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Abstract— Group sparse beamforming is a general framework
to minimize the network power consumption for cloud radio
access networks, which, however, suffers high computational
complexity. In particular, a complex optimization problem needs
to be solved to obtain the remote radio head (RRH) ordering
criterion in each transmission block, which will help to determine
the active RRHs and the associated fronthaul links. In this paper,
we propose innovative approaches to reduce the complexity
of this key step in group sparse beamforming. Specifically,
we first develop a smoothed ℓ p-minimization approach with the
iterative reweighted-ℓ2 algorithm to return a Karush–Kuhn–
Tucker (KKT) point solution, as well as enhance the capa-
bility of inducing group sparsity in the beamforming vectors.
By leveraging the Lagrangian duality theory, we obtain closed-
form solutions at each iteration to reduce the computational
complexity. The well-structured solutions provide opportunities
to apply the large-dimensional random matrix theory to derive
deterministic approximations for the RRH ordering criterion.
Such an approach helps to guide the RRH selection only based on
the statistical channel state information, which does not require
frequent update, thereby significantly reducing the computation
overhead. Simulation results shall demonstrate the performance
gains of the proposed ℓ p-minimization approach, as well as the
effectiveness of the large system analysis-based framework for
computing the RRH ordering criterion.

Index Terms— Cloud-RAN, green communications, sparse
optimization, smoothed ℓ p-minimization, Lagrangian duality,
and random matrix theory.
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I. INTRODUCTION

NETWORK densification [2]–[4] has been proposed as a
promising way to provide ultra-high data rates, achieve

low latency, and support ubiquitous connectivity for the
upcoming 5G networks [5]. However, to fully harness the
benefits of dense wireless networks, formidable challenges
arise, including interference management, radio resource allo-
cation, mobility management, as well as high capital expen-
diture and operating expenditure. Cloud-RAN emerges as a
disruptive technology to deploy cost-effective dense wireless
networks [6], [7]. It can significantly improve both energy
and spectral efficiency, by leveraging recent advances in
cloud computing and network function virtualization [8]. With
shared computation resources at the cloud data center and
distributed low-cost low-power remote radio heads (RRHs),
Cloud-RAN provides an ideal platform to achieve the benefits
of network cooperation and coordination [9]. There is a unique
characteristic in Cloud-RANs, namely, the high-capacity fron-
thaul links are required to connect the cloud center and
RRHs [10], [11]. Such links will consume power comparable
to that of each RRH, and thus brings new challenges to design
green Cloud-RANs. To address this issue, a new performance
metric, i.e., the network power consumption, which consists of
both the fronthaul link power consumption and RRH transmit
power consumption, has been identified in [7] for the green
Cloud-RAN design.

Unfortunately, the network power minimization problem
turns out to be a mixed-integer nonlinear programming prob-
lem [12], which is highly intractable. Specifically, the com-
binatorial composite objective function involves a discrete
component, indicating which RRHs and the corresponding
fronthaul links should be switched on, and a continuous
component, i.e., beamformers to reduce RRH transmit power.
To address this challenge, a unique group sparsity structure in
the optimal beamforming vector has been identified in [7] to
unify RRH selection and beamformer optimization. Accord-
ingly, a novel three-stage group sparse beamforming frame-
work was proposed to promote group sparsity in the solution.
Specifically, a mixed ℓ1/ℓ2-minimization approach was first
proposed to induce group sparsity in the solution, thereby
guiding the RRH selection via solving a sequence of convex
feasibility problems, followed by coordinated beamforming to
minimize the transmit power for the active RRHs.

