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Abstract—In this paper, we investigate the network power min-
imization problem for the multicast cloud radio access network
(Cloud-RAN) with imperfect channel state information (CSI).
The key observation is that network power minimization can be
achieved by adaptively selecting active remote radio heads (RRHs)
via controlling the group-sparsity structure of the beamforming
vector. However, this yields a non-convex combinatorial optimiza-
tion problem, for which we propose a three-stage robust group
sparse beamforming algorithm. In the first stage, a quadratic
variational formulation of the weighted mixed -norm is
proposed to induce the group-sparsity structure in the aggregated
beamforming vector, which indicates those RRHs that can be
switched off. A perturbed alternating optimization algorithm is
then proposed to solve the resultant non-convex group-sparsity
inducing optimization problem by exploiting its convex substruc-
tures. In the second stage, we propose a PhaseLift technique based
algorithm to solve the feasibility problem with a given active RRH
set, which helps determine the active RRHs. Finally, the semidefi-
nite relaxation (SDR) technique is adopted to determine the robust
multicast beamformers. Simulation results will demonstrate the
convergence of the perturbed alternating optimization algorithm,
as well as, the effectiveness of the proposed algorithm to minimize
the network power consumption for multicast Cloud-RAN.

Index Terms—Cloud-RAN, multicast beamforming, green com-
munications, group-sparsity, robust optimization, alternating op-
timization, PhaseLift, semidefinite relaxation.

I. INTRODUCTION

N ETWORK densification has been recognized as an effec-
tive way to meet the exponentially growing mobile data

traffic and to accommodate increasingly diversified mobile ap-
plications. Cooperative transmission/reception among multiple
base stations is a well-known approach to improve the spec-
tral efficiency and energy efficiency of dense wireless networks
[1]–[3], which is driving the development of novel collabora-
tive architectures for cellular networks. Cloud radio access net-
works (Cloud-RAN) [4]–[6] have recently been proposed as a
cost-effective and flexible way to exploit the cooperation gains
by moving the baseband units (BBUs) into a single cloud data
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center, i.e., forming a BBU pool with powerful shared com-
puting resources. As a result, with efficient hardware utiliza-
tion at the BBU pool, both the CAPEX (e.g., via low-cost site
construction) and OPEX (e.g., via centralized cooling) can be
reduced significantly. Furthermore, the conventional base sta-
tions are replaced by the light and low-cost remote radio heads
(RRHs) with basic functionalities of signal transmission and re-
ception, which are then connected to the BBU pool by high-ca-
pacity and low-latency optical fronthaul links. The capacity of
Cloud-RAN thus can be significantly improved through net-
work densification and centralized signal processing at the BBU
pool.
However, the new architecture of Cloud-RAN also brings

new design and operating challenges, e.g., high-capacity and
low-latency requirements for the optical fronthaul links [7], vir-
tualization techniques for resource management in the BBU
pool [4], and massive CSI acquisition for cooperative interfer-
ence management [8], [9]. In particular, energy efficiency is an
important aspect for operating such a dense wireless network,
and it is among the major design objectives for 5G networks
[10]. Conventionally, the energy efficiency oriented design only
takes into account the transmit power [11] and the circuit power
[12] at the base stations. Nevertheless, in such dense collabo-
rative networks as Cloud-RAN, a holistic view is needed when
measuring network power consumption, which should also in-
clude the power consumption of the additional optical fronthaul
links [5]. Observing that the mobile data traffic would vary tem-
porally and spatially, it was proposed in [5] to adaptively switch
off some fronthaul links and the corresponding RRHs to mini-
mize the network power consumption, which is achieved by a
new beamforming technique, called group sparse beamforming.
The effectiveness of group sparse beamforming has been

demonstrated in [5], but with certain limitations in the network
model, e.g., perfect CSI is assumed at the BBU pool, and
only unicast services are considered. In practice, inevitably
there will be uncertainty in the available CSI, originating from
various sources, e.g., limited feedback [13], channel estimation
errors [14], partial CSI acquisition [8], [9] and delay in the
obtained CSI [15], [16]. In terms of transmission services from
the RRHs, it has been well recognized that the physical layer
integration technique [17] can effectively improve the network
performance. In particular, the RRHs should not only transmit
data to individual users [18] (i.e., broadcast/unicast services)
but also integrate additional multicast services [19], where
the RRHs transmit a common message in such a way that all
the MUs in the same group can decode it. Such multigroup
multicast transmission is promising to provide high capacity
services and content-aware applications in next generation
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wireless networks. For instance, with physical layer caching
for wireless video delivery [20], it is common that multiple
users are interested in the same video stream, which creates
multicast groups.
In this paper, we will thus focus on the design of green

Cloud-RAN by jointly minimizing the RRH power consump-
tion and transport link power consumption, considering the
practical scenarios with imperfect CSI and multigroup multi-
cast services. We adopt the robust optimization approach to
address the CSI uncertainty, such that the QoS requirements are
satisfied for any realization of the uncertainty in a predefined set
[21]. The unique challenges of the network power minimization
problem arise from both the infinite number of the non-convex
quadratic QoS constraints (due to the robust design criteria
and multicast transmission) and the combinatorial composite
objective function (due to the consideration of both the relative
fronthaul link power consumption and the RRH transmit power
consumption).

