide the following proposi-
tion on the matrix representation of the abstract tangent space
T[X](Mr/ ∼).

Proposition 2 (Horizontal Space): The horizontal space
HXMr , which is any complementary subspace of VXMr in the
sense of the Riemannian metric gX (23), provides a valid matrix
representation of the abstract tangent space T[X](Mr/ ∼)

as HXMr ={ηX ∈ TXMr : S1 and S2 are symmetric}, where
S1 = ��T ηT

UU−�ηT
� and S2 = �T �ηT

VV+ ηT
��.

Proof: Please refer to Appendix B for details. �
To compute the Riemannian gradient, we need to define two

projection operators: tangent space projection and horizontal
space projection. Specifically, the tangent space projection is
the operator that projects the ambient space onto the tangent
space.

Proposition 3 (Tangent Space Projection): The tangent
space projection operator PTXMr : RM×r × R

r×r × R
M×r →

TXMr that projects the ambient space R
M×r × R

r×r × R
M×r

onto the tangent space TXMr is given by:

PTXMr (AU , A�, AV ) = (ξU , ξ�, ξ V ), (25)

where ξU = AU − UBU (��T )−1, ξ� = AU , ξ V = AV −
VBV (�T �)−1. Here, BU and BV are symmetric matrices of
size r × r that are obtained by solving the Lyapunov equations

��T BU + BU ��T = ��T (UT AU + AT
U U)��T , (26)

�T �BV + BV �T � = �T �(VT AV + AT
V V)�T �. (27)
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Proof: Please refer to Appendix C for details. �
The horizontal space projection is the operator that extracts

the horizontal component of the tangent vector by projecting
the tangent space onto the horizontal space.

Proposition 4 (Horizontal Space Projection): The hori-
zontal space projection operator �HXMr : TXMr → HXMr

that projects the tangent space TXMr onto the horizon-
tal space HXMr is given by �HXMr (ξX) = (ζU , ζ�, ζ V ),
where ζU = ξU − U�1, ζ� = ξ� +�1� − ��2, ζ V =
ξ V − V�2. Here, �1 and �2 are skew-symmetric matrices of
size r × r that are obtained by solving the coupled system of
Lyapunov equations

��T �1 +�1��T −��2�
T = Skew(UT ξU ��T )

+ Skew(�ξ T
�), (28)

�T ��2 +�2�
T � −�T �1� = Skew(VT ξ V �T �)

+ Skew(�T ξ�), (29)

where Skew(·) extracts the skew-symmetric part of a square
matrix, i.e., Skew(C) = (C− CT )/2.

Proof: Please refer to Appendix D for details. �
Based on Propositions 3 and 4, we have the matrix repre-

sentation (horizontal lift) gradX f of the Riemannian gradient
grad[X] f on the quotient manifold Mr/ ∼ at X = (U,�, V) as
follows:

gradX f = (ξU , ξ�, ξ V ), (30)

where

ξU = AV�T (��T )−1 − UBU (��T )−1, (31)

ξ� = UT SV, (32)

ξ V = AT U�(�T �)−1 − VBV (�T �)−1, (33)

with A = ∇ f (X) = P�(X)− IM . Here, BU and BV are the
solutions to the Lyapunov equations

��T BU + BU ��T = 2Sym(��T UT AV�), (34)

�T �BV + BV �T � = 2Sym(�T �VT ST U�), (35)

where Sym(·) extracts the symmetric part of a square matrix,
i.e., Sym(C) = (C+ CT )/2. Please refer to Appendix E for the
details on the derivation of the Riemannian gradient (30).

2) Riemannian Hessian: To design second-order algo-
rithms (e.g., the trust-region scheme) on the quotient space
Mr/ ∼, we need to define the Riemannian connection on this
space, which is the generalization of directional derivative of
a vector field on the manifold. Let ∇ηXξX be the directional
derivative of the vector field ξX ∈ TXMr applied in the direc-
tion ηX ∈ TXMr on the computation space Mr . Then the matrix
representation (horizontal lift) of the Riemannian connec-
tion ∇η[X]ξ [X] on the quotient space Mr/ ∼ with η[X], ξ [X] ∈
T[X](Mr/ ∼) is given by �HXMr (∇ηXξX), which is the hori-
zontal projection of the Riemannian connection onto the hori-
zontal space. By the Koszul formula [29, Theorem 5.3.1], the
Riemannian connection is given by

∇ηXξX = DξX[ηX]+ (θU , θ�, θV ), (36)

where DξX[ηX] is the classical Euclidean directional derivative
and

θU = ηU BU + UBU + 2ξU Sym(η��T )(��T )−1, (37)

θ� = 0, (38)

θV = ηV BV + VBV + 2ξ V Sym(ηT
��)(�T �)−1. (39)

Here, BU and BV are the solutions to the Lyapunov equations
(34) and (35).

Therefore, the matrix representation (horizontal lift) of the
Riemannian Hessian Hess[X] f [ξX] on the quotient manifold
Mr/ ∼ is given by

HessX f [ξX] = �HXMr (∇ξX
gradX f ), (40)

where gradX f (30) is the Riemannian gradient in the com-
putation space Mr and the Riemannian connection is given
in (36).

D. Riemannian Optimization Algorithms

Based on the above matrix representations or horizontal
lifts of the geometric objects on abstract search space Mr/ ∼,
it is ready to implement the algorithms in the computation
space Mr . To trade off the convergence rate and the compu-
tational complexity, we present a first-order algorithm (i.e., the
conjugate gradient method) and a second-order method (i.e.,
the trust-region method) in Section IV-D1 and Section IV-D2,
respectively.