Although the group sparse beamforming framework pro-
vides polynomial-time complexity algorithms via convex
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optimization, it has the limited capability to enhance group
sparsity compared to the non-convex approaches [13], [14].
In particular, the smoothed ℓp-minimization supported by the
iterative reweighted-ℓ2 algorithm was developed in [15] to
enhance sparsity for multicast group sparse beamforming.
However, the computation burden of this iterative algorithm
is still prohibitive in dense wireless networks with a large
number of RRHs and mobile users. In [16], a generic two-
stage approach was proposed to solve large-scale convex
optimization problems in dense wireless cooperative networks
via matrix stuffing and operator splitting, i.e., the alternating
direction method of multipliers (ADMM) [17], [18]. This
approach also enables parallel computing and infeasibility
detection. However, as the proposed solutions need to be
accomplished for each channel realization, and also due to
the iterative procedures of the group sparse beamforming
framework, it is still computationally expensive.

In this paper, we improve the performance of group
sparse beamforming [7] via ℓp-minimization, and a spe-
cial emphasis is on reducing the computational complex-
ity, with two ingredients: closed-form solutions for each
iteration, and the deterministic equivalents of the optimal
Lagrange multipliers. Specifically, we first develop an iterative
reweighted-ℓ2 algorithm with closed-form solutions at each
iteration via leveraging the principles of the majorization-
minimization (MM) algorithm [19] and the Lagrangian duality
theory [20]. It turns out that the proposed iterative reweighted-
ℓ2 algorithm can find a KKT point for the smoothed non-
convex ℓp-minimization problem. Furthermore, this reveals the
explicit structures of the optimal solutions to each subproblem
in the iterative reweighted-ℓ2 algorithm, while the convex
optimization approach in [7], [15], and [21] fails to obtain the
closed-form solutions. Thereafter, the well-structured closed-
form solutions provide opportunities to leverage the large-
dimensional random matrix theory [22]–[24] to perform the
asymptotic analysis in the large system regimes [25], [26].
Specifically, the deterministic equivalents of the optimal
Lagrange multipliers are derived based on the recent results
of large random matrix analysis [27] to decouple the depen-
dency of system parameters. These results are further used
to perform an asymptotic analysis for computing the RRH
ordering criterion, which only depends on long-term channel
attenuation, thereby significantly reducing the computation
overhead compared with previous algorithms that heavily
depends on instantaneous CSI [7], [15], [21], [28]–[31].

Based on the above proposal, we provide a three-stage
enhanced group sparse beamforming framework for green
Cloud-RAN via random matrix theory. Specifically, in the
first stage, we compute the enhanced RRH ordering criterion
only based on the statistical CSI. This thus avoids frequent
updates, thereby significantly reducing computational com-
plexity, which is a sharp difference compared to the original
proposal in [8]. This new algorithm is based on the principles
of the MM algorithm and the Lagrangian duality theory,
followed by the random matrix theory. With the obtained deter-
ministic equivalents of RRH ordering criterion, a two-stage
large-scale convex optimization framework [16] is adopted to
solve a sequence of convex feasibility problems to determine

the active RRHs in the second stage, as well as solving the
transmit power minimization problem for the active RRHs
in the final stage. Note that global instantaneous CSI is
required for these two stages. Simulation results are provided
to demonstrate the improvement of the enhanced group sparse
beamforming framework. Moreover, the deterministic approxi-
mations turn out to be accurate even in the finite-sized systems.

A. Related Works
1) Sparse Optimization in Wireless Networks: The sparse

optimization paradigm has recently been popular for com-
plicated network optimization problems in wireless network
design, e.g., the group sparse beamforming framework for
green Cloud-RAN design [7], [15], [30]–[32], wireless caching
networks [33], [34], user admission control [15], [35], as well
as computation offloading [36]. In particular, the convex
relaxation approach provides a principled way to induce
sparsity via the ℓ1-minimization [35] for individual sparsity
inducing and the mixed ℓ1/ℓ2-minimization for group sparsity
inducing [7]. The reweighted-ℓ1 algorithm [13] and the
reweighted-ℓ2 algorithm [15] were further developed to
enhance sparsity. To enable parallel and distributed computing,
the first-order method ADMM algorithm was adopted to solve
the group sparse beamforming problems [37]. A generic large-
scale convex optimization framework was further proposed to
solve general large-scale convex programs in dense wireless
networks to enable scalability, parallel computing and infea-
sibility detection [16].

