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Abstract— Dense cloud radio access networks (cloud-RANs)
provide a promising way to enable scalable connectivity and han-
dle diversified service requirements for massive mobile devices.
To fully exploit the performance gains of dense cloud-RANs,
channel state information of both the signal link and interference
links is required. However, with limited radio resources for
training, the channel estimation problem in dense cloud-RANs
becomes a high-dimensional estimation problem, i.e., the number
of measurements will be typically smaller than the dimension
of the channel. In this paper, we shall develop a generic high-
dimensional structured channel estimation framework for dense
cloud-RANs, which is based on a convex structured regularizing
formulation. Observing that the wireless channel possesses ample
exploitable statistical characteristics, we propose to convert the
available spatial and temporal prior information into appro-
priate convex regularizers. Simulation results demonstrate that
exploiting the spatial and temporal dynamics can achieve good
estimation performance even with limited training resources. The
alternating direction method of multipliers algorithm is further
adopted to solve the resultant large-scale high-dimensional chan-
nel estimation problems. The proposed framework thus enjoys
modeling flexibility, low training overhead, and computation cost
scalability.

Index Terms— Cloud-RANs, CSI, high-dimensional structured
estimation, structured regularizers, ADMM, spatial and temporal
dynamics, and massive device connectivity.

I. INTRODUCTION

CLOUD radio access network (Cloud-RAN) [2] has
recently been proposed as a revolutionary architecture
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for future cellular networks to meet the exponential growth of
mobile data traffic. In this new architecture, all the baseband
signal processing will be shifted to a central location in
a datacenter cloud, called the baseband unit (BBU) pool,
while conventional powerful base stations are replaced by
low-power low-cost remote radio heads (RRHs). These RRHs
are connected to the BBU pool through high-bandwidth
and low-latency transport links [3]. Such an approach has
significant cost advantages and can reduce both the capital
expenditure (CAPEX) (e.g., via low-cost site construction)
and operational expenditure (OPEX) (e.g., via centralized
cooling). Thanks to the centralized signal processing and
resource allocation, it can significantly improve both spectrum
efficiency and energy efficiency [4], [5].

The benefits of full cooperation in Cloud-RANs, however,
highly depend on the quality of the available channel state
information (CSI) [6]. In particular, to provide transmitter-
side CSI in frequency-division duplex (FDD) systems, which
dominate the current cellular networks, the channel state needs
to be first estimated at the mobile users (MUs) via downlink
training and then to be fed back to the transmitters [7].
However, in dense Cloud-RANs with massive devices, as the
BBU pool can typically support hundreds of RRHs [2], [8],
obtaining such massive CSI will deplete the radio resources,
which is regarded as the “curse of dimensionality” of Cloud-
RAN [9]. Specifically, Hassibi and Hochwald [10] showed that
the training length for a MIMO channel should be equal to
the number of transmit antennas to make channel estimation
feasible with the least-squares estimator [11], which thus
cannot be applied in dense Cloud-RAN with a large number
of antennas at cooperative RRHs. It was shown in [12] that the
training length can be reduced by exploiting the channel spatial
correlation with the minimum mean-square error (MMSE)
estimator [12]. Recently, temporal correlation has been proven
to be necessary to reduce the training overhead for the FDD
massive MIMO system [13], [14], with the Kalman filter [11]
to track the channel time variations.

However, to make it tractable, either the MMSE
estimator or the Kalman filter usually makes the Gaussian
distribution assumption for the underlying channel model.
Furthermore, in the context of dense wireless cooperative
networks, such spatial and temporal channel statistics may
be difficult to obtain. For instance, as the dimension of the
channel covariance matrix grows quadratically with the total
number of transmit antennas, the overhead for feeding back
such a high dimensional covariance matrix will be prohibitive,
even though channel statistics change relatively slow compared
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with instantaneous channel information [14]. Hence, reducing
the prior information overhead and modeling assumptions
while guaranteeing a good estimation performance is
necessary to overcome the curse of dimensionality for the
channel estimation problem in dense Cloud-RANs.

In this paper, we are interested in the high-dimensional
channel estimation problem in dense Cloud-RANs, where the
training length is smaller than the dimension of the channel.
This problem is thus an ill-posed inverse problem [15]. It has
been well recognized that exploiting low-complexity structures
of the underlying signals (e.g., sparsity, low-rankness) can
make the underdetermined inverse problems solvable. Convex
optimization provides a powerful tool to achieve this goal
with computational efficiency (i.e., polynomial time solvable)
and statistical efficiency (i.e., good estimation performance)
by designing appropriate regularizing functions [15], [16] to
incorporate the low-complexity signal structures. This moti-
vates recent works on the compressed sensing based wireless
channel estimation technique [17] by exploiting the channel
sparsity in the angular and frequency domain. In particular,
the required training length is only in the order of O(s log N)
for a MIMO channel with the sparsity level s by exploiting its
spatial sparsity via ℓ1-norm minimization [15], which substan-
tially reduces the training overhead compared with the least-
squares estimator [10]. The training overhead can be further
reduced if additional structured information is available, e.g.,
the partial support information of sparse channels [18].

However, the spatial sparsity modeling assumption is
questionable in dense wireless networks [19]. Therefore,
the conventional compressed sensing based approach [17] may
lose its effectiveness in terms of training overhead reduction.
This motivates us to take both spatial and temporal dynamics
into consideration to enhance the channel estimation perfor-
mance, thereby reducing the training overhead. In particular,
we shall exploit the unique property of heterogeneous channel
gains in the spatial domain for dense Cloud-RANs to reduce
the training overhead with few modeling assumptions [5]. The
heterogeneity of large-scale fading has already been exploited
for coordinated beamforming [9] and topological interference
alignment [20], [21] to reduce the CSI signaling overhead.
We further exploit the temporal correlations [13], [14]
and temporal sparsity to reduce the training overhead.
The temporal sparsity in dense Cloud-RANs with massive
devices is based on the fact that only a few number of
mobile devices are active for Internet-of-Things (IoT)
devices and machine-type mobile devices using random
access [22].

Although there have been numerous research efforts on
CSI acquisition, there is still a lack of a systematic approach
for CSI training overhead reduction, especially in such dense
wireless networks as Cloud-RANs. In contrast to the pre-
vious works, in this paper, we propose a novel modeling
and algorithmic framework for high-dimensional structured
channel estimation via the following regularized optimization
formulation

Ĥ = arg min
M∈Cm×n

L(M; Z) + λR(M), (1)

where Z is a collection of observations, λ ≥ 0 is the user spec-
ified parameter, L and R are convex functions. Specifically,
function L measures the compatibility of the channel estimate
M with the observations Z using the least-squares criteria, and
function R encodes the available spatial and temporal prior
information into the regularizing functions [15], [16], which
aims at enforcing structures in the solution and improving
the estimation performance. We mainly focus on the convex
structured regularizers due to the computational and statistical
efficiency. In Section III, we shall propose to adopt the
weighted ℓ1-norm [23] to exploit the spatial prior information,
which consists of only the dominated large-scale fading coeffi-
cients. A quadratic regularizing function [11, Sec. 2.4] will be
proposed to exploit the temporal correlation prior information
in Section IV, which measures the closeness of the current
channel estimate to the previous estimated channel via tempo-
ral correlation. We further present the group-structured regular-
izer [16] in Section V to exploit the temporal sparsity for com-
pressive channel estimation with massive device connectivity .