A. Related Works
1) Robust Multicast Beamforming: Although the integration

of multicast, individual services and cooperative transmission
can significantly improve the capacity of wireless networks
[17], it will bring significant challenges from both the infor-
mation theoretic [22] and signal processing perspectives [19],
[23]. In particular, the physical-layer multicast beamforming
problem is in general NP-hard due to the non-convex quadratic
QoS constraints [19]. Furthermore, to address the CSI un-
certainty, one may either adopt the stochastic optimization
formulation [24] or the robust optimization formulation [25].
However, the stochastic optimization formulations often yield
highly intractable problems, e.g., the stochastic coordinated
beamforming problem based on the chance constrained pro-
gramming [9]. The worst-case based robust optimization, on
the other hand, has the advantage of computational tractability
[21]. Although the original robust and/or multicast beam-
forming design problems may be non-convex due to the infinite
number of non-convex quadratic QoS constraints [26], the
convex optimization based SDR technique [27] with S-lemma
[28] has recently been applied to provide a principled way
to develop polynomial time complexity algorithms to find an
approximate solution [29].
However, we cannot directly apply such SDR technique to

solve the network power minimization problem due to the non-
convex combinatorial composite objective function, which rep-
resents the network power consumption.
2) Group Sparse Beamforming: The convex sparsity-in-

ducing penalty approach [30] has recently been widely used to
develop polynomial time complexity algorithms for the mixed
combinatorial optimization problems in wireless networks,
e.g., joint base station clustering and transmit beamforming
[31], joint antenna [32] or RRH [5] selection and transmit
beamforming. The main idea of this approach is that the spar-
sity pattern of the beamforming vector, which can be induced
by minimizing a sparsity penalty function (e.g., the mixed

-norm minimization can induce the group-sparsity), can
provide guidelines for, e.g., antenna selection [32], where the
antennas with smaller beamforming coefficients (measured

by the -norm) have a higher priority to be switched off.
However, most works only consider the ideal scenario (e.g.,
perfect CSI and broadcast services [5]), which usually yield
convex constraints (e.g., second-order cone constraints [5]).
Unfortunately, we cannot directly adopt the non-smooth

weighted mixed -norm developed in [5] to induce the
group-sparsity for the robust multicast beamforming vector.
This is because the resultant group-sparsity inducing optimiza-
tion problem will be highly intractable, due to the non-smooth
sparsity-inducing objective function and the infinite number of
non-convex quadratic QoS constraints.
Based on above discussion and in contrast to the previous

work [5] on group sparse beamforming with a non-convex com-
binatorial composite objective function but convex QoS con-
straints in the unicast Cloud-RAN, we need to address the fol-
lowing coupled challenges in order to solve the network power
minimization problem for multicast green Cloud-RAN with im-
perfect CSI:
• An infinite number of non-convex quadratic QoS con-
straints;

• The combinatorial composite objective function.
Thus, to apply the computationally efficient group sparse beam-
forming approach [5] to more practical scenarios, unique chal-
lenges arise. We need to redesign the group-sparsity inducing
norm, and then deal with the non-convex group-sparsity in-
ducing optimization problem with an infinite number of non-
convex quadratic QoS constraints. We should also develop ef-
ficient algorithms for non-convex feasibility problems for the
adaptive RRH selection, and for non-convex robust multicast
beamforming design after determining the active RRHs.

B. Contributions
In this paper, we provide a convex relaxation based robust

group sparse beamforming framework for network power
minimization in multicast Cloud-RAN with imperfect CSI. The
major contributions are summarized as follows:
1) A group sparse beamforming formulation is pro-

posed to minimize the network power consumption for
Cloud-RAN. It will simultaneously control the group-spar-
sity structure and the magnitude of the beamforming
coefficients, thereby minimizing the relative fronthaul
link power consumption and the transmit power con-
sumption, respectively. The group sparse beamforming
modeling framework lays the foundation for developing
the three-stage robust group sparse beamforming algo-
rithm based on the convex relaxation.

2) In the first stage, a novel quadratic variational formulation
of the weighted mixed -norm is proposed to induce
the group-sparsity structure for the robust multicast beam-
forming vector, thereby guiding the RRH selection. The
main motivation for such a quadratic form formulation is
to make the group-sparsity inducing penalty function com-
patible with the quadratic QoS constraints. Based on the
SDR technique, a perturbed alternating optimization algo-
rithmwith convergence guarantee is then proposed to solve
the resultant non-convex quadratic form group-sparsity in-
ducing optimization problem by exploiting its convex sub-
structures.
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3) In the second stage, a PhaseLift approach based algorithm
is proposed to solve the non-convex feasibility problems,
based on which the active RRHs can be determined with
a binary search. Finally, the SDR technique is adopted to
solve the non-convex robust multicast beamforming opti-
mization problem to determine the transmit beamformers
for the active RRHs.

4) Simulation results will demonstrate the effectiveness of the
proposed robust group sparse beamforming algorithm to
minimize the network power consumption.