1) Conjugate Gradient Method: In the conjugate gradient
scheme, the search direction at iteration i is given by 	i :=
−gradXi

f + βiTXi−1→Xi (	i−1), where gradXi
f ∈ HXMr is

the Riemannian gradient at point Xi ∈Mr and TXi−1→Xi (ξX) :
HXiMr → HXiMr is the matrix representation (the horizontal
lift) of the vector transport T[Xi−1]→[Xi ](ξ [X]) that maps tan-
gent vectors from one tangent space T[Xi−1](Mr/ ∼) to another
tangent space T[Xi ](Mr/ ∼) given by

TXi−1→Xi (	i−1) = �HXi Mr (PTXi Mr (	i−1)). (41)

Therefore, the sequence of the iterates is given by

Xi+1 = RXi (αi�i ), (42)

where αi denotes the step size satisfying the strong Wolf con-
ditions [24], [29] and RX : HXMr →Mr is the retraction
mapping operator that maps the element in the horizontal space
�i ∈ HXMr to the points on the computation space Mr . The
product nature of the computation space Mr allows to choose a
retraction by simply combining the retractions on the individual
manifolds [29, Example 4.1.3],

RX(ξX) = (uf(U+ ξU ),� + ξ�, uf(V+ ξ V )), (43)

where ξX := (ξU , ξ�, ξ V ) ∈ HXMr and uf(·) extracts the
orthogonal factor of a full column-rank matrix, i.e., uf(A) =
A(AT A)−1/2.

The concepts of vector transport and retraction in the total
space Mr are illustrated on the right and left sides of Fig. 3,
respectively.
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Fig. 3. Visual representation of the concept of retraction and vector transport
within the framework of Riemannian optimization techniques. Figure courtesy
of Kressner et al. [40].

2) Trust Region Method: To provide quadratic convergence
rate, we implement the second-order optimization algorithm
based on the trust-region method [28]. In particular, in the
quotient manifold Mr/ ∼, the trust-region subproblem is hori-
zontally lifted to HXMr and formulated as

minimize
ξX∈HXMr

m(ξX)

subject to gX(ξX, ξX) ≤ δ2, (44)

where δ is the trust-region radius and the cost function is
given by

m(ξX) = f (X)+ gX(ξX, gradX f )

+ 1

2
gX(ξX, HessX f [ξX]), (45)

where gradX f (30) and HessX f (40) are the horizontal
lift (matrix representation) of the Riemannian gradient and
Riemannian Hessian on the quotient manifold Mr/ ∼. Given
the matrix representation of the search direction (44), the details
of the implementation of the trust-region algorithm can be
found in [41].

In summary, the optimization-related ingredients for problem
Pr are provided in Table I.

V. RANK INCREASING ALGORITHM

In this section, we propose a rank-one update algorithm to
generate good initial points and provide monotonic decrease
for the objective functions for fixed-rank optimization in the
procedure of rank pursuit in Algorithm 1. This is achieved
by exploiting the structure of the low-rank matrix varieties
[42], [30].

A. Low-Rank Matrix Varieties

We present a systematic way to develop the rank increas-
ing strategy in Algorithm 1 based on the following low-rank
matrix varieties M≤r = {X ∈ R

M×M : rank(X) ≤ r}, which is
the closure of the set of fixed-rank metrics Mr . Furthermore, we
consider the linear-search method on M≤r+1 with the iterates as
follows,

Xi+1 = P≤r+1(Xi + αi�i ), (46)

where 	i is a search direction in the tangent cone TXiM≤r+1 at
Xi [42], αi is a step-size, and P≤r+1 is a metric projection onto

M≤r+1 with a best rank-(r + 1) approximation in the Frobenius
norm.

B. Riemannian Pursuit

Assume that the iterate X[r ] has rank r at the r -th iteration
in Algorithm 1. In the next iteration, we will increase the rank
by r + 1. To embed X[r ] into the search space M≤r+1, suppose
that we choose the projection of the negative Euclidean gradient
on the tangent cone TX[r ]M≤r+1 as a search direction,

	r = arg min
	∈TX[r ]M≤r+1

‖ − ∇X[r ] f −�‖F = �(r)
r +�(1)

r , (47)

where ∇X[r ] f = (P�(X[r ])− IM ) is the Euclidean gradient of
the cost function f at point X[r ] and �

(r)
r is the orthogonal pro-

jection on the tangent space TX[r ]Mr given by the Riemannian
gradient, i.e.,

�(r)
r = −gradX[r ] f, (48)

and �
(1)
r is the best rank-one approximation of

�r = −∇X[r ] f −�(r)
r −∇X[r ] f (X[r ])+ gradX[r ] f

= −∇X[r ] f (X[r ])+ ξU �VT + Uξ�VT + U�ξT
V , (49)

which is orthogonal to the tangent space TX[r ]Mr [43].
Based on (46) and (49), we shall adopt the following rank

update strategy to find a good initial point for the next iteration
in Algorithm 1,

X[r+1]
0 = P≤r+1

(
X[r ] + αr

(
�(1)

r − gradX[r ] f
))

, (50)

where αr ≥ 0 is a step size and satisfies the following condition
[24],

f (X[r+1]
0 ) ≤ f (X[r ])− αr

2
〈�r ,�r 〉. (51)

Therefore, if 	r is zero, then ∇X[r ] f = 0 and we can terminate.
Remark 3: Note that when the Riemannian gradient

gradX[r ] f equals zero, the rank update strategy (50) is equiv-
alent to the following rank increasing strategy [44]

X[r+1]
0 = X[r ] − σuvT , (52)

where σ ≥ 0 is the dominant singular value and (u, v) is the
pair of top left and right singular vectors with unit-norm of the
Euclidean gradient ∇X[r ] f . Although the rank update strategy
(52) ensures that the cost function f decreases monotonically
w.r.t. r , it ignores the intrinsic manifold structure of fixed-rank
matrices in Algorithm 2. Specifically, the Riemannian gradient
gradX[r ] f (30), which belongs to the tangent space TX[r ]Mr , is
not necessarily equal to zero, as the corresponding fixed-rank
optimization problem may not be solved exactly in practice,
e.g., Algorithm 2 may terminate when the maximum number
of iterations is exceeded [24].