To improve the computational efficiency and make the
algorithms scale well to large network sizes, the generic
large-scale conic programming solver SCS [24] is adopted to
solve the resultant convex high-dimensional channel estima-
tion problems. It is an alternating direction method of multipli-
ers (ADMM) (i.e., operator splitting method) based first-order
algorithm [25], and is amenable to parallel computation. This
is achieved by equivalently reformulating the convex regular-
ized optimization problem (1) into a standard conic program
form using the epigraph form [26] and Smith form [27]. There-
fore, the proposed unified massive CSI acquisition framework
possesses features including modeling flexibly via exploiting
the spatial and temporal dynamics, as well as computation
scalability. That is, it can scale well to large network sizes
in terms of the reduction of prior information overhead and
the computation cost. Simulation results shall demonstrate the
effectiveness of the proposed CSI estimation method, and the
important role of the spatial and temporal prior information
for channel training.

A. Contributions

The major contributions of the paper are summarized as
follows:

1) We propose a high-dimensional structured channel esti-
mation framework to unify the benefits of exploiting the
spatial and temporal dynamics for massive CSI acquisi-
tion. It enjoys the modeling flexibility and algorithmic
efficiency by developing various structured convex reg-
ularizers.

2) To encode the heterogenous large-scale fading in the
spatial domain, the weight ℓ1-norm regularizer is
developed. A composite convex regularizer is further
proposed to exploit the spatial-temporal channel dynam-
ics. We also present a group-structured regularizer for
training to exploit the temporal sparsity for massive
device connectivity.

3) The operator splitting method [24] is adopted to
solve the convex high-dimensional channel estimation
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Fig. 1. The architecture of Cloud-RAN with massive mobile devices,
in which, all the RRHs are connected to a single BBU pool through high-
capacity and low-latency optical fronthaul links.

problems in parallel. To achieve this goal, we propose to
transform the original convex programs into a standard
cone program via epigraph reformulation, followed by
the Smith form reformulation [27].

4) The proposed high-dimensional structured channel esti-
mation framework provides a robust way for massive
CSI acquisition with different spatial and temporal
dynamics patterns. Typical examples on exploiting spa-
tial and temporal prior information are simulated to
demonstrate the effectiveness of the proposed methods.

This work may serve the general purpose of developing
practical modeling and algorithmic strategies for massive
CSI acquisition in dense wireless networks. Our previous
works [3], [5], [8], [9], [20], [27] mainly focus on large-scale
network resource management problems with different CSI
assumptions.

II. SYSTEM MODEL AND PROBLEM STATEMENTS

A. System Model

Consider a frequency division duplexing (FDD) Cloud-RAN
with L multi-antenna RRHs and K single-antenna mobile
users (MUs) as shown in Fig. 1, where the l-th RRH is
equipped with Nl antennas. Denote N = ∑L

l=1 Nl as the total
number of transmit antennas at all the RRHs. In Cloud-RAN,
all the baseband units (BBUs) are shifted to a single cloud
datacenter, i.e., forming a BBU pool, where the centralized
signal processing is performed. The RRHs are connected to the
BBU pool via high-capacity and low-latency optical fronthaul
links. Cloud-RAN is thus a cost-effective network architecture
that leverages recent advances in cloud computing and net-
work function virtualization to improve energy and spectral
efficiency of wireless networks. With the shared computation
resources at the cloud data center and distributed low-cost low-
power remote radio heads (RRHs), Cloud-RAN provides an
ideal platform to harness the benefits of network cooperation
and coordination [4], [5], [28].

In this paper, we first focus on the downlink channel
estimation problem in Section III and Section IV, and then
discuss how to extend to the uplink channel estimation in
Section V. We adopt a block fading channel model with
coherence time T0, i.e., the channel coefficients keep constant

for a time period T0 and change to a new realization in the
next block [7]. In particular, at the τ -th block, the channel
propagation from the l-th RRH to the k-th MU is denoted as
hkl [τ ] ∈ CNl . Let hk[τ ] = [hk1[τ ]T , . . . , hkL [τ ]T ]T ∈ CN be
the channel vector from all the RRHs to MU k at block τ . The
channel matrix from all the RRHs to all the MUs at block τ
is denoted as H[τ ] = [h1[τ ], . . . , hK [τ ]] ∈ CN×K .

B. Linear Measurements Model

We consider the downlink training problem. Let T be the
training length for each block, and 0 < T < T0. At the τ -
th block, RRH l sends a (T × Nl )-dimensional measurement
matrix Ql [τ ], and MU k receives a T -dimensional complex
observation vector yk[τ ] ∈ CT

yk[τ ] = Q[τ ]hk[τ ] + nk[τ ], ∀τ ∈ J , (2)

where J = {0, 1 . . . , J − 1}, Q[τ ] = [ Q1[τ ], . . . , QL [τ ]] ∈
CT ×N , and nk[τ ] ∈ CT is the additive noise vector. Let
N[τ ] = [n1[τ ], . . . , nK [τ ]] ∈ CT ×K . The linear observations
Y [τ ] = [ y1[τ ], . . . , yK [τ ]] ∈ CT ×K for channel estimation
can be rewritten as

Y [τ ] = Q[τ ]H[τ ] + N[τ ], ∀τ ∈ J . (3)

The main purpose of downlink CSI acquisition is to enable
the centralized precoding/beamforming design at the BBU
pool. For FDD systems, channel estimation can be either
performed at MUs and then the MUs feed back the quantized
channel estimate to the RRHs, or the MUs directly feed back
the observations (2) to the RRHs and then perform channel
estimation at the BBU pool, which may lead to non-linear
observations [29] for channel estimation due to quantization.
Note that either the received quantized channel estimate or the
observations at RRHs need to be further delivered to the BBU
pool through the fronthaul links, where the signal process-
ing (e.g., precoding, estimation) is performed. As our main
focus in this paper is the channel estimation algorithm design,
we ignore the impact of limited feedback and limited fronthaul
link capacity, and assume that the BBU pool can perfectly
access the linear observations Y [τ ]’s. In this paper, we are
interested in the scenario with T < N . We thus propose to
directly feed back all the observations Y [τ ] to RRHs and
then recover the channel H[τ ] jointly at the BBU pool. This
helps reduce the feedback overhead, and can further reduce
the estimation overhead by exploiting the low-dimensional
structure in H[τ ] jointly. The effect of quantization of the
observations will be evaluated via simulations. As the pro-
posed methodologies can be also applied to the time division
duplex (TDD) mode, where the uplink training is performed.
Considering the amount of feedback, in the scenario with a
large number of MUs, uplink training is more attractive.