C. Organization

The remainder of the paper is organized as follows.
Section II presents the system model and problem formula-
tion, followed by the problem analysis. In Section III, the
group sparse beamforming modeling framework is proposed
to formulate the network power minimization problem. The
semidefinite programming (SDP) based robust group sparse
beamforming algorithm is developed in Section IV. Simulation
results will be illustrated in Section V. Finally, conclusions and
discussions are presented in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Consider a multicast Cloud-RANwith RRHs and single-
antenna mobile users (MUs), where the -th RRH is equipped
with antennas, as shown in Fig. 1. The centralized signal
processing is performed at the baseband unit (BBU) pool [4],
[5]. Define as the set of all the MUs and

as the set of all the RRHs. We focus on the
downlink transmission, for which the signal processing is more
challenging. Assume that there are multicast
groups, i.e., , where is the set of MUs in the
multicast group with . Let
be the set of the multicast groups. Each MU only belongs to a
single multicast group, i.e., such that and

.
Let be the transmit beamforming vector from the

-th RRH to the -th MU in group . The encoded transmis-
sion information symbol of the multicast group is denoted as

with . The channel propagation between
MU and RRH is denoted as . Therefore, the re-
ceived signal at MU in the multicast group is
given by

(1)

where is the additive Gaussian noise at MU .
We assume that ’s and ’s are mutually independent and all
theMUs apply single user detection. The signal-to-interference-
plus-noise ratio (SINR) for MU is given by

(2)

Fig. 1. The architecture of the multicast Cloud-RAN, in which, all the RRHs
are connected to a BBU pool through high-capacity and low-latency optical
fronthaul links. All the MUs in the same dashed circle form a multicast group
and request the same message.

where with , and
is the aggregative beam-

forming vector for the multicast group from all the RRHs.
The transmit signal at RRH is given by

(3)

Each RRH has its own transmit power constraint, i.e.,

(4)

where is the maximum transmit power of RRH .

B. Problem Formulation

1) Imperfect CSI: In practice, the CSI at the BBU pool will
be imperfect, which may originate from a variety of sources.
For instance, in frequency-division duplex (FDD) systems, the
CSI imperfection may originate from downlink training based
channel estimation [14] and uplink limited feedback [13]. It
could also be due to the hardware deficiencies, partial CSI ac-
quisition [8], [9] and delays in CSI acquisition [15], [16]. In this
paper, we adopt the following additive error model [26], [33],
[34] to model the channel imperfection from all the RRHs to
MU , i.e.,

(5)

where is the estimated channel vector and is the esti-
mation error vector. There are mainly two ways to model the
CSI uncertainty: one is the stochastic modeling based on the
probabilistic description, and the other is the deterministic
and set-based modeling. However, the stochastic CSI uncer-
tainty modeling will yield probabilistic QoS constraints. The
resulting chance constrained programming problems are highly
intractable in general [9]. Therefore, to seek a computationally
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tractable formulation, we further assume that the error vectors
satisfy the following elliptic model [26], [33], [34]:

(6)

where with is the shape of the ellipsoid.
This model is motivated by viewing the channel estimation as
the main source of CSI uncertainty ([34] Section 4.1).
2) Network Power Consumption: In Cloud-RAN, it is vital to

minimize the network power consumption, consisting of RRH
transmit power and relative fronthaul network power [5], in
order to design a green wireless network. RRH selection will
be adopted for this purpose. Specifically, let be the set of ac-
tive RRHs, the network power consumption is given by

(7)

where is the relative fronthaul link power consumption
[5] (i.e., the static power saving when both the fronthaul link
and the corresponding RRH are switched off) and is
the drain inefficiency coefficient of the radio frequency power
amplifier. The typical values are W and %
[5], respectively.
Given the QoS thresholds , in this paper,

we aim at minimizing the network power consumption while
guaranteeing the worst-case QoS requirements in the presence
of CSI uncertainty and the per-RRH power constraints, i.e., we
will consider the following non-convexmixed combinatorial ro-
bust multicast beamforming optimization problem,

P (8)

(9)

(10)

(11)
(12)

where is the set of inactive RRHs such that and
is the aggregated beamforming vector from all the

RRHs to all the MUs. The constraints in (10) indicate that the
transmit powers of the inactive RRHs are enforced to be zero.
That is, the beamforming coefficients at the inactive RRHs are
set to be zero simultaneously. Constraints (11) and (12) indicate
that all the QoS requirements in (11) should be satisfied for all
realizations of the errors ’s within the feasible set formed by
the constraint (12).
The network power minimization problem P imposes the

following challenges:
1) For a given set of CSI error vectors ’s, the corresponding

network power minimization problem is highly intractable,

due to the combinatorial composite objective function (8)
and the non-convex quadratic constraints (10) and (11).

2) There are an infinite number of non-convex quadratic QoS
constraints due to the worst-case design criterion.

To efficiently address the above unique challenges in a
unified fashion, in this paper, we will propose a systematic
convex relaxation approach based on SDP optimization to
solve problem P . In particular, the combinatorial challenge
will be addressed by the sparsity-inducing penalty approach in
Section IV.A, based on the quadratic variational formulation
for the weighted mixed -norm. The convex optimiza-
tion technique based on PhaseLift, SDR and S-lemma will
be adopted to cope with the infinite number of non-convex
quadratic constraints in Sections IV.B and IV.C.
In the next subsection, we will provide a detailed analysis of

problemP . In particular, the connections with the formulations
in existing literatures will be discussed, which will reveal the
generality of the formulation P for practical design problems
in Cloud-RAN.