4712 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 15, NO. 7, JULY 2016

TABLE I
OPTIMIZATION-RELATED INGREDIENTS FOR PROBLEM Pr

C. Monotonic Decrease of the Objective Function

We shall show that the Riemannian manifold rank update
strategy (50) ensures that the objective function decreases
monotonically with respect to r . Specifically, as gradX[r ] f ∈
TX[r ]Mr and �r (49) is orthogonal to TX[r ]Mr , we have the
following fact that

〈�(1)
r , gradX[r ] f 〉 = 0. (53)

Let X[1], X[2], . . . , be the sequence generated by Algorithm 1,
based on (51) and (53), we have

f (X[r+1]) ≤(1) f (X[r+1]
0 ) ≤(2) f (X[r ])− αr

2
〈�r ,�r 〉

≤(3) f (X[r ])− τr

2
(‖�(1)

r ‖2F +‖gradX[r ] f ‖2F )

≤(4) f (X[r ]). (54)

Here, the first inequality is due to the fact that the iterates of
the Riemannian optimization algorithm try to minimize the cost
function f , the second and the third inequalities are based on
the facts (51) and (53), respectively. Therefore, the cost function
f (X[r ]) decreases monotonically with respect to r .

Remark 4: Although only the rank-one update strategy is
considered in Algorithm 1, the proposed rank increasing algo-
rithm in this section can be easily generalized to the general
rank-r with r > 1 updates to improve the convergence rate [24],
[30] for the RP algorithm. However, this may yield the detected
rank of matrix X overestimated.

VI. SIMULATION RESULTS

In this section, we simulate the proposed Riemannian pur-
suit algorithms for topological interference management prob-
lems in partially connected K -user interference channels.
The conjugate gradient Riemannian algorithm and the trust-
region Riemannian pursuit algorithm, are termed “CGRP” and
“TRRP”, respectively. The two algorithms are compared to the
following state-of-the-art algorithms:
• LRGeom with Riemannian Pursuit: In this algorithm [24],

[19], termed “LRGeom”, the embedded manifold based
fixed-rank optimization algorithm developed in [22] with
the Riemannian pursuit rank increasing strategy proposed
in [19], [24] is adopted to solve problem P .
• LMaFit: In this algorithm, the alternating minimization

scheme with rank adaptivity is adopted to solve problem
P [20].

The Matlab implementation of all the Riemannian algo-
rithms for the fixed-rank optimization problem Pr is based

Fig. 4. Convergence rate with the rank of matrix X as four.

on the manifold optimization toolbox ManOpt [41]. All the
Riemannian optimization algorithms are initialized randomly as
shown in [22] and are terminated when either the norm of the
Riemannian gradient is below 10−6, i.e., ‖gradX f ‖ ≤ 10−6, or
the number of iterations exceeds 500. The setting for LMaFit
is the same as that in [20]. We adopt the following normal-
ized residual [20] as the stopping criteria for Algorithm 1 to
estimate the rank for matrix X: ε = ‖P�(X)− IM‖F/

√
M . We

set ε = 10−6 for all the algorithms to estimate the minimum
rank of matrix X such that it satisfies the affine constraint in
problem P .

A. Convergence Rate

Consider a 100-user partially connected interference channel
with 400 interference channel links. The sets of the connected
interference links are generated uniformly at random. We turn
off rank adaptivity for all the algorithms to solve the fixed-
rank optimization problem Pr . Fig. 4 and Fig. 5 show the
convergence rates of different algorithms for the fixed-rank
optimization problem Pr with r = 4 and r = 5, respectively.
Both figures show that the trust-region based Riemannian opti-
mization algorithm TRRP has the fastest convergence rate and
achieves higher precision solutions in a few iterations compared
with the other three algorithms. Encoded with the second-
order information in the Riemannian metric (23), the conjugate
gradient based Riemannian algorithm CGRP achieves a faster
convergence rate than LRGeom [22], while LMaFit [20] has the
lowest convergence rate among all the algorithms.

These two figures also indicate that, with the same stopping
criteria ε = 10−6 in Algorithm 1, the detected rank of matrix X
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Fig. 5. Convergence rate with the rank of matrix X as five.

Fig. 6. Achievable symmetric DoF versus different numbers of interference
links.

by TRRP is 4. Although the detected rank of matrix X by both
CGRP and LRGeom is 5, the latter one has a slower conver-
gence rate. Furthermore, the required rank of LMaFit should
be larger than 5 to achieve the stopping criteria ε = 10−6.
This conclusion will be further confirmed in the following
simulations on the empirical results for the achievable DoFs.

B. Achievable Symmetric DoF and Optimal DoF Results

Consider a 20-user partially connected interference chan-
nel. The sets of the connected interference links are generated
uniformly at random. We simulate and average 100 network
topology realizations. Fig. 6 demonstrates the achievable sym-
metric DoF with different algorithms assuming that the data
streams Mi = 1,∀i . We can see that the second-order algo-
rithm TRRP can achieve the highest symmetric DoF, but it has
the highest computational complexity due to the computation
expensive calculation of the Hessian. For the first-order opti-
mization algorithm, CGRP can achiever a higher symmetric
DoF than LRGeom [24], [19] and LMaFit [20]. In particular,
we can see that, with few interference links, quite high DoFs
can be achieved.