C. Channel Estimation and Modeling Assumptions

1) High-Dimensional Structured Channel Estimation: In
this paper, we are interested in the high-dimensional channel
estimation problem in dense Cloud-RANs, where the train-
ing length T is smaller than the dimension of the channel.
Therefore, it is an ill-posed inverse problem [15]. Fortunately,
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the wireless channel propagation often possesses spatial and
temporal dynamics, thereby providing prior information to
improve estimation performance. We thus propose a general
framework to convert the available prior information into con-
vex structured regularizing functions [16], yielding a convex
optimization solution to the underdetermined inverse problem
for channel estimation. We, therefore, mainly focus on the
estimation algorithm design based on the available spatial and
temporal prior information.

2) Channel Modeling With Spatial-Temporal Dynamics:
Channel modeling assumptions often lead to the use of
different strategies to estimate channel efficiently. Channel
spatial and temporal dynamics play a critical role for high-
dimensional structured channel estimation [17]. To simplify
the presentation, we assume that the channel spatial and
temporal statistics keep the same during J blocks. Specifically,
the instantaneous channel matrix H[τ ] of block τ can be
modeled as the following Hadamard product form

H[τ ] = D ◦ G[τ ], ∀τ ∈ J , (4)

where A ◦ B denotes the element-wise product of A and B,
G[τ ] ∈ CN×K and D = [Dij ] ∈ CN×K represent the small-
scale and large-scale fading coefficient matrix, respectively.
Here, entry Dij models the path-loss from transmit antenna i
to mobile user j . As RRHs in a Cloud-RAN are distributed at
different locations, we do not assume any spatial correlations.
Furthermore, we assume that the time variation of the channel
matrices H[τ ]’s across different blocks follow the following
first-order stationary Gauss-Markov process [13], [14]

H[τ ] = C H[τ − 1] + V [τ ], ∀τ ∈ J , (5)

where C ∈ CN×N is the temporal correlation coefficient
matrix and is assumed to be the same during all the J blocks,
and V [τ ] ∈ CN×K is an innovation process. Here, channel
matrices H[τ ]’s are written as (4), while (5) represents
the temporal relationship between current channel H[τ ] and
previous channel H[τ − 1].

To make the estimation approach robust, we only make few
channel modeling assumptions on the spatial and temporal
prior information for channel estimation, while keeping the
estimation performance competitive. Specifically, for channel
modeling in the temporal domain, we only assume that the
temporal correlation matrix C is known. We also further
exploit the channel temporal sparsity for massive device con-
nectivity. In this scenario, out of large number of devices, only
a few number of machine-type mobile devices are active with
sporadic traffic [22].

Although sparsity plays a key role for high-dimensional
structured estimation, spatial sparsity assumption for wireless
channel is still questionable in dense wireless networks [19].
Furthermore, the channel distribution information is difficult
to measure and model. Most of the available distribution
models are basically empirical and may lead to mismatch with
the real channel distributions. In this paper, we only assume
that the large-scale fading channel coefficients are available,
which only depend on the location information. The success
of this proposal is based on the heterogeneity of large-scale
fading [9], [21]. The recent work on network connectivity

information based localization approach [30] can be applied
in dense wireless networks for location estimation. As only
connectivity information is required, this approach thus scales
well to large network sizes.

III. HIGH-DIMENSIONAL STRUCTURED CHANNEL

ESTIMATION WITH SPATIAL DYNAMICS

In this section, we propose the weight ℓ1-norm minimization
approach for high-dimensional structured channel estimation
by exploiting the spatial prior information. To simplify the
notation, we omit the block index τ in this section.

A. Channel Estimation With Structured Regularizers

Given the observation Y and the measurement matrix Q at
one channel block, a popular way for estimating the channel
matrix H is based on the following least-squares criterion,

Ĥ = arg min
M

∥Y − QM∥2
F , (6)

which is, however, meaningful only when T ≥ N [11]. For
the high-dimensional estimation problem considered in this
paper, we investigate how the prior information can help
improve the performance of channel estimation. Specifically,
we propose the following generic high-dimensional channel
estimation framework via the regularizing formulation

Ĥ = arg min
M

∥Y − QM∥2
F +

∑

i

νi fi (M), (7)

where the first term serves to measure the fitness of the
estimate M to the observation Y based on the least-squares
criterion as in (6), and the second term serves to encode
different types of available prior information into the solu-
tion using different structured regularizing functions fi (M)’s,
while νi ’s (νi > 0) are the corresponding weights to be chosen.
In this paper, we mainly focus on the following problems

• Design algorithmically and statistically efficient regular-
izing functions fi ’s to encode the available spatial prior
information.

• Demonstrate that high-dimensional channel estimation
can be done with a reasonable amount of prior infor-
mation.

The main observation that motivates the proposed channel
estimation framework is that, in wireless networks, the channel
is not arbitrary and actually possesses additional exploitable
statistical characteristics. To make the estimation algorithm
computationally tractable, we restrict the regularizing func-
tions to convex functions, which have been proven powerful
in high-dimensional problems [15], [16] to achieve both sta-
tistical and computational efficiency.

Furthermore, there is an alternative estimation framework
based on the following constrained formulation

P : Ĥ = arg min
M

∑

i

λi fi (M)

subject to ∥Y − QM∥F ≤ ϵ, (8)

where ϵ > 0 is an upper bound on the noise ∥N∥F and
is assumed to be known as a prior. Lagrange multipliers
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indicate that solving the constrained program P is equivalent
to solving the regularized problem (7) under convexity and
mild regularity conditions [31]. We thus focus on channel
estimator design based on the constrained formulation P .
Note that the denoising error ϵ in problem P is bounded
by the noise variance with high probability via the denoising
procedure [32]. Basically, the noise variance can be estimated
either using the pilot sequences embedded in the signal or
using the transmitted data in a non-data aided manner [33].

B. Prior Information With Spatial Dynamics

We exploit the spatial domain prior information for train-
ing, including the statistical distribution information and the
heterogeneity of large-scale fading coefficients.