C. Problem Analysis
While problem P incorporates most of the practical ele-

ments in Cloud-RAN, i.e., imperfect CSI and multigroup mul-
ticast transmission, it raises unique challenges compared with
the existing works. Following is a list of key aspects of the dif-
ficulty of problemP , accompanied with potential solutions.
• Robust Beamforming Design: Suppose that all the RRHs
are active, i.e., , with broadcast/unicast transmis-
sion, i.e., and . Then problem P
reduces to the conventional worst-case non-convex robust
beamforming design problems [26], [33]. For this special
case, the SDR technique [27] combined with the S-lemma
[28] is proven to be powerful to find good approximation
solutions to such problems.

• Multicast Beamforming Design: Physical-layer multi-
cast beamforming design problems [19] prove to be
non-convex quadratically constrained problems (QCQP)
[28], even with perfect CSI and all the RRHs active.
Again, the SDR technique can relax this problem to a
convex one, yielding efficient approximation solutions.

• Quadratically Constrained Feasibility Problem: Suppose
that the inactive RRH set with is fixed, then we
have the quadratic equation constraints (10) in problemP .
PhaseLift [35] is a convex programming technique to relax
the non-convex feasibility problem with such quadratic
equation constraints to a convex one by lifting the problem
to higher dimensions and relaxing the rank-one constraints
by the convex surrogates, i.e., the trace norms or nuclear
norms.

• Non-convex Mixed-integer Nonlinear Programming Opti-
mization Problem: ProblemP can be easily reformulated
as a mixed-integer non-linear programming (MINLP)
problem as shown in [5]. However, the MINLP problem
has exponential complexity [36]. Therefore, such a refor-
mulation cannot bring algorithmic design advantages. One
thus has to resort to some global optimization techniques
[37], [38] (e.g., branch-and-bound method) or greedy al-
gorithms [5]. Instead, the group-sparsity inducing penalty
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approach has recently received enormous attention to
seek effective convex relaxation for the MINLP prob-
lems, e.g., for jointly designing transmit beamformers
and selecting bases stations [31], transmit antennas [32],
or RRHs [5]. However, with multicast transmission and
imperfect CSI, we cannot directly adopt the group-spar-
sity inducing penalty developed in [5] with the weighted
mixed -norm, as we have seen that we need to
lift the problem P to higher dimensions to cope with
the non-convexity of the robust multicast beamforming
problem. This requires to develop a new group-sparsity
inducing penalty function, which needs to be compatible
with quadratic forms, as the beamforming coefficients will
be lifted to higher dimensions.

The above discussions show that problem P cannot be
directly solved by existing methods. Thus, we will propose
a new robust group sparse beamforming algorithm in this
paper, to solve the highly intractable problem P . Specifically,
in Section III, we will propose a group sparse beamforming
modeling framework to reformulate the original problem P .
The algorithmic advantages of working with the group sparse
beamforming formulation will be revealed in Section IV,
where a robust group sparse beamforming algorithm will be
developed.

III. A GROUP SPARSE BEAMFORMINGMODELING FRAMEWORK

In this section, we propose a group sparse beamforming mod-
eling framework to reformulate the network power minimiza-
tion problemP by controlling the group-sparsity structure and
the magnitude of the beamforming coefficients simultaneously.
The main advantage of such a modeling framework is the capa-
bility of enabling polynomial time complexity algorithm design
via convex relaxation.

A. Network Power Consumption Modeling
We observe that the network power consumption (7) can be

modeled by a composite function parameterized by the aggrega-
tive beamforming coefficients , which can be written
as a partition

(13)

where all the coefficients in a given vector
form a beamforming

coefficient group. Specifically, observe that the optimal
aggregative beamforming vector in problem P should
have the group-sparsity structure. That is, when the RRH
is switched off, the corresponding coefficients in the

beamforming vector will be set to zero simultaneously.
Overall there may be multiple RRHs being switched off and
the corresponding beamforming vectors will be set to zero,
yielding a group-sparsity structure in the beamforming vector
.
Define the support of the beamforming vector as

(14)

where is indexed by with .
Furthermore, define the sets

, as a partition of , such that
is indexed by . The network power consumption in the
first term of (7) thus can be defined by the following combina-
torial function with respect to the support of the beamforming
vector, i.e.,

(15)

where is an indicator function that takes value 1 if
and 0 otherwise. Therefore, the total relative fron-

thaul link power consumption can be reduced by encouraging
the group-sparsity structure of the beamforming vector .
Furthermore, the total transmit power consumption in the

second term of (7) can be defined by the continuous function
with respect to the -norms of the beamforming vector, i.e.,

(16)

which implicates that the transmit powers of the inactive RRHs
are zero, i.e., the corresponding beamforming coefficients are
zero. Therefore, the transmit power consumption can be mini-
mized by controlling the magnitude of the beamforming coef-
ficients. As a result, the network power consumption in (7) can
be rewritten as the following combinatorial composite function
parameterized by the beamforming vector coefficients , i.e.,

(17)

Thus, it requires to simultaneously control both the combinato-
rial function and the continuous function to minimize the
network power consumption. Such a composite function in (17)
captures the unique property of the network power consumption
that involves two parts (i.e., relative fronthaul network power
consumption and transmit power consumption) only through the
beamforming coefficients .