To further justify the effectiveness of the RP framework, we
numerically check that our RP algorithms can recover all the

optimal DoF results for the specific TIM problems in [10]. The
same conclusion has also been presented in [19]. Note that our
proposed automatic rank detection capable RP algorithms do
not need the optimal rank as a prior information, while the
alternating projection algorithm [18] requires the optimal rank
as a prior information to perform low-rank matrix projection.
Moreover, it is interesting to theoretically identify the class of
network topologies such that the proposed RP framework can
provide optimal symmetric DoFs.

In summary, all the simulation results illustrate the effective-
ness of the proposed Riemannian pursuit algorithms by exploit-
ing the quotient manifold geometry of the fixed-rank matrices
and encoding the second-order information in the Riemannian
metric (23), as well as utilizing the second-order optimization
scheme. In particular, there is a tradeoff between the achiev-
able symmetric DoF and the computational complexity using
the first-order algorithm CGRP (which is applicable in large-
sized networks) and the second-order algorithm TRRP (which
is applicable in small-sized and medium-sized networks).

VII. CONCLUSIONS AND FURTHER WORKS

In this paper, we presented a flexible low-rank matrix com-
pletion approach to maximize the achievable DoFs for the
partially connected K -user interference channel with any net-
work topology. A Riemannian pursuit algorithm was proposed
to solve the resulting low-rank matrix completion optimiza-
tion problem by exploiting the quotient manifold geometry
of the search space and the structure of low-rank matrix
varieties for rank pursuit. In particular, we showed that, by
encoding the second-order information, the quotient manifold
based Riemannian optimization algorithms achieve a faster
convergence rate and higher precious solutions than the exist-
ing algorithms. Simulation results showed that the proposed
Riemannian pursuit algorithms achieve higher DoFs for gen-
eral network topologies compared with the state-of-the-art
methods.

Several future directions of interest are listed as follows:
• From the algorithmic perspective, it is interesting to estab-

lish the optimality of the Riemannian pursuit algorithms
for the low-rank matrix completion problem P , thereby
establishing the relationship between the achievable DoF
and the network topology.
• From the information theoretic perspective, it is criti-

cal to translate the numerical insights (e.g., optimal DoF
achievability for the specific network topologies in [10])
provided by the LRMC approach into the optimal DoF for
any network topology.
• It is particularly interesting to extend the LRMC approach

to more general scenarios, e.g., with finite SNR scenarios,
MIMO interference channels, transmitter cooperations
with data sharing, and wired linear index coding problems
in the finite field. In particular, as optimization on mani-
folds deeply relies on smoothness, the search space will
become discrete in a finite field. Therefore, the presented
Riemannian pursuit algorithms cannot be extended to the
finite field in principle.
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• It is also interesting to apply the Riemannian optimiza-
tion technique to other wireless communications and
networking problems (e.g., the hybrid precoding in mil-
limeter wave systems [45]). In particular, extending the
corresponding algorithms to the complex field is critical,
as most of the Riemannian algorithms are only developed
in real field and complex field extension is not trivial.

APPENDIX A
PROOF OF PROPOSITION 1: RIEMANNIAN METRIC

To induce the metric based on the Hessian of the cost func-
tion f in problem Pr , we consider a simplified cost function
‖X− IM‖2F/2, yielding the following optimization problem:

minimize
X∈Mr

1

2
Tr(XT X)− Tr(X), (55)

Based on the factorization X = U�VT , we have the matrix rep-
resentation of Lagrangian for problem (55) as follows L(X) =
1
2 Tr(V�T UT U�VT )− Tr(U�VT ), where X has the matrix
representation (U,�, V) ∈ St(r, n)× GL(r)× St(r, n). The
second-order derivative of L(X) applied in the direction ξX is
given by D2L(X)[ξX] = (ξU��T + 2USym(�ξ�)− Vξ� −
ξV�T ,−ξUVT + ξ� + 2�Sym(VT ξV)− UT ξV, ξV��T −
Uξ� − ξU�T + 2VSym(�T ξ�)), where ξX has the matrix
representation (ξU, ξ�, ξV) ∈ R

n×r × R
r×r × R

n×r .
As the cost function in (55) is convex and quadratic in X, it is

also convex and quadratic in the arguments (U,�, V) individu-
ally. Therefore, the block diagonal elements of the second-order
derivative LXX(X) of the Lagrangian are strictly positive defi-
nite. The following Riemannian metric can be induced from the
block diagonal approximation of LXX(X),

gX(ξX, ζ X) = 〈ξX, D2L(X)[ζX]〉
≈ 〈ξU, ζ U��T 〉 + 〈ξ�, ζ�〉
+ 〈ξV, ζ V�T �〉, (56)

where ξX = (ξU, ξ�, ξV), ζ X = (ζU, ζ�, ζ V) ∈ TXMr and
X ∈ (U,�, V).

To verify that the metric is invariant along the equiv-
alent class [X] (22), based on [29, Proposition 3.6.1],
it is equivalent to show that the metric for tangent
vectors ξX, ζ X ∈ TXMr does not change under the
transformations (U,�, V) �→ (UQU , QT

U �QV , QV V),
(ξU , ξ�, ξ V ) �→ (ξU QU , QT

U ξ�QV , ξ V V), (ζU , ζ�, ζ V ) �→
(ζU QU , QT

U ζ�QV , ζ V V). After simple computation, we
can verify that (56) is a valid Riemannian metric and does
not depend on the specific matrix representations along the
equivalence class [X] (22).