1) Channel Distribution Information: A unique property
of distributed networks such as Cloud-RAN is that signals
coming from different RRHs are with different pathlosses,
i.e., some links will be strong while some will be weak. This is
different from a point-to-point multi-antenna system, and will
be critical for the channel estimation design for Cloud-RANs.
As vec(ABC) = (CT ⊗ A)vec(B), the signal model (3) can
be vectorized as

vec(Y)︸ ︷︷ ︸
y

= (I K ⊗ Q)︸ ︷︷ ︸
Q̃

vec(H)︸ ︷︷ ︸
h

+ vec(N)︸ ︷︷ ︸
n

, (9)

where y ∈ CT K , Q̃ ∈ CT K×N K , h ∈ CN K and n ∈ CT K .
Assume that only the spatial prior information (i.e., large-
scale fading coefficients) is available. We first consider the
optimal performance with full prior information. Assume that
h ∈ CN (µ,!), where µ ∈ CN K and ! ∈ CN K×N K

with ! ≽ 0; and n ∈ CN (θ,#), where θ ∈ CT K and
# ∈ CT K×T K with # ≽ 0. The MMSE estimate for the
channel vector h is given by [11]

ĥmmse = E[h| y] =
∫

h f (h| y)dh

= µ + ! Q̃
H
( Q̃! Q̃

H + #)−1(y − Q̃µ − θ). (10)

The MMSE estimator can provide the optimal performance
but it requires the knowledge of the channel covariance
matrix ! ∈ CN K×N K , which is difficult to obtain in dense
Cloud-RANs. Furthermore, most of the distribution models
are empirical and may yield mismatch with the real channel
propagations especially in the ultra-dense wireless networks,
where the exact channel model should be derived from the
Maxwell’s equations [34]. In the following, we will show
that with the help of the new estimator (8), we can achieve
the performance of the MMSE estimator with much less
prior information. For the conventional MMSE estimator, the
number of orthogonal pilot symbols, i.e., the training length T ,
must scale linearly with the total number of transmit antennas
N at all the RRHs, i.e., O(N). However, the number of
available orthogonal pilot symbols is limited by the channel
coherence bandwidth and coherence time [35]. As N becomes
very large in ultra-dense Cloud-RANs, we do not have suffi-
cient pilots to support channel estimation even without the
consideration of the channel signaling overhead issue. In this

paper, we are thus particularly interested in the scenario with
T < N .

2) Heterogenous Large-Scale Fading: Due to the pathloss
and shadowing, in dense Cloud-RANs, the wireless channel
propagation gains are heterogeneous. For example, the results
in [9] showed that only obtaining the dominated channel
links is enough to achieve performance close to the one with
full CSI. Thus, significant CSI overhead reduction can be
achieved. Furthermore, topological interference alignment is
a promising proposal to manage the interference in partially
connected dense wireless networks [20]. However, the spatial
sparsity modeling assumption for the purpose of channel esti-
mation is still questionable [19]. Instead of using ∥vec(H)∥0
as the sparsity measurement, the soft sparsity measurement
∥vec(H)∥1/∥vec(H)∥2 [36] has recently been proposed as
an effective way to address the issue of sparsity modeling.
However, estimating the soft sparsity level is also challenging.

To address the above modeling issues, as well as reduce
the overhead of spatial prior information, we propose to only
acquire the dominated large-scale fading coefficients Dij ’s
indexed by the following set

D = {(i, j)|Dij ≥ D0}, (11)

where D0 ≥ 0 is a predefined threshold. This is based on
the heterogeneity of large-scale fading coefficients due to the
pathloss and shadowing. Furthermore, the large-scale fading
coefficients can be obtained by the location information of
all the nodes in the networks. Localization can normally
be achieved by measuring the pairwise Euclidean distance
matrix [37], which, however, yields significant overhead in
dense Cloud-RANs. To scale well to large network sizes,
we can adopt the 1-bit matrix completion approach for local-
ization, which is only based on the partial network connectivity
information [30].

Based on the large-scale fading prior information D (11),
we propose to use the following weighted ℓ1-norm [23] to
encode the available spatial prior information,

f1(M) = ∥W ◦ M∥1, (12)

where ∥A∥1 = ∑m
i=1

∑n
j=1 |Aij | is the entry-wise ℓ1-norm

for the m × n matrix, and the weight matrix W = [Wij ] is
defined as follows

Wij =
{

1/Dij , if (i, j) ∈ D;
1/(2D0), otherwise.

(13)

Intuitively, smaller large-scale fading will yield smaller
channel estimate Mij , due to the large penalty weight Wij .
That is, the channel coefficient with small large-scale fading
coefficient has a high probability to yield a small instantaneous
channel coefficient. The large-scale fading coefficients provide
the prior information in the form of probabilities that each
channel coefficient is non-zero. This spatial prior information
thus provides the prior distribution of the channel coefficients,
which can be leveraged by using the non-uniform weights
in (12). Specifically, we assume that partially spatial prior
information (i.e., large-scale fading coefficients indexed by D)
is available. The threshold D0 is determined by the amount of
available large-scale fading coefficients.
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C. High-Dimensional Channel Estimation via Weighted
ℓ1-Norm Minimization

Based on the convex structured regularizer (12), we arrive
at the following high-dimensional channel estimation approach
via weighted ℓ1-norm minimization:

P1 : Ĥ = arg min
M

∥W ◦ M∥1

subject to ∥Y − QM∥F ≤ ϵ, (14)

where ϵ > 0 is an upper bound on the noise and is assumed
to be known as a prior. Although problem P1 can be refor-
mulated as the regularized optimization formulation (1), it is
difficult to determine the optimal regularizer parameter. From
the Hadamard product channel representation (4), the weighted
ℓ1-norm regularizing function serves to enforce the structure in
the solution of algorithm P1 such that the instantaneous chan-
nel coefficients are encouraged to be small if the corresponding
large-scale coefficients are small. Note that without weights,
it will become the compressed sensing (CS) based estimator,
i.e., it only tries to exploit the sparsity structure in the channel.
As will be shown later, the CS approach will not work for
dense Cloud-RANs, as the channel is not truly sparse [19].
This demonstrates a typical channel modeling issue in dense
Cloud-RANs.

IV. MASSIVE CSI ACQUISITION WITH

SPATIAL-TEMPORAL DYNAMICS

In this section, we exploit both the spatial and temporal
dynamics to further improve the channel estimation. This is
achieved by the proposal of the composite structured regular-
izer to encode the spatial and temporal prior information.

A. Prior Information With Temporal Correlations

In this subsection, we shall demonstrate that simultaneously
exploiting the spatial and temporal dynamics can improve
the channel estimation performance if second-order statistical
information of the channel is available. Exploiting channel
correlation both in time and space is known to be effective
for training [13], [14]. Specifically, the Gauss-Markov channel
model (5) can be vectorized as

h[τ ] = C̃h[τ − 1] + v[τ ], ∀τ ∈ J , (15)

where C̃ = (I K ⊗ C) ∈ CN K×N K and v[τ ] = vec(V [τ ]) ∈
CN K . Combining (9) and (15), we arrive at the following state-
space system [11]

S :
{

h[τ ] = C̃h[τ − 1] + v[τ ]
y[τ ] = Q̃i [τ ]h[τ ] + n[τ ], (16)

where τ ∈ J . An optimal channel estimator for (16) is given
by the Kalman filter [11]. To make it computationally tractable,
we further make the following assumptions:

• All the variables, i.e., h, n, v, in the state-space system
S are jointly Gaussian distributed.

• The channel, observation noise and innovation process
covariance matrices ! = E[h[τ ]h[τ ]H], # =
E[n[τ ]n[τ ]H], and $ = E[v[τ ]v[τ ]H],∀τ ∈ J , are
available.