B. Group Sparse Beamforming Modeling
Based on (17), problem P can be reformulated as the fol-

lowing robust group sparse beamforming problem

P

(18)

via optimizing the beamforming coefficients . We will show
that the special structure of the objective function in P
yields computationally efficient algorithm design. In particular,
the weighted mixed -norm will be derived as a convex
surrogate to control both parts in (17) by inducing the group-
sparsity structure for the robust multicast beamforming vector
, thereby providing guidelines for RRH selection.
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Fig. 2. The proposed three-stage robust group sparse beamforming framework.

IV. A SEMIDEFINITE PROGRAMMING BASED ROBUST GROUP
SPARSE BEAMFORMING ALGORITHM

In this section, we will present the semidefinite programming
technique for the robust group sparse beamforming problem
P by lifting the problem to higher dimensions. The gen-
eral idea is to relax the combinatorial composite objective func-
tion by the quadratic variational formulation of the weighted
mixed -norm to induce the group-sparsity structure for
the beamforming vector . Unfortunately, the resultant group
sparse inducing optimization problem is still non-convex. We
thus propose a perturbed alternating optimization algorithm to
find a stationary point to it, thereby providing the information on
determining the priority for the RRHs that should be switched
off. Based on the ordering result, a selection procedure is then
performed to determine active RRH sets, followed by the robust
multicast coordinated beamforming for the active RRHs in the
final stage. The proposed three-stage robust group sparse beam-
forming framework is presented in Fig. 2.

A. Stage One: Group-Sparsity Inducing Penalty Minimization

In this section, we describe a systematic way to address
the combinatorial challenge in problem P by deriving
a convex surrogate to approximate the composite objective
function in problem P . Specifically, we first derive the
tightest convex positively homogeneous lower bound for the
network power consumption function (17) in the following
proposition.
Proposition 1: The tightest convex positively homogeneous

lower bound of the objective function in problem P is
given by

(19)

which is a group-sparsity inducing norm for the aggregative ro-
bust multicast beamformer vector .

Proof: Please refer to [5, Appendix A] for the proof.
Based on proposition 1, we propose to minimize the weighted

mixed -norm to induce the group-sparsity structure for the
aggregative robust multicast beamforming vector :

P

(20)
(21)

This is, however, a non-convex optimization problem due to the
non-convex worst-case QoS constraints (20) and (21).
To seek computationally efficient algorithms to solve

the non-convex problem P , we propose to lift the
problem to higher dimensions with optimization variables
as . To achieve this goal, in
Section IV.A1, a variational formulation is proposed to turn the
non-smooth group-sparsity inducing norm into a smooth
one with quadratic forms, thereby extracting the variables

’s. We then “linearize“ the non-convex worst-case QoS con-
straints with the S-lemma in Section IV.A2. In Section IV.A3,
the perturbed alternating optimization algorithm is proposed
to solve the resultant non-convex group-sparsity inducing
optimization problem by exploiting its convex substructures.
1) Quadratic Variational Formulation of the Weighted Mixed
-Norm: In order to extract the variables ’s from the

weighted mixed -norm, we introduce the following lemma
to obtain an equivalent expression for the square norm ,
which has the same capability of inducing group-sparsity as the
non-smooth one [30] and is widely used in multiple kernel
learning [39].
Lemma 1: [30]: Let and

, then

(22)

Proof: This can be obtained directly through the Cauchy-
Schwarz inequality

(23)

where and the equality is met when is proportional
to , i.e.,

(24)

which leads to the conclusion (22).
Based on Lemma 1, the square of the weighted mixed

-norm (19) can be rewritten as

(25)

where is a simplex set and

(26)

where and is a block
diagonal matrix with the identity matrix as the -th main
diagonal block square matrix and zeros elsewhere. Therefore,
the group-sparsity structure of the beamformer can be ex-
tracted from the trace of ’s, as will be shown in (36). This
procedure is known as the quadratic variational formulation of
norms [30].
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2) Linearize the Non-Convex Worst-Case QoS Constraints:
Define , and then the worst-case
QoS constraints (20) and (21) can be rewritten as

(27)

As the number of choices of ’s in the worst-case QoS con-
straint (27) is infinite, there are an infinite number of such
“linearized” QoS constraints. Fortunately, using the S-lemma
[28, Appendix B.2], the worst-case QoS constraints (27) can be
equivalently written as the following finite number of convex
constraints:

(28)

where and with .
Based on the above discussions and utilizing the principle of

SDR technique [27] by dropping the rank-one constraints for
’s, we propose to solve the following problem to induce the

group-sparsity structure for the beamforming vector

P

(29)

where and is the set of linearized per-RRH
transmit power constraints,

(30)

Problem P is still non-convex, as the objective function
is not jointly convex in the variables . Never-

theless, the objective function is biconvex [40], i.e., function
is convex with respect to for fixed and vice versa. In

the next subsection, we thus exploit the convex substructures of
problem P to develop a perturbed alternating optimization
algorithm to find an efficient sub-optimal solution.
3) Perturbed Alternating Optimization Algorithm: The

general idea of the alternating optimization algorithm is that
problem P is first optimized with respect to with
a fixed , then the variables ’s are chosen to minimize

with a fixed . However, to avoid singularity when
’s approach to zeros during the alternating procedure as

discussed in [39], we instead adopt the perturbed version of the
alternating optimization algorithm [41] to solve problemP .
Specifically, define the perturbed objective function of problem
P as

(31)

where . Let P be the problem by replacing the
objective function in problem P with the perturbed func-
tion .We thus solve problemP via alternatively
solving the following two problems:

• Fixing , Optimizing and : Given at the -th
iteration, we need to solve the following problem

P

(32)

to obtain . This is an SDP problem and can be
solved efficiently using the interior-point method [28].