APPENDIX B
PROOF OF PROPOSITION 2: HORIZONTAL SPACE

The vertical space VXMr is the linearization of the equiva-
lence classes [X] (22) and formed by the set of directions that
contains tangent vectors to the equivalence classes. Based on

the matrix representation of the tangent space for the orthogonal
matrices [29, Example 3.5.3], we have the matrix representation
for the vertical space as

VXMr = (U�1,��2 −�1�, V�2), (57)

where �1 and �2 are any skew-symmetric matrices of size
r × r , i.e., �T

i = −�i , i = 1, 2.
The {horizontal space} HXMr , which is any complementary

subspace to VXMr in TXMr with respect to the {Riemannian
metric} gX (23), provides a valid matrix representation of the
abstract tangent space T[X](Mr/ ∼) [29, Section 3.5.8] based
on the Riemannian submersion principle. Specifically, let ηX =
(ηU, η�, ηV) ∈ HXMr and ζX = (ζU, ζ�, ζ V) ∈ VXMr . By
definition, ηX should be orthogonal to ζX with respect to the
Riemannian metric gX, i.e.,

gX
(
ηX, ζ X

) = Tr
((

��T
)

ηT
UU�1

)

+ Tr
(
ηT

���2 − ηT
��1�

)

+ Tr
((

�T �
)

ηT
VV�2

)
= Tr (S1�1)+ Tr (S2�2) = 0, (58)

where S1 = ��T ηT
UU−�ηT

� and S2 = �T �ηT
VV+ ηT

��.
Based on the fact that Tr(GT �) = 0, if and only if G is sym-
metric, the characterization of the horizontal space is given by

HXMr = {ηX ∈ TXMr : S1 and S2are symmetric}. (59)

APPENDIX C
PROOF OF PROPOSITION 3: TANGENT SPACE PROJECTION

Given a matrix in the ambient space RM×r × R
r×r × R

M×r ,
its projection onto the tangent space TXMr is obtained by
extracting the component normal space NXMr to the tangent
space in the Riemannian metric sense.

We first derive the matrix characterization of the normal
space. Specifically, let ηX = (ηU, η�, ηV) ∈ TXMr and ζX =
(ζU, ζ�, ζ V) ∈ NXMr . By definition, ηX should be orthog-
onal to ζX with respect to the Riemannian metric gX, i.e.,
g(ηX, ζX) = 0. That is, the following conditions

〈ξU, ζ U��T 〉 = 0, 〈ξV, ζ V�T �〉 = 0, 〈ξ�, ζ�〉 = 0, (60)

should hold for any ηX ∈ TXMr . It is obvious that ζ� = 0.
Furthermore, based on [29, Example 3.5.2], we have the matrix
characterization of ηU as

ηU = U�+ U⊥K, (61)

where � is a skew-symmetric matrix of size r × r , K ∈
R

(M−r)×r can be any matrix, and U⊥ is any M × (M − r)

matrix such that span(X⊥) is the orthogonal complement of
span(X). Similarly, we can obtain the characterization of ηV.
We rewrite ζU as ζ̄U = ζU��T with,

ζ̄U = UBU + U⊥AU , (62)
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where AU ∈ R
r×r and BU ∈ R

(M−r)×r can be deduced from
conditions (60) and (61). Based on the fact that Tr(GT �) =
0, if and only if G is symmetric, we can conclude that BU is
symmetric and AU = 0. Therefore, we have

ζU��T = UBU , (63)

where BU = BT
U . Similarly, we can obtain the matrix character-

ization of ζV. Therefore, we arrive at the matrix representation
of the norm space,

NXMr =
{(

UBU

(
��T

)−1
, 0, VBV

(
�T �

)−1
)}

, (64)

where BU and BV are symmetric metrics of size r × r .
As the tangent space projector PTXMr is obtained by extract-

ing the component normal to the tangent space TXMr in the
ambient space R

M×r × R
r×r × R

M×r , we have the expression
for the operator PTXMr as

PTXMr (AU , A�, AV ) =
(

AU − UBU

(
��T

)−1
,

A�, AV − VBV

(
�T �

)−1
))

, (65)

which belongs to the tangent space. The tangent space TXMr

in the computation space Mr at the point X = (U,�, V) is the
product of the tangent spaces of the individual manifolds, which
has the following matrix representation [29, Example 3.5.2],

TXMr =
{
(ξU , ξ�, ξ V ) ∈ R

M×r × R
r×r × R

M×r :
UT ξU + ξ T

U U = 0, VT ξ V + ξ T
V V = 0

}
. (66)

Based on (65) and (66), we know that U should satisfy the
condition:

UT ξU + ξ T
U U = UT

[
AU − UBU (��T )−1

]

+
[
AU − UBU (��T )−1

]T
U = 0, (67)

which is equivalent to the Lyapunov equation for the symmetric
matrix BU ,

��T BU + BU ��T = ��T
(

UT AU + AT
U U

)
��T . (68)

Similarly, we can obtain the Lyapunov equation for the sym-
metric matrix BV as in (27).

APPENDIX D
PROOF OF PROPOSITION 4: HORIZONTAL SPACE

PROJECTION

The horizontal space projector �HXMr can be obtained
by extracting the horizontal component of the tangent vec-
tor. Specifically, let ξX = (ξU , ξ�, ξ V ) ∈ TXMr and ζX =
(ζU , ζ�, ζ V ) ∈ HXMr . We have the expression for the oper-
ator �HXMr as

�HXMr (ξX) = (
ξU − U�1, ξ� +�1� −��2,

ξ V − V�2
)

= (
ζU , ζ�, ζ V

)
, (69)

which belongs to the horizontal space HXMr . Based on (59),
we have

��T ζ T
U U−�ζ T

� = ��T (ξU − U�1)
T U

− �
(
ξ� +�1� − ��2

)T

=
(
��T ξ T

U U−�ξ T
�

)
+

(
��T �1

+ ��T �1 − ��2�
T
)

, (70)

which is symmetric. As ��T ζ T
U U−�ζ T

� = (��T ζ T
U U−

�ζ T
�)T , we can obtain the equation in (28). Similarly, we can

obtain the equation in (29) by checking the condition that ζ V is
symmetric.