The Kalman filter [11] for the channel estimate h[τ ] based
on the observations y[0], . . . , y[J − 1], is presented in Algo-
rithm 1 with the following notations:

• ĥτ |i with i = τ or τ − 1, denotes the MMSE estimate of
h[τ ] based on y[0] through y[i ];

• The estimation error covariance is denoted as %τ |i =
E[δτ |iδH

τ |i ] with δτ |i = h[τ ]− ĥτ |i and i = τ or i = τ −1.

Algorithm 1 Kalman Filter Based Channel Estimation

Initialization: ĥ0|−1 = 0; %0|−1 = !.
while τ = 0, 1, . . . , J − 1, do
Measurement update:

• Calculate Kalman gain matrix:

K τ = %τ |τ−1 Q̃[τ ]H( Q̃[τ ]%τ |τ−1 Q̃[τ ]H + #)−1.

• Update estimate with measurement yi :

ĥτ |τ = ĥτ |τ−1 + K τ (y[τ ] − Q̃[τ ]ĥτ |τ−1).

• Compute MSE matrix

%τ |τ = (I − K τ Q̃[τ ])%τ |τ−1.

Time update:
• Prediction: ĥτ |τ−1 = Cĥτ−1.
• Prediction MSE matrix:

%τ |τ−1 = C%τ−1|τ−1CH + $.

end while.

However, as we have seen that the Kalman filter requires
the prior information on the second-order statistics of the
channel, the observation noise, and the innovation process.
In last Section III, we have presented a way to reduce the
requirements of the spatial prior information compared to the
statistical distribution based MMSE estimator. In this section,
we propose to further reduce the temporal prior information
overhead compared to the Kalman filter. This is achieved by
only exploiting the large-scale fading coefficients D (11) and
temporal correlation coefficient C . Furthermore, Kalman filter
based channel estimation has the cubic complexity to perform
matrix inversion at each iteration. We shall propose a convex
regularized optimization approach to reduce both the prior
information overhead and the computational complexity. The
computational scalability issue will be addressed in Section VI
via the parallel first-order method.

B. Spatial-Temporal Structured Channel Estimation

In this subsection, we shall further demonstrate that the
channel estimation performance can be improved with infor-
mation of only the large-scale fading and temporal correlation
coefficients, instead of the second-order statistical prior infor-
mation used in the Kalman Filter approach in Algorithm 1.
From the Gauss-Markov model (5), we can use the previously
estimated channel Ĥ[τ − 1] to predict the current channel
H[τ ], i.e.,

H[τ ] = C Ĥ[τ − 1], (17)
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which provides a guess for the current channel at the τ -th
block. Therefore, we propose to use the following squared ℓ2-
norm with a quadratic form as a convex regularizing function
to incorporate the available temporal prior information (17),

f2(M; τ ) = ∥M − H[τ ]∥2
F , (18)

for the τ -th block. Note that the previous estimated channel
Ĥ[τ − 1] always available as a prior, as we can store it at the
BBU pool.

We thus arrive at the following channel estimation problem
by encoding the spatial and temporal prior information into
the following composite convex regularizer function,

P2(τ ) : Ĥ[τ ] = arg min
M

∥W ◦ M∥1 + λ∥M − H[τ ]∥2
F

subject to ∥Y [τ ] − Q[τ ]M∥F ≤ ϵ, (19)

where the quadratic regularizing function (i.e., the squared
ℓ2-norm) serves to enforce the fidelity of the prior information
H[τ ] and weight λ indicates how confident we are about
the fidelity of the optimal solution Ĥ[τ ] to the given matrix
H[τ ] [11, Section 2.4]. Here, ϵ > 0 is an upper bound on
the noise and is assumed to be known as a prior. Although
problem P2 can be reformulated as the regularized optimiza-
tion formulation (1), it is difficult to determine the optimal
regularizer parameter.

We now present the proposed spatial-temporal structured
channel estimation algorithm in Algorithm 2.

Algorithm 2 Spatial-Temporal Structured Channel Esti-
mation Algorithm P2

Initialization: Ĥ[−1] = 0, H[0] = 0;
while τ = 0, 1, . . . , J − 1, do

• Measurement update: Solve problem P2(τ ) and
obtain Ĥ[τ ].

• Time update: Let τ = τ + 1, compute the matrix H[τ ]
(17) that serves as the temporal prior information.

end while.

Note that, to update the measurement, both Kalman filter
and the proposed Algorithm 2 have cubic complexity to
perform matrix inversion and to solve convex optimization
problem P2 using interior-point method [26], respectively.
To improve the computational efficiency, in Section VI, we
propose to use a first-order method to solve the large-scale
optimization problem P2 to scale well to large problem sizes.

We summarize the required prior information to compute
different channel estimation algorithms in Table I.

V. HIGH-DIMENSIONAL UPLINK CHANNEL ESTIMATION

WITH MASSIVE DEVICES

In this section, we consider the uplink channel estima-
tion for dense Cloud-RANs with massive mobile devices.
It is straightforward to extend the results in Section III and
Section IV for downlink channel estimation to the scenario
of uplink channel estimation when all the devices are active.
However, for ultra-dense Cloud-RAN with massive sporadic

TABLE I

PRIOR INFORMATION REQUIRED FOR DIFFERENCE ALGORITHMS

traffic type devices (i.e., in each time slot only a few devices
are active out of all the massive devices), it is critical to
provide radio access for massive mobile devices by exploiting
the sparsity of the mobile devices activity. In this scenario,
the results in Section III and Section IV may not be effective.
More structured sparsity thus needs to be exploited. In this
section, we propose to exploit the temporal sparsity for uplink
training, thereby supporting massive device connectivity.

A. Prior Information With Temporal Sparsity

Massive device connectivity is a key requirement for 5G
cellular networks, e.g., dense Cloud-RANs. As the communi-
cation for machine-type mobile devices using random access
and Internet-of-Things (IoT) devices is sporadic, only a few
devices are active out of all the massive devices [22]. For
uplink transmission with channel coherence time T0, we con-
sider the joint active user identification and channel estimation
problem. Specifically, for any given channel coherence block,
the received signal at all the RRHs is given by

y(ℓ) =
K∑

i=1

hi qi (ℓ) + n(ℓ), ℓ = 1, . . . , T, (20)

where T ≤ T0 is the training length, hi ∈ CN is the channel
vector from mobile device i to all the RRHs with N antennas
in total, qi (ℓ) ∈ C is the pilot symbol transmitted from mobile
device i at time slot ℓ, y(ℓ) ∈ CN is the received signal at all
RRHs, n(ℓ) ∈ CN is the additive noise.

Let Y = [ y(1), . . . , y(T )]H ∈ CT ×N be the received signal
across N antennas, H = [h1, . . . , hK ]H ∈ CK×N be the
channel matrix from all the mobile devices to all the RRHs,
and Q = [q(1), . . . , q(T )]H ∈ CT ×K be the known pilot
matrix with q(ℓ) = [q1(ℓ), . . . , qK (ℓ)]H ∈ CK . We then
rewrite (20) as

Y = Q'H + N, (21)

where ' = diag(π1, . . . ,πK ) ∈ RK×K is the diagonal activity
matrix with πi = 1 indicating device i active and πi = 0
representing device i inactive, and N = [n(1), . . . , n(T )] ∈
CT ×N is the additive noise matrix. Our goal is to estimate H
and ' simultaneously, provided that active diagonal matrix '
is sparse. This is based on the fact that the number of active
mobile users has temporal sparsity.