• Fixing and , Optimizing : Given at the -th
iteration, we need to optimize over the simplex set ,
i.e.,

P (33)

which has the following optimal solution based on Lemma
1:

(34)

for any .
As the objective function in problemP is bounded and

non-increasing at each iteration, the sequence
generated by this algorithm, clearly, converges monotonically
to a sub-optimal value [40]. Since we will use the solution of
the problemP to predicate the group-sparsity pattern for
the beamformer , we thus are also interested in investigating
the convergence of the sequence itself generated by this
algorithm when . This is presented in the following The-
orem.
Theorem 1: The sequence gener-

ated by the perturbed alternating optimization algorithm con-
verges to a stationary point of problem P . Furthermore,
when , we have

(35)

where (45) and (46) denote the set of stationary points
of problem P and P , respectively; and ,
defined in (52), denotes the deviation of the set from the set

.
Proof: Please refer to Appendix A for details.

The perturbed alternating optimization algorithm is presented
in Algorithm 1.

Algorithm 1: Perturbed Alternating Optimization Algorithm

input: Initialize (the maximum
number of iterations)

Repeat
1) Solve problemP (32). If it is feasible, go to 2);

otherwise, stop and return output 2.
2) Calculate according to (34).

Until convergence or attain the maximum iterations and return
output 1.

output 1: ; output 2: Infeasible.
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Based on the solutions ’s generated by the perturbed al-
ternating optimization algorithm, in the next subsection, we will
present how to extract the group-sparsity pattern information for
the beamformer , thereby providing information on the RRH
ordering, i.e., determine the priority of the RRHs that should be
switched off.

B. Stage Two: RRH Selection
Given the solution to the group sparse inducing optimiza-

tion problemP , the group-sparsity structure information for
the beamformer can be extracted from the following relation:

(36)

Based on the (approximated) group-sparsity information in
(36), the following ordering criterion [5] incorporating the key
system parameters is adopted to determine which RRHs should
be switched off, i.e.,

(37)

where is the channel gain for the estimated
channel coefficients between RRH and all theMUs. Therefore,
the RRH with a smaller parameter will have a higher priority
to be switched off. Note that most previous works applying the
idea of sparsity inducing norm minimization approach directly
map the sparsity pattern to their applications. For instance, in
[32], the transmit antenna with smaller coefficients in the beam-
forming coefficient group (measured by the -norm) will have
a higher priority to be switched off. In [5], however, we show
that the ordering rule (37), which incorporates the key system
parameters, yields much better performance than the pure spar-
sity pattern based selection rule in terms of network power min-
imization.
In this paper, we adopt a simple RRH selection procedure,

i.e., binary search, due to its low-complexity. Specifically, based
on the ordering rule (37), we sort the coefficients in the as-
cending order: to determine the active
RRH set. Denote as the maximum number of RRHs that can
be switched off. That is, problem F is feasible for any

,
F

(38)

where with and .
Likewise, problem F with is
infeasible for any . A binary search procedure can be
adopted to determine , which only needs to solve no more
than feasibility problems (38) as will be pre-
sented in Algorithm 2. Denote as the final active RRH set,
we thus need to solve the following transmit power minimiza-
tion problem

P

(39)

with the fixed active RRH set to determine the
transmit beamformer coefficients for the active RRHs. Unfor-
tunately, both problemsF andP are non-convex and
intractable. Thus, in the paper, we resort to the computationally
efficient semidefinite programming technique to find approxi-
mate solutions to feasibility problem F and optimization
problem P .
Notice that, with perfect CSI assumptions as in [5], [32],

given the active RRH set , the size of the corresponding opti-
mization problem P (e.g., [5, (12)] and [32, (13)] will be
reduced. The key observation is that we only need to consider
the channel links from the active RRHs. However, with imper-
fect CSI, we still need to consider the channel links from all the
RRHs due to the lack of the knowledge of the exact values of
the CSI errors ’s. As a result, the sizes of corresponding opti-
mization problemsP ’s cannot be reduced with imperfect
CSI.
1) Phaselift To the Non-Convex Feasibility Problem: In this

subsection, we use the PhaseLift technique [35] to find approx-
imate solutions to the non-convex feasibility problem F .
Specifically, we first lift the problem to higher dimensions such
that the feasibility problem F can be reformulated as

(40)

where

(41)

The main idea of the PhaseLift technique is to approximate the
non-convex rank functions in problem (40) using the convex
surrogates, yielding the following convex feasibility problem