APPENDIX E
COMPUTE THE RIEMANNIAN GRADIENT (30)

Let X = (U,�, V) and A = ∇ f (X) = P�(X)− I denote
the Euclidean gradient of f at point X. The partial derivatives
of f (X) with respective to U,� and V are given by

∂ f (X)

∂U
= AV�T ,

∂ f (X)

∂�
= UT AV,

∂ f (X)

∂V
= AT U�. (71)

With metric (23), the scaled Euclidean gradient is given by

Ā =
(

AV�T (��T )−1, UT AV, AT U�(�T �)−1
)

. (72)

By further projecting Ā onto the tangent space based on (25),
we have the matrix representation (horizontal lift) gradX f of
grad[X] f as

gradX f = PTXMr (Ā), (73)

which yields the equations in (30). Note that, based on the
Riemannian submersion principle [29, Section 3.6], PTXMr (Ā)

is already the horizontal lift, which can be verified that the hor-
izontal space projection �HXMr will not change PTXMr (Ā).

APPENDIX F
RIEMANNIAN QUOTIENT MANIFOLDS

We now consider the case of a quotient manifold M/ ∼,
where the structure space M is endowed with a Riemannian
metric g. The horizontal space HX and X ∈M is canonically
chosen as the orthogonal complement in TXM of the vertical
space VX = TXπ−1(X), namely,

HX := (TXVX)⊥

= {
ηX ∈ TXM : g(χX, ηX) = 0,∀χX ∈ VX

}
. (74)

Recall that the horizontal lift at X ∈ π−1([X]) of a tangent vec-
tor ξ [X] ∈ T[X](M/ ∼) is the unique tangent vector ξX ∈ HX
that satisfies Dπ(X)[ξX]. If, for every [X] ∈M/ ∼ and every
ξ [X], ζ [X] ∈ T[X](M/ ∼), the expression gX(ξX, ζ X) does not
depend on X ∈ π−1([X]), then

g[X](ξ [X], [ζ ]X) := gX(ξX, ζX) (75)
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defines a Riemannian metric on M/ ∼. Endowed with this
Riemannian metric, M/ ∼ is called a Riemannian quotient
manifold of M, and the natural projection π :M→M/ ∼ is
a Riemannian submersion. (In other words, a Riemannian sub-
mersion is a submersion of Riemannian manifolds such that Dπ

preserves inner products of vectors normal to fibers.)

ACKNOWLEDGMENT

The authors would like to thank Dr. Bamdev Mishra, Dr.
Nicolas Boumal and Prof. Bart Vandereycken for insightful dis-
cussions about Riemannian optimization for low-rank matrix
completion.

REFERENCES

[1] Y. Shi, J. Zhang, K. Letaief, B. Bai, and W. Chen, “Large-scale convex
optimization for ultra-dense cloud-RAN,” IEEE Wireless Commun. Mag.,
vol. 22, no. 3, pp. 84–91, Jun. 2015.

[2] D. Gesbert, S. Hanly, H. Huang, S. Shamai Shitz, O. Simeone, and W. Yu,
“Multi-cell MIMO cooperative networks: A new look at interference,”
IEEE J. Sel. Areas Commun., vol. 28, no. 9, pp. 1380–1408, Sep. 2010.

[3] Y. Shi, J. Zhang, B. O’Donoghue, and K. Letaief, “Large-scale con-
vex optimization for dense wireless cooperative networks,” IEEE Trans.
Signal Process., vol. 63, no. 18, pp. 4729–4743, Sep. 2015.

[4] V. Cadambe and S. Jafar, “Interference alignment and degrees of freedom
of the K-user interference channel,” IEEE Trans. Inf. Theory, vol. 54,
no. 8, pp. 3425–3441, Aug. 2008.

[5] G. Bresler, D. Cartwright, and D. Tse, “Feasibility of interference align-
ment for the MIMO interference channel,” IEEE Trans. Inf. Theory,
vol. 60, no. 9, pp. 5573–5586, Sep. 2014.

[6] V. Ntranos, M. Maddah-Ali, and G. Caire, “Cellular interference align-
ment,” IEEE Trans. Inf. Theory, vol. 61, no. 3, pp. 1194–1217, Mar.
2015.

[7] O. El Ayach, A. Lozano, and R. Heath, “On the overhead of interference
alignment: Training, feedback, and cooperation,” IEEE Trans. Wireless
Commun., vol. 11, no. 11, pp. 4192–4203, Nov. 2012.

[8] M. A. Maddah-Ali and D. Tse, “Completely stale transmitter channel
state information is still very useful,” IEEE Trans. Inf. Theory, vol. 58,
no. 7, pp. 4418–4431, Jul. 2012.

[9] R. Tandon, S. Jafar, S. Shamai Shitz, and H. Poor, “On the synergis-
tic benefits of alternating CSIT for the MISO broadcast channel,” IEEE
Trans. Inf. Theory, vol. 59, no. 7, pp. 4106–4128, Jul. 2013.

[10] S. Jafar, “Topological interference management through index coding,”
IEEE Trans. Inf. Theory, vol. 60, no. 1, pp. 529–568, Jan. 2014.

[11] N. Naderializadeh and A. Avestimehr, “Interference networks with no
CSIT: Impact of topology,” IEEE Trans. Inf. Theory, vol. 61, no. 2,
pp. 917–938, Feb. 2015.

[12] Y. Shi, J. Zhang, and K. Letaief, “Optimal stochastic coordinated beam-
forming for wireless cooperative networks with CSI uncertainty,” IEEE
Trans. Signal Process., vol. 63, no. 4, pp. 960–973, Feb. 2015.

[13] A. E. Gamal, N. Naderializadeh, and A. S. Avestimehr, “When does an
ensemble of matrices with randomly scaled rows lose rank?” in Proc.
IEEE Int. Symp. Inf. Theory, 2015, pp. 1502–1506.