The model in (21) provides a unified framework for high-
dimensional structured estimation for the unknown matrices
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' and H . Specifically, when ' is an unknown diagonal
matrix, problem (21) represents the problems including phase
retrieval [38] and blind deconvolution [39]. If ' is an unknown
permutation matrix, problem (21) is the linear regression
problem with an unknown permutation [40], which is critical
to reduce the control signaling overhead to support ultra-low
latency short packet communications [41].

B. Group-Structured Sparsity Estimation

Let M = 'H ∈ CK×N with ' as an unknown sparse
diagonal matrix. The effective matrix M thus has a group-
structured sparsity in rows of matrix M [16]. Then the linear
measurement model (21) can be rewritten as

Y = QM + N . (22)

To induce the group row sparsity in M, we introduce the
following group norm, i.e., mixed ℓ1/ℓ2-norm [16]

R(M) :=
K∑

i=1

∥mi∥2 , (23)

where M = [m1, . . . , mK ]H ∈ CK×N with mi ∈ CN . This is
also known as the group Lasso norm in statistics.

The associated group sparse matrix estimation problem for
joint active user identification and channel estimation can be
formulated as following group norm regularized optimization
problem:

P3 : M̂ = arg min
M∈CK×N

∥Y − QM∥2
F + λR(M), (24)

where λ ≥ 0 is a user defined regularization parameter to
control the tradeoffs between quality of fit and sparsity. Given
the estimate matrix M̂, the activity matrix can be recovered as
'̂ = diag(π̂1, . . . , π̂n) with π̂i = 1 if ∥m̂i∥2 ≥ γ0 for a small
enough γ0 (γ0 ≥ 0). The estimated |A|×N channel matrix for
the active users is thus given by M̂(A) with A = {i |π̂i = 1}.

Temporal sparsity for massive device connectivity and chan-
nel estimation has been investigated in the frameworks of
Bayesian compressive sensing [42], approximate message
passing [43] and orthogonal matching pursuit [22]. However,
most of the results rely on either the prior distribution infor-
mation or sparsity level prior information of signal M, which
is impractical. For the group Lasso based formulation P3,
we may either use the approach in [36] to estimate the sparsity
level, thereby designing the optimal regularizer, or adopt the
sparsity level independent approach to determine the regu-
larizer [24]. Although problem P3 is convex and thus can
be solved in polynomial time, it is still critical to design the
scalable convex algorithms in the scenario of massive devices.

Remark 1: If we assume that all the mobile users are
active, we can apply the proposed downlink channel estimation
approaches P1 and P2 to solve the uplink channel esti-
mation problem. Specifically, for uplink channel estimation,
the training matrices are sent by the mobile users, while
the observations are received by the RRHs. However, in
this section, we further consider a more critical scenarios
with massive machine-type mobile devices with sporadic data
traffic, i.e., only a few mobile devices are active out of all the

devices. We thus propose a group sparse estimation approach
P3 to simultaneously detect the user activity and estimate the
channel coefficients for the active mobile users.

VI. LARGE-SCALE CONVEX OPTIMIZATION VIA

OPERATOR SPLITTING THEORY

In this section, we present the generic first-order optimiza-
tion algorithm based on the operator splitting method (i.e.,
the ADMM algorithm) to solve the large-scale convex opti-
mization problems P1, P2 and P3. This is achieved by
reformulating the original problems into the convex programs
and then the standard conic programming form, followed by
the operator splitting method to solve the transformed standard
conic program. The presented large-scale first-order convex
algorithm enjoys both the capability of infeasibility detection
and the ability to scale to large problem sizes with parallel
computing.

A. Conic Reformulation via Epigraph Form and Smith Form

In this subsection, we propose to transform the original
convex optimization problems P1, P2, and P3 into stan-
dard conic optimization form Pcone (29). For the convex
problems P1, P2 and P3, one may use the interior-point
method (a second-order method), which is implemented in
most advanced off-the-shelf solvers like SeDuMi [44]. Never-
theless, the computational burden of the second-order method
makes it inapplicable in dense Cloud-RAN. For instance, for
a network with L = 100 single antenna RRHs and K = 100
single-antenna MUs, the dimension of the channel matrix is
d = 104 and the corresponding computational complexity
for computing problem P1, P2 or P3, grows cubically
with dimension d using the interior-point method [26]. To
make the estimation algorithm scalable to large problem sizes,
we adopt the first-order method to solve it with modest
accuracy within a reasonable time. The general idea is to
first reformulate the original problems into the second-order
cone programs (SOCPs) based on the principle of epigraph
reformulation. Then we reformulate them as the standard cone
programs, which are then solved by the ADMM algorithm
solver SCS [24].

1) SOCP Formulation via Epigraph Form: We present the
basic ideas of transforming the original problems P1, P2
and P3 into a standard conic optimization form. Specifically,
we can rewrite the weighted matrix ℓ1-norm ∥W ◦ M∥1 in
problem P1 as

∥W ◦ M∥1 =
N∑

n=1

K∑

k=1

Wnk(|Re(Mnk )| + |Im(Mnk )|), (25)

where W = [Wnk ] ∈ RN×K and M = [Mnk ] ∈ CN×K .
Let xnk,1 = Re(Mnk ) and xnk,2 = Im(Mnk ), and based
on the principle of the epigraph reformulation for convex
optimization problem, we introduce slack variables tnk,1 and
tnk,2 for the associated optimization variables xnk,1 and xnk,2,
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respectively. We thus reformulate problem P1 as

minimize
M,t

N∑

n=1

K∑

k=1

Wnk(tnk,1 + tnk,2)

subject to ∥Y [τ ] − Q[τ ]M∥F ≤ ϵ,

|xnk,1| ≤ tnk,1, |xnk,2| ≤ tnk,2, (26)

which is then rewritten as the following form:

minimize
M,t

N∑

n=1

K∑

k=1

Wnk(tnk,1 + tnk,2)

subject to ∥Y [τ ] − Q[τ ]M∥F ≤ ϵ,

− t ≼ x ≼ t, (27)

where t ∈ R2N K , x = [Re(Mnk), Im(Mnk)] ∈ R2N K , and ≼
represents componentwise inequality. Similarly, problem P2
is recast as the following SOCP problem:

minimize
M,t,u,s

N∑

n=1

K∑

k=1

Wnk(tnk,1 + tnk,2) + λs

subject to ∥Y [τ ] − Q[τ ]M∥F ≤ ϵ,

∥M − H[τ ]∥F ≤ u,

∥(1 − s, 2u)∥2 ≤ 1 + s,

− t ≼ x ≼ t, (28)

where u ∈ R and s ∈ R. Following the same idea in [45],
problem P3 can also be equivalently reformulated as the
SOCP. Please refer to [24, Sec. 6.2] for the SOCP refor-
mulation with the special case of individual sparsity Lasso,
i.e., R(m) = ∥m∥1 with m ∈ CK×1 for the single receiver
antenna case.