However, all the above algorithms need to be computed for
each channel realization, which is computationally expensive.
In this paper, we adopt large system analysis to compute the
RRH ordering criterion for network adaptation only based on
statistical CSI.

2) Large System Analysis via Random Matrix Theory:
Random matrix theory [22] has been proven powerful for
performance analysis, and the understanding and improv-
ing algorithms in wireless communications [23], [38], signal
processing [39], and machine learning [40], [41], especially
in large dimensional regimes for applications in the era of
big data [42]. In dense wireless networks, random matrix
theory provides a powerful way for performance analysis
and algorithm design. In particular, the large system analysis
was performed for simple precoding schemes, e.g., regular-
ized zero-forcing in MISO broadcast channels with imperfect
CSI [24]. A random matrix approach to the optimal coor-
dinated multicell beamforming for massive MIMO was pre-
sented in [43] without close-form expressions for the optimal
Lagrange multipliers. A simple channel model with two cells
under different coordination levels was considered in [25].

However, all of the above results cannot be directly applied
in the group sparse beamforming framework in dense Cloud-
RAN due to the general channel models with heterogenous
pathloss and the complicated beamformer structures with fully
cooperative transmission. To determine the RRH ordering
criterion based on statistical CSI, we adopt the technique
in [26] and [27] to compute the closed-forms for the optimal
Lagrange multipliers for each iteration in the procedure of
reweighted-ℓ2 minimization for sparsity inducing.
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B. Organization

The remainder of the paper is organized as follows.
Section II presents the system model and problem formulation,
followed by performance analysis with the proposed three-
stage enhanced group sparse beamforming framework for
green Cloud-RAN. In Section III, the iterative reweighted-ℓ2
algorithm for group sparse beamforming is presented via the
principle of MM algorithm and duality theory. The large
system analysis for RRH ordering is performed in Section IV.
Simulation results will be demonstrated in Section V. Finally,
conclusions and discussions are presented in Section VI.
To keep the main text clean and free of technical details,
we divert most of the proofs to the Appendix.

Notations: Throughout this paper, ∥ · ∥p is the ℓp-norm.
| · | stands for either the size of a set or the absolute value
of a scalar, depending on the context. ∥M∥ is the spectral
radius of the Hermitian matrix M. Boldface lower case and
upper case letters represent vectors and matrices, respectively.
(·)−1, (·)T , (·)H and Tr(·) denote the inverse, transpose, Her-
mitian and trace operators, respectively. We use C to represent
complex domain. E[·] denotes the expectation of a random
variable. We denote A = diag{x1, . . . , xN } and IN as a
diagonal matrix of order N and the identity matrix of order
N , respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Consider a Cloud-RAN with L RRHs and K single-antenna
mobile users (MUs), where each RRH is equipped with N
antennas. In Cloud-RANs, the BBU pool will perform the cen-
tralized signal processing and is connected to all the RRHs via
high-capacity and low-latency fronthaul links. In this paper,
we will focus on the downlink signal processing. Specifically,
let vlk ∈ CN be the transmit beamforming vector from the l-th
RRH to the k-th MU. The received signal yk ∈ C at MU k is
given by

yk =
L∑

l=1

hH
klvlk sk +

∑

i ̸=k

L∑

l=1

hH
kl vli si + nk, (1)

where hkl ∈ CN is the channel propagation between MU k and
RRH l, sk ∈ C with E[|sk |2] = 1 is the encoded transmission
information symbol for MU k, and nk ∼ CN (0, σ 2

k ) is the
additive Gaussian noise at MU k.