P

(42)

which is an SDP problem and can be solved using the inte-
rior-point method [28] efficiently. In general, the solution of
problemP may not be rank-one. If this happens, to yield
a feasible solution for problemF , the Gaussian randomiza-
tion procedure [27] will be applied to obtain a feasible rank-one
approximate solution for problem F from the solution of
problem P .
Remark 1: The PhaseLift technique, serving as one

promising application of the SDR method, was proposed in
[35] to solve the phase retrieval problem [42], which is mathe-
matically a feasibility problem with multiple quadratic equation
constraints. Various conditions are presented in [35], [42] for
the phase retrieval problem, under which the corresponding
solution of the PhaseLift relaxation problem yields a rank-one
solution with a high probability. However, for our problem
P with additional complicated constraints, it is challenging
to perform such rank-one solution analysis. Thus, in this paper,
we only focus on developing computationally efficient approx-
imation algorithms based on the SDR technique.
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C. Stage Three: SDR To the Robust Multicast Beamforming
Problem
Once we have selected active RRHs, i.e., fix the set , we

need to finalize the beamforming vector by solving problem
P . We lift the non-convex optimization problem P
to higher dimensions and adopt the SDR technique by dropping
the rank-one constraints, yielding the following convex relax-
ation problem

P

(43)

which is an SDP problem and can be solved using the inte-
rior-point method [28]. It is important to investigate whether
the solution of problem P yields a rank-one solution

. This is, however, an on-going research topic and some
preliminary results were presented in [26], [29]. In this paper,
if , we can write and

is a feasible (in fact optimal) solution to problemP .
Otherwise, if the rank-one solution is failed to be obtained, the
Gaussian randomizationmethod [27] will be employed to obtain
a feasible rank-one approximate solution to problemP .
Finally, we arrive at the robust group sparse beamforming

algorithm as shown in Algorithm 2.

Algorithm 2. Robust Group Sparse Beamforming Algorithm

Step 0: Solve the group-sparsity inducing optimization problem
P (29) using Algorithm 1.
1) If it is infeasible, go to End.
2) If it is feasible, obtain the solutions ’s, calculate the

ordering criterion (37), and sort them in the ascending
order: , go to Step 1.

Step 1: Initialize .

Step 2: Repeat
1) Set .
2) Solve problem P (42): if it is infeasible, set

; otherwise, set .

Step 3: Until , obtain and obtain
the optimal active RRH set with and

.

Step 4: Solve problem P (43), obtain the robust
multicast beamforming coefficients for the active RRHs.

End

Remark 2: The proposed robust group sparse beamforming
algorithm consists of three stages. In the first stage, we observe
that the perturbed alternating optimization algorithm converges
in 20 iterations on average in all the simulated settings in this
paper, while it is interesting to analyze the convergence rate
for this algorithm. In the second stage, to find the set of active
RRHs, we only need to solve no more than
convex feasibility problems (42) using the bi-section method.

Fig. 3. Convergence of the perturbed alternating optimization algorithm.

Finally, we need to solve problem (43) to determine the transmit
beamforming coefficients for the fixed active RRHs.

V. SIMULATION RESULTS
In this section, we analyze the performance of the proposed

robust group sparse beamforming algorithm. For illustration
purposes, all the estimated channels ’s are modeled as
spatially uncorrelated Rayleigh fading and the CSI errors are
modeled as the elliptic model (6) with . We
assume that each multicast group has the same number of MUs,
i.e., . The power amplifier efficiency
coefficients are set to be % . The perturbed parameter
in the perturbed alternating optimization algorithm is set to

be and the algorithm will stop if either the difference
between the objective values of consecutive iterations is less
than or it exceeds the predefined maximum iterations
20. Each point of the simulation results is averaged over 50
randomly generated channel realizations, except for Fig. 3,
where we only report one typical channel realization.

A. Convergence of the Perturbed Alternating Optimization
Algorithm
Consider a network with 2-antennas RRHs and 3

multicast groups with 2 single-antenna MUs in each group, i.e.,
. All error radii ’s are set to be 0.05. The con-

vergence of the perturbed alternating optimization algorithm is
demonstrated in Fig. 3 for a typical channel realization. This
figure shows that the proposed alternating optimization algo-
rithm converges very fast (less 20 iterations) in the simulated
network size.

B. Network Power Minimization
1) Scenario One: We first consider a network with
2-antenna RRHs and multicast groups each has 2

single-antenna MUs, i.e., . The relative fronthaul
links power consumption are set to be . All error
radii ’s are set to be 0.01. Fig. 4 demonstrates the average net-
work power consumption with different target SINRs. The cor-
responding average number of active RRHs and average total
transmit power consumption are showed in Table I and Table II,
respectively.
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Fig. 4. Average network power consumption versus target SINR for scenario
one.

TABLE I
THE AVERAGE NUMBER OF ACTIVE RRHS WITH DIFFERENT

ALGORITHMS FOR SCENARIO ONE

TABLE II
THE AVERAGE TOTAL TRANSMIT POWER CONSUMPTION WITH DIFFERENT

ALGORITHMS FOR SCENARIO ONE

Specifically, Fig. 4 shows that the proposed robust group
sparse beamforming algorithm achieves near-optimal values
of network power consumption compared with the ones
obtained by the exhaustive search algorithm via solving
a sequence of problems (43). Furthermore, it is observed
that the proposed algorithm outperforms the square of

-norm based algorithm with sparsity pattern or-
dering rule in [32] in terms of network power minimization.
Specifically, the objective function of the group-sparsity
inducing optimization problem (29) will be replaced by

with being the entry indexed by in . Then
the RRH with smaller beamforming coefficients measured
by the -norm will have a higher priority to be switched
off. In particular, Table I shows that the proposed algorithm
can switch off more RRHs than the -norm based al-
gorithm, which is almost the same as the exhaustive search
algorithm. Besides, this table also verifies the group-sparsity
assumption for the aggregative transmit beamformer , i.e., the
beamforming coefficients of the switched off RRHs are set to
be zeros simultaneously. Meanwhile, Table II shows that the

Fig. 5. Average network power consumption versus target SINR for scenario
two.