2) Conic Formulation via Smith Form: Based on the Smith
form reformulation [27] supported by the software CVX for
disciplined convex programming [46], all the SOCP formula-
tions, e.g., (27) and (28), can be easily and automatically trans-
form in turn into the following equivalent conic optimization
form:

Pcone : minimize
ν,µ

cT ν

subject to Aν + µ = b

(ν,µ) ∈ Rn × C, (29)

where ν ∈ Rn and µ ∈ Rm are the optimization variables,
C = {0}r × Sm1 × · · · × Smq with S p as the standard second-
order cone of dimension p,

S p = {(y, z) ∈ R × Rp−1|∥z∥ ≤ y}, (30)

and S1 is defined as the cone of nonnegative reals, i.e., R+.
Here, each S i has dimension mi such that (r +∑q

i=1 mi ) = m,
A ∈ Rm×n , b ∈ Rm , c ∈ Rn . The equivalence means that
the optimal solutions or the certificates of infeasibility of the
original problem can be extracted from the solutions of the
equivalent cone program Pcone.

TABLE II

SIMULATION PARAMETERS

B. Large-Scale Conic Optimization via Operator Splitting

In this subsection, we adopt the operator splitting technique
to solve the large-scale transformed conic optimization prob-
lem Pcon (29) in parallel. To unify the capability of detecting
infeasibility and computing the optimal solutions into a single
system, the homogeneous self-dual embedding was proposed
by adding extra variables into the Karush-Kuhn-Tucker (KKT)
conditions [24] for the primal-dual programs of Pcone. The
second-order algorithms based on the interior-point method
were then implemented in the well developed software pack-
ages, e.g., SDPT3 [47], to solve the homogeneous self-
dual embedding automatically. However, the second-order
algorithms are still computationally expensive and thus are
not computationally feasible in dense Cloud-RANs. We thus
present a novel first-order algorithm software package SCS
based on the principle of operator splitting method, i.e., the
ADMM algorithm [24], to solve the large-scale homogeneous
self-dual embedding. The final iterative algorithm is presented
as follows [24], [27]:

x̃[i+1] = (I + J)−1(x[i] + y[i]) (31)

x[i+1] = (V (x̃[i+1] − y[i]) (32)

y[i+1] = y[i] − x̃[i+1] + x[i+1], (33)

where (V (x) denotes the Euclidean projection of x onto the
convex set V with V = Rn × C∗ × R+ and C∗ being the
dual cone of C, x = [ν, η, τ ] ∈ Rm+n+1, y = [λ,µ, κ] ∈
Rm+n+1 with τ ≥ 0 and κ ≥ 0 being variables to encode
different outcomes including the certificate of infeasibility and
optimal solutions, x̃ is the replicating variables of x. Here,
the (m + n + 1) × (m + n + 1) data matrix J is given by

J =
⎡

⎣
0 AT c

−A 0 b
−cT −bT 0

⎤

⎦. (34)

The subspace projection (31) can be efficiently computed
using cached factorization approach [24], while the cone
projection (32) can be computed in parallel with closed-
forms using the proximal algorithms [48, Sec. 6]. In this
paper, we shall use the numeric-based modeling framework
CVX [46] to automatically transform the SOCP problems,
e.g., (27) or (28), to the standard conic program form Pcone,
and then call the first-order optimization solver SCS to solve
it efficiently.
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VII. SIMULATION RESULTS

In this section, we simulate the proposed high-dimensional
structured channel estimation algorithms in dense Cloud-
RANs. We consider the following channel model [3]

hkl [τ ] = 10−L(dkl )/20√ϕkl skl︸ ︷︷ ︸
Dkl

gkl [τ ], ∀τ ∈ J , (35)

where L(dkl ) is the pathloss at distance dkl in kilometer, skl is
the shadowing coefficient, ϕkl is the antenna gain, gkl is the
small-scale fading coefficient and Dkl is the associated large-
scale fading coefficient. We adopt the standard cellular channel
parameters as shown in Table II. To model the channel time
variations (5) and (15), we adopt the model in [13] and [14]
such that the corresponding innovation process is given by
vkl [τ ] =

√
1 − η2 Dklνkl [τ ] with νkl [τ ] ∼ CN (0Nl , I Nl ), and

C = η I N with η = J0(2π fDκ) as the temporal correlation
coefficient based on the Jakes’ model, where J0 is the 0-th
order Bessel function of the first kind, fD denotes the maxi-
mum Doppler frequency and κ represents the channel instan-
tiation interval. We set η = 0.9881 based on the parameters
provided in [14]. In this section, we assume that all the random
variables, including small-scale fading coefficients, large-scale
fading coefficients, innovation process and observation noise
are mutually independently, due to the large distance between
different antennas in Cloud-RANs. We use the unitary training
matrix with equal power p ≥ 0 per training symbol, i.e.,

Q[τ ] ∈
{

U ∈ CT ×N , UUH = p · I T

}
, ∀τ ∈ J , (36)

which is optimal in i.i.d. Rayleigh fading channels [14].
We generate the unitary matrix from the orthogonal group
using the method described in [49]. All the optimization
problems P1, P2 and P3 are computed using the modeling
framework CVX [46] with the large-scale convex optimization
solver SCS [24]. The performance metric is given by the mean
squared error [14], i.e., MSE = E[∥Ĥ − H∥2

F ]/(N K ).

A. Channel Estimation With Spatial Prior Information

Consider a network with L = 50 single-antenna RRHs and
K = 30 single-antenna MUs uniformly and independently dis-
tributed in the square region [−5000, 5000] × [−5000, 5000]
meters. Each point of the simulation results is averaged over
104 randomly generated network realizations (i.e., one small
scaling fading and observation noise realization for each large-
scale fading realization). The performance of different channel
estimation algorithms with different available prior informa-
tion assumptions is illustrated in Fig. 2 with the training length
as T = 10. Transmit SNR is defined as the transmit power at
per transmit antenna of per training symbol over the noise
power, and “10% D” means that there are only 10% largest
large-scale fading coefficients available.

From this figure, we can see that the gap between the
proposed estimator P1 and the MMSE estimator (which
requires the Gaussian distribution assumption) is very small.
In particular, estimator P1 with only 10% dominated large-
scale fading coefficients can achieve almost the same perfor-
mance as the one with full large-scale fading coefficients. This

Fig. 2. Mean-squared error versus transmit SNR with T = 10.

Fig. 3. Mean-squared error versus transmit SNR with T = 30.

substantially reduces the acquisition overhead of spatial prior
information. We emphasize that the proposed estimator P1
does not require the Gaussian distribution assumption for all
the variables in the system, but it requires the bound of the
observation noise as a prior.