[14] X. Yi and D. Gesbert, “Topological interference management with
transmitter cooperation,” IEEE Trans. Inf. Theory, vol. 61, no. 11,
pp. 6107–6130, Nov. 2015.

[15] H. Sun and S. Jafar, “Topological interference management with mul-
tiple antennas,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2014,
pp. 1767–1771.

[16] E. J. Candès and B. Recht, “Exact matrix completion via convex opti-
mization,” Found. Comput. Math., vol. 9, pp. 717–772, Apr. 2009.

[17] H. Esfahanizadeh, F. Lahouti, and B. Hassibi, “A matrix completion
approach to linear index coding problem,” in Proc. IEEE Inf. Theory
Workshop (ITW), Nov. 2014, pp. 531–535.

[18] B. Hassibi, “Topological interference alignment in wireless networks,” in
Proc. Smart Antennas Workshop, Aug. 2014, pp. 1–143.

[19] Y. Shi, J. Zhang, and K. B. Letaief, “Low-rank matrix completion via
Riemannian pursuit for topological interference management,” in Proc.
IEEE Int. Symp. Inf. Theory (ISIT), Hong Kong, Jun. 2015, pp. 1831–
1835.

[20] Z. Wen, W. Yin, and Y. Zhang, “Solving a low-rank factorization
model for matrix completion by a nonlinear successive over-relaxation
algorithm,” Math. Program. Comput., vol. 4, no. 4, pp. 333–361,
2012.

[21] P. Jain, P. Netrapalli, and S. Sanghavi, “Low-rank matrix completion
using alternating minimization,” in Proc. ACM Symp. Theory Comput.,
2013, pp. 665–674.

[22] B. Vandereycken, “Low-rank matrix completion by Riemannian opti-
mization,” SIAM J. Optim., vol. 23, pp. 1214–1236, Jun. 2013.

[23] N. Boumal and P.-A. Absil, “RTRMC: A Riemannian trust-region method
for low-rank matrix completion,” in Proc. Adv. Neural Inf. Process. Syst.,
2011, pp. 406–414.

[24] M. Tan, I. W. Tsang, L. Wang, B. Vandereycken, and S. J. Pan,
“Riemannian pursuit for big matrix recovery,” in Proc. Int. Conf. Mach.
Learn. (ICML), Jun. 2014, vol. 32, pp. 1539–1547.

[25] B. Mishra, G. Meyer, S. Bonnabel, and R. Sepulchre, “Fixed-rank matrix
factorizations and Riemannian low-rank optimization,” Comput. Statist.,
vol. 29, nos. 3–4, pp. 591–621, 2014.

[26] B. Mishra and R. Sepulchre, “R3MC: A Riemannian three-factor algo-
rithm for low-rank matrix completion,” in Proc. IEEE Conf. Decision
Control, 2014, pp. 1137–1142.

[27] B. Mishra and R. Sepulchre, “Riemannian preconditioning,” arXiv
preprint arXiv:1405.6055, 2014.

[28] P.-A. Absil, C. G. Baker, and K. A. Gallivan, “Trust-region methods on
Riemannian manifolds,” Found. Comput. Math., vol. 7, pp. 303–330, Feb.
2007.

[29] P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization Algorithms on
Matrix Manifolds. Princeton, NJ, USA: Princeton Univ. Press, 2009.

[30] A. Uschmajew and B. Vandereycken, “Line-search methods and rank
increase on low-rank matrix varieties,” in Proc. Int. Symp. Nonlinear
Theory Appl. (NOLTA’14), 2014, pp. 52–55.

[31] T. M. Cover and J. A. Thomas, Elements of Information Theory.
Hoboken, NJ, USA: Wiley, 2012.

[32] K. Gomadam, V. R. Cadambe, and S. A. Jafar, “A distributed numerical
approach to interference alignment and applications to wireless interfer-
ence networks,” IEEE Trans. Inf. Theory, vol. 57, no. 6, pp. 3309–3322,
Jun. 2011.

[33] M. Razaviyayn, G. Lyubeznik, and Z.-Q. Luo, “On the degrees of free-
dom achievable through interference alignment in a MIMO interference
channel,” IEEE Trans. Signal Process., vol. 60, no. 2, pp. 812–821, Feb.
2012.

[34] X. Yi and D. Gesbert, “Topological interference management with trans-
mitter cooperation,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun.
2014, pp. 846–850.

[35] E. J. Candes, Y. C. Eldar, T. Strohmer, and V. Voroninski, “Phase retrieval
via matrix completion,” SIAM J. Imag. Sci., vol. 6, no. 1, pp. 199–225,
2013.

[36] D. Papailiopoulos and A. Dimakis, “Interference alignment as a rank con-
strained rank minimization,” IEEE Trans. Signal Process., vol. 60, no. 8,
pp. 4278–4288, Aug. 2012.

[37] P. Jain, R. Meka, and I. S. Dhillon, “Guaranteed rank minimization via
singular value projection,” in Proc. Adv. Neural Inf. Process. Syst., 2010,
pp. 937–945.

[38] G. Meyer, S. Bonnabel, and R. Sepulchre, “Linear regression under fixed-
rank constraints: A Riemannian approach,” in Proc. 28th Int. Conf. Mach.
Learn. (ICML), 2011, pp. 1–8.

[39] J. Nocedal and S. Wright, Numerical Optimization. New York, NY, USA:
Springer, 2006.

[40] D. Kressner, M. Steinlechner, and B. Vandereycken, “Low-rank tensor
completion by Riemannian optimization,” BIT Numer. Math., vol. 54,
no. 2, pp. 447–468, 2014.