TABLE III
THE AVERAGE RELATIVE FRONTHAUL LINKS POWER CONSUMPTION WITH

DIFFERENT ALGORITHMS FOR SCENARIO TWO

TABLE IV
THE AVERAGE TOTAL TRANSMIT POWER CONSUMPTION WITH DIFFERENT

ALGORITHMS FOR SCENARIO TWO

proposed algorithm can achieve higher transmit beamforming
gains, yielding lower total transmit power consumption com-
pared with the -norm based algorithm. The coordinated
beamforming algorithm [11], which aims at only minimizing
the total transmit power consumption with all the RRHs active,
achieves the highest beamforming gain but with the highest
relative fronthaul links power consumption.
Overall, Fig. 4, Table I and Table II show the effectiveness

of the proposed robust group sparse beamforming algorithm to
minimize the network power consumption.
2) Scenario Two: We then consider a larger-sized network

with 2-antenna RRHs and multicast groups each
has 2 single-antenna MUs, i.e., . The relative
fronthaul links power consumption are set to be

. All error radii ’s are set to be 0.05. Due to the
high computational cost of the exhaustive search algorithm,
we only simulate the -norm based algorithm and the
proposed robust group sparse beamforming algorithm. Fig. 5,
Tables III and IV show the average network power consump-
tion, the average relative fronthaul link power consumption and
the average total transmit power consumption versus SINRs
with different algorithms, respectively. From Fig. 5, we see that
the proposed robust beamforming algorithm achieves lower
network power consumption compared with the -norm
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algorithm and the coordinated beamforming algorithm. In par-
ticular, Table III shows that proposed algorithm achieves much
lower relative fronthaul links power consumption, thought with
a little higher transmit power consumption at the moderate
target SINR regimes. Compared with the -norm algo-
rithm, the performance gain of the proposed algorithm is more
prominent with low target SINRs.
Overall, all the simulation results illustrate the effectiveness

of the proposed robust group sparse beamforming algorithm to
control both the relative fronthaul power consumption and the
RRH transmit power consumption with different network con-
figurations.

VI. CONCLUSIONS AND FUTURE WORKS

This paper described a systematic way to develop com-
putationally efficient algorithms based on the group-sparsity
inducing penalty approach for the highly intractable network
power minimization problem for multicast Cloud-RAN with
imperfect CSI. A novel quadratic variational formulation of
the weighted mixed -norm was proposed to induce the
group-sparsity structure for the robust multicast beamformer,
thereby guiding the RRH selection. The perturbed alternating
optimization, PhaseLift method, and SDR technique based
algorithms were developed to solve the group-sparsity inducing
optimization problem, the feasibility problems in RRH selec-
tion procedure and the transmit beamformer design problem in
the final stage, respectively. Simulation results illustrated the
effectiveness of the proposed robust group sparse beamforming
algorithm to minimize the network power consumption.
Several future directions of interest are listed as follows:
• Although the proposed SDP based robust group sparse
beamforming algorithm has a polynomial time complexity,
the computational cost of the interior-point method will the
prohibitive when the dimensions of the SDP problems are
large, such as in dense wireless networks. One may use the
first-order method, e.g., the alternating direction method of
multipliers (ADMM) [43]–[46] to seek modest accuracy
solutions within reasonable time for the large-scale SDP
problems [47].

• It is desirable to lay the theoretical foundations for the
tightness of the group-sparsity inducing penalty approach
for finding approximate solutions to the network power
minimization problem as a mixed-integer non-linear op-
timization problem, and also for the tightness of PhaseLift
method and SDR technique.

• It is interesting to apply the sparsity modeling framework
to more mixed-integer nonlinear optimization problems,
i.e., the joint user scheduling or admission and beam-
forming problems, which are essentially required to
control the sparsity structure and the magnitude of the
beamforming coefficients.

APPENDIX A
PROOF OF THEOREM 1

We first consider problem P with a fixed . Based
on ([40] Theorem 4.9), we know that the accumulation point

of the sequence

converges to a stationary point of problem P , provided
that the optimal solution (34) is unique with . This
can be easily justified by the strict convexity of with
respect to for a fixed .
Next, we will prove the relationship (35) between and
. For convenience, we define the feasible region of prob-

lems P and P as . Then problem P can be
rewritten as

P (44)

where . Let and denote the sets of the sta-
tionary points (or Karush-Kuhn-Tucker (KKT) pairs) of prob-
lems P and P as

(45)

(46)

respectively, where is the normal cone [48] to the convex
set at , i.e.,

(47)

We first prove that

(48)

Assuming that for any , there exists
and such that . Based on [48, Proposition

6.6], we have that

(49)

Furthermore, we have

(50)
and

(51)

Therefore, taking in equation (50), we obtain that
. We thus complete the proof for (48).

Define the deviation of a given set from another set as
[24]

(52)

Based on the conclusion (48) and [49, Theorem 4], we complete
the proof for the conclusion (35).
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