Furthermore, compared with the compressed sensing (CS)
based channel estimation algorithm [17] (i.e., estimator P1
with equal weights, so it only exploits the channel sparsity
without any prior information on the large-scale fading coef-
ficients), it is clearly demonstrated that such approach does
not work well in dense Cloud-RANs, while the estimation
performance can be improved at the price of exploiting a
reasonable amount of prior information with the proposed
method. The main reason for the poor performance of the CS
based estimator is that the channel spatial sparsity assumption
in Cloud-RANs is still questionable [19]. Similar conclusion
can be obtained with the training length T = 30 as shown
in Fig. 3. In this case, the performance loss of the CS-based
estimator is smaller. Besides, Fig. 4 demonstrates that setting
the noise bound in the estimator P1 as the noise variance can
achieve good performance.
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Fig. 4. Mean-squared error versus noise bound for each entry (the underlying
noise variance is 1 for each entry).

B. Channel Estimation With Spatial-Temporal Prior
Information

Consider a network with L = 25 2-antennas RRHs and K =
5 single-antenna MUs uniformly and independently distributed
in the square region [−10000, 10000] × [−10000, 10000]
meters. The training time is set to be T = 5 and J is set
to be 10 such that the spatial and temporal statistics keep the
same during 10 blocks. The transmit SNR is fixed and set to be
0 dB. Each point of the simulation results in Fig. 5 is averaged
over 104 randomly generated network realizations (i.e., one
small scaling fading, observation noise and innovation process
realization for each large-scale fading realization).

For both the proposed estimators P1 and P2, from Fig. 5,
we can see that knowing only the 10% dominated large-
scale fading coefficients is enough to achieve the perfor-
mance with the one with full large-scale fading coefficients.
In particular, we set λ = 1 for estimator P2 to balance the
spatial and temporal prior information. Note that, in principle,
the performance of estimator P2 can be further improved by
choosing an optimal parameter λ. However, this is not trivial
and we leave it as our future work. From our experiments,
in this simulated setting, we observe that λ = 1 yields good
performance via cross validation.

Fig. 5 shows that the estimation performance can be sig-
nificantly improved by further exploiting the temporal prior
information for both the Kalman filter and the proposed
estimator P2. In particular, as the block index increases,
the performance improves, i.e., the estimation error decreases.
The main reason is that both algorithms can exploit all the
previous observations to make a good guess for the current
channel. For the temporal prior information, the main differ-
ence between the proposed estimator P2 and Kalman filter is
that the former only needs to know the temporal correlation
coefficient η, while the Kalman filter further requires the
innovation process covariance and the Gaussian distribution
assumption for the state-space system. It is observed that, com-
pared with the Kalman filter, estimator P2 can achieve good
estimation performance with reduced spatial and temporal

Fig. 5. Mean-squared error versus fading block index.

Fig. 6. Normalized mean-squared error versus the number of mobile devices.

prior information, i.e., it only requires 10% dominated large-
scale fading coefficients, the temporal correlation coefficient
η and a bound for the observation noise ϵ.

C. High-Dimensional Uplink Channel Estimation for
Massive Device Connectivity

We consider a simple scenario with one single-antenna RRH
with K single-antenna mobile devices, in which the number
of active users is s = 0.05K and active users are generated
at random. The pilot length T is set to be 2s log(K/s) (the
optimal pilot length as obtained in [15] via convex geometry)
for uplink training. For estimator P3, the channel matrix H ,
pilot matrix Q and additive noise matrix N are generated
independently from the distributions H = [hi j ] with hi j ∼
CN (0, 1), Q = [qi j ] with qi j ∼ CN (0, 1), and N = [ni j ] with
ni j ∼ CN (0, σ 2) and σ = 0.1. We choose λ = 0.1λmax for all
problem instances with λmax = ∥ QHY∥∞ being the smallest
value of λ such that the solution to problem P3 is zero [24].
The normalized mean squared error (NMSE) is defined as
NMSE = ∥M̂−M0∥2

F/∥M0∥2
F with M0 = 'H as the ground

truth. Each point of the simulation results is averaged over
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Fig. 7. Computation time versus the number of mobile devices.

Fig. 8. The estimation error versus number of quantization bits.

50 generated network realizations, i.e., H , Q and N . We com-
pute the estimator P3 using CVX+SDPT3 and CVX+SCS,
where the solver SDPT3 is based on the second-order algo-
rithm, i.e., interior-point method, while SCS is the ADMM
based first-order algorithm solver presented in Section VI.

Fig. 6 shows that the proposed estimator P3 significantly
outperforms the conventional least-square estimator [10] (com-
puted via CVX+SDPT3), i.e., λ = 0. This indicates that
it is critical to exploit the temporal sparsity of the active
mobile devices to improve the performance for uplink channel
estimation. Furthermore, both the second-order algorithm and
the first-order algorithm achieve the same performance, while
the first-order algorithm significantly reduces the computation
time as demonstrated in Fig. 7, and thus it scales well to large
network sizes.

Fig. 8 further investigates the estimation performance of
the estimator P3 with quantization errors in the observations.
Specifically, let K = 200 and other settings being the same
as in Fig. 6 and Fig. 7. Each entry yi in the observation
vector is quantized into the interval [−10, 10] for the real
part and imaginary part accordingly, which is divided into 2q

sub-intervals with equal length with q as the number of quan-
tization bits. Therefore, with the quantizer Qi , the quantized
noise corrupted measurements are zi = Qi (yi ). Based on the
quantized observations zi , we apply estimator P3 to perform
uplink channel estimation. From Fig. 8, we see that, as the
number of quantization bits increase, the estimator approaches
the performance of the unquantized case, and 4 quantization
bits are sufficient for this case.

VIII. CONCLUSIONS

In this paper, we proposed an efficient and flexible high-
dimensional channel estimation framework for dense Cloud-
RANs by exploiting spatial and temporal prior information.
Novel structured regularizers and scalable first-order algo-
rithms were presented to demonstrated the modeling flexibility
and algorithmic efficiency of the proposed framework. The
simulation results showed that the proposed high-dimensional
channel estimation algorithms with substantially reduced prior
information can achieve almost the same performance as
the ones with full spatial and temporal prior information.
In particular, it was demonstrated that the temporal sparsity
plays a key role to provide radio access for massive mobile
devices.

Several future research directions are listed as follows:
• While the convex formulations achieve good performance

in simulations, it is interesting to characterize the fun-
damental estimation performance with the given prior
information, thereby demonstrating the feasibility and
robustness of high-dimensional channel estimation.

• To further speed up the present ADMM algorithms for
real-time implementation of the convex high-dimensional
estimation framework, it is interesting to adopt the deep
neural networks to learn and approximate the algorithms,
thereby improving the convergence rates [50].

• It is also interesting to develop the nonconvex regularizers
to further encode more structured prior information and
establish statistical and algorithmic guarantees [51].
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