[41] N. Boumal, B. Mishra, P.-A. Absil, and R. Sepulchre, “Manopt, a Matlab
toolbox for optimization on manifolds,” J. Mach. Learn. Res., vol. 15,
pp. 1455–1459, 2014.

[42] R. Schneider and A. Uschmajew, “Convergence results for projected
line-search methods on varieties of low-rank matrices via łojasiewicz
inequality,” SIAM J. Optim., vol. 25, no. 1, pp. 622–646, 2015.

[43] P.-A. Absil and I. V. Oseledets, “Low-rank retractions: A survey and new
results,” Comput. Optim. Appl., vol. 62, no. 1, pp. 1–25, 2014.

[44] B. Mishra, G. Meyer, F. Bach, and R. Sepulchre, “Low-rank optimization
with trace norm penalty,” SIAM J. Optim., vol. 23, no. 4, pp. 2124–2149,
2013.

[45] X. Yu, J. C. Shen, J. Zhang, and K. Letaief, “Alternating minimization
algorithms for hybrid precoding in millimeter wave MIMO systems,”
IEEE J. Sel. Topics Signal Process., vol. 10, no. 3, pp. 1–16, Apr. 2016.



SHI et al.: LOW-RANK MATRIX COMPLETION FOR TOPOLOGICAL INTERFERENCE MANAGEMENT 4717

Yuanming Shi (S’13–M’15) received the B.S. degree
in electronic engineering from Tsinghua University,
Beijing, China, in 2011, and the Ph.D. degree in elec-
tronic and computer engineering from the Hong Kong
University of Science and Technology (HKUST),
Clear Water Bay, Hong Kong, in 2015. He is cur-
rently an Assistant Professor with the School of
Information Science and Technology, ShanghaiTech
University, Shanghai, China. His research interests
include large-scale convex optimization and analy-
sis, Riemannian optimization, computational big data

analytics, mobile edge computing, and dense wireless networking.

Jun Zhang (S’06–M’10–SM’15) received the B.Eng.
degree in electronic engineering from the University
of Science and Technology of China, Hefei, China,
in 2004, the M.Phil. degree in information engi-
neering from the Chinese University of Hong Kong,
Hong Kong, in 2006, and the Ph.D. degree in elec-
trical and computer engineering from the University
of Texas at Austin, Austin, TX, USA, in 2009. He
is currently a Research Assistant Professor with the
Department of Electronic and Computer Engineering,
Hong Kong University of Science and Technology

(HKUST). He has coauthored the book Fundamentals of LTE (Prentice-Hall,
2010). His research interests include wireless communications and network-
ing, green communications, and signal processing. He is an Editor of the IEEE
TRANSACTIONS ON WIRELESS COMMUNICATIONS, and served as a MAC
track Co-Chair for the IEEE WCNC 2011. He was the recipient of the 2014
Best Paper Award for the EURASIP Journal on Advances in Signal Processing,
and the PIMRC 2014 Best Paper Award.

Khaled B. Letaief (S’85–M’86–SM’97–F’03)
received the B.S. (with distinction), M.S., and
Ph.D. degrees in electrical engineering from Purdue
University, West Lafayette, IN, USA. From 1990 to
1993, he was a Faculty Member with the University
of Melbourne, Parkville Vic., Australia. He has
been with the Hong Kong University of Science
and Technology, Clear Water Bay, Hong Kong,
since 1993, where he is known as one of HKUST’s
most distinguished professors for his boundless
energy, collegial nature, dedication, and excellence

in research, education, and service. While at HKUST, he has held numerous
administrative positions, including the Chair Professor and the Dean of
HKUST School of Engineering, the Head of the Department Electronic and
Computer Engineering, the Director of the Center for Wireless IC Design, the
Director of Huawei Innovation Laboratory, and the Director of the Hong Kong
Telecom Institute of Information Technology.

In September 2015, he joined HBKU, as Provost to help establish a research-
intensive university in Qatar in partnership with strategic partners that include
Northwestern, CMU, Cornell, and Texas A & M. He is an internationally
recognized leader in wireless communications and networks and served as
consultant for different organizations including Huawei, ASTRI, ZTE, Nortel,
PricewaterhouseCoopers, and Motorola. He is the founding Editor-in-Chief of
the IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS and has served
on the Editorial Board of other prestigious journals. He has also been involved
in organizing a number of flagship international conferences and events.

In addition to his active research and professional activities, he has been
a dedicated teacher committed to excellence in teaching and scholarship. He
is recognized as a long time volunteer with dedicated service to professional
societies and in particular IEEE where he has served in many leadership
positions. These include Treasurer of the IEEE Communications Society, the
Vice-President for Conferences of the IEEE Communications Society, the
Vice-President for Technical Activities of the IEEE Communications Society,
the Chair of the IEEE Committee on Wireless Communications, and elected
member of the IEEE Product Services and Publications Board.

Dr. Letaief is a Fellow of HKIE. He is currently serving as the IEEE
Communications Society Director of Journals. He is also recognized by
Thomson Reuters as an ISI Highly Cited Researcher. He was the recipient of
the Mangoon Teaching Award from Purdue University in 1990; the Teaching
Excellence Appreciation Award by the School of Engineering at HKUST (4
times); and the Michael G. Gale Medal for Distinguished Teaching (high-
est university-wide teaching award and only one recipient/year is honored
for his/her contributions). He was also the recipient of many other distin-
guished awards and honors including the 2007 IEEE Communications Society
Joseph LoCicero Publications Exemplary Award, the 2009 IEEE Marconi Prize
Award in Wireless Communications, the 2010 Purdue University Outstanding
Electrical and Computer Engineer Award, the 2011 IEEE Communications
Society Harold Sobol Award, the 2011 IEEE Wireless Communications
Technical Committee Recognition Award, and 12 IEEE Best Paper Awards.