We assume that sk ’s and nk’s are mutually independent
and all the MUs apply single-user detection. The signal-to-
interference-plus-noise ratio (SINR) for MU k is given by

sinrk = |hH
k vk|2∑

i ̸=k |hH
k vi |2 + σ 2

k

, (2)

where hk = [hT
k1, . . . , hT

kL ]T ∈ CL N is the vector consisting
of the channel coefficients from all the RRHs to MU k, and
vk = [vT

1k, . . . , vT
Lk]T ∈ CL N is the aggregative beamforming

vector for the MU k from all the RRHs.

B. Problem Formulation

In this paper, we aim at designing a green Cloud-RAN by
minimizing the network power consumption, which consists
of the fronthaul links power consumption, as well as the RRH
transmit power consumption [7]. Specifically, let v = [vlk] ∈
CK L N be the aggregative beamforming vector from all the
RRHs to all the MUs. Define the support of the beamforming
vector v as T (v) = {i |vi ̸= 0}, where v = [vi ] is indexed
by i ∈ V with V = {1, . . . , K L N}. The relative fronthaul
network power consumption is given by

f1(v) =
L∑

l=1

Pc
l I (T (v) ∩ Vl ̸= ∅), (3)

where Pc
l ≥ 0 is the relative fronthaul link power con-

sumption [7] (i.e., the static power saving when both the
fronthaul link and the corresponding RRH are switched off),
Vl = {(l − 1)K N + 1, . . . , l K N},∀l ∈ L, is a partition of V ,
and I (T ∩ Vl ̸= ∅) is an indicator function that takes value
1 if T ∩Vl ̸= ∅ and 0 otherwise. Note that f1 is a non-convex
combinatorial function.

Furthermore, the total transmit power consumption is
given by

f2(v) =
L∑

l=1

K∑

k=1

1
ζl

∥vlk∥2
2, (4)

where ζl > 0 is the drain inefficiency coefficient of the radio
frequency power amplifier [7]. Therefore, the network power
consumption is represented by the combinatorial composite
function

f (v) = f1(v) + f2(v). (5)

Given the QoS thresholds γ = (γ1, . . . , γK ) for all the
MUs, in this paper, we aim at solving the following network
power consumption minimization problem with the QoS con-
straints:

P : minimize
v

f1(v) + f2(v)

subject to
|hH

k vk |2
∑

i ̸=k |hH
k vi |2 + σ 2

k

≥ γk, ∀k. (6)

Let ṽl = [v]Vl = [vT
l1, . . . , vT

lK ]T ∈ CK N form the beamform-
ing coefficient group from RRH l to all the MUs. Note that,
when the RRH l is switched off, all the beamforming coeffi-
cients in ṽl will be set to zeros simultaneously. Observing that
there may be multiple RRHs being switched off to minimize
the network power consumption, the optimal beamforming
vector v = [ṽT

1 , . . . , ṽT
L ]T ∈ CK L N should have a group-

sparsity structure. Therefore, problem P is called a group
sparse beamforming problem [7]. Note that, to simplify the
presentation, we only impose the QoS constraints in problem
P . However, the proposed instantaneous CSI based iterative
reweighted-ℓ2 algorithm can be extended to the scenario with
per-RRH transmit power constraints, following the principles
in [20]. More technical efforts are required to derive the
asymptotic results using the random matrix method with more
complicated structures of the optimal beamformers.
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C. Problem Analysis

Although the constraints in problem P can be reformu-
lated as convex second-order cone constraints, the non-convex
objective function makes it highly intractable. To address
this challenge, a weighted mixed ℓ1/ℓ2-norm minimization
approach was proposed in [7] to convexify the objective and
induce the group sparsity in beamforming vector v, thereby
guiding the RRH ordering to enable adaptively RRH selection.
Specifically, we will first solve the ℓ1/ℓ2-norm minimization
problem, and denote ṽ⋆1, . . . , ṽ⋆L as the induced (approximated)
group sparse beamforming vectors. Then the following RRH
ordering criterion is adopted to determine which RRHs should
be switched off [7]:

θl = κl∥ṽ⋆l ∥2
2, ∀l = 1, . . . , L, (7)

where κl = ∑K
k=1 ∥hkl∥2

2/νl . In particular, the group sparsity
structure information for beamforming vector v is extracted
from the squared ℓ2-norm of the beamforming vectors ṽl’s,
i.e., ∥ṽ1∥2

2, . . . , ∥ṽL∥2
2. The RRH with a smaller θl will have a

higher priority to be switched off. Based on the RRH ordering
result θ⋆ in (7), a bi-section search approach can be used to
find the optimal active RRHs [7] via solving a sequence of
the following feasibility problems:

F (A[i]): find v1, . . . , vK

subject to
|hH

k vk |2∑
i ̸=k |hH

k vi |2 + σ 2
k

≥ γk, ∀k, (8)

where vk = [vlk] ∈ C|A|N and hk = [hkl ] ∈ C|A|N . Prob-
lem F (A[i]) turns out to be convex via reformulating the QoS
constraints as second-order cone constraints [7]. To further
enhance the sparsity as well as to seek the quadratic forms of
the beamforming vectors in the multicast transmission setting,
a smoothed ℓp-minimization approach was proposed in [15].
To scale to large problem sizes in dense Cloud-RANs, a two-
stage large-scale parallel convex optimization framework was
developed in [16] with the capability of infeasibility detection.

However, all of the above developed algorithms bear high
computation overhead. In particular, while the feasibility prob-
lem (8) for RRH selection can be efficiently solved with the
large-scale optimization algorithm in [8], the RRH ordering
criterion in (7) may be highly complicated to obtain, espe-
cially with the non-convex formulation as in [15]. Moreover,
the ordering criterion needs to be recomputed for each trans-
mission slot, and depends on instantaneous CSI. Observing
that the statistical CSI normally changes much slower than
the instantaneous CSI, to reduce the computational burden,
we propose to compute the RRH ordering criterion (7) only
based on statistical CSI, i.e., the long-term channel attenuation.
This is achieved by first developing a group sparsity penalty
with quadratic forms in the aggregative beamforming vector v,
followed by an iterative reweighted-ℓ2 algorithm with closed-
form solutions at each iteration via Lagrangian duality theory,
as will be presented in Section III. Then asymptotic analysis
is performed to obtain the RRH ordering criterion (7) based
only on statistical CSI by leveraging the large-dimensional
random matrix theory [23], [24], [27], as will be presented
in Section IV.

Fig. 1. The proposed three-stage enhanced group sparse beamforming
framework for dense green Cloud-RAN. In the first stage, the RRH ordering
criterion θ is computed only based on the statistical CSI via large system
analysis. The optimal active RRHs A⋆ in the second stage and the optimal
coordinated beamforming for transmit power minimization in the third stage
are computed based on the instantaneous CSI via the large-scale convex
optimization algorithm in [16].

Overall, the proposed three-stage enhanced group sparse
beamforming framework is presented in Fig. 1. Specifically,
in the first stage, the RRH ordering criterion θ⋆ is calculated
only based on statistical CSI using Algorithm 2. In the second
stage, the set of active RRHs A⋆ is obtained based on
instantaneous CSI via solving a sequence of convex feasibility
problems F (A[i]) using the large-scale convex optimization
framework in [16]. In the third stage, the transmit power is
minimized by solving the convex program (6) with the fixed
active RRHs A⋆ using the large-scale convex optimization
algorithm in [16]. Overall, the proposed enhanced group sparse
beamforming framework is scalable to large network sizes.
This paper will focus on developing an effective algorithm for
the first stage.

Remark 1: In this paper, we assume that, in the first stage,
problem P (6) is feasible for developing Algorithm 1 and
Algorithm 2 to determine the RRH ordering criterion based
on the instantaneous CSI and statistical CSI, respectively.
We enable the capability of handing the infeasibility in the sec-
ond stage based on the instantaneous CSI, using the large-
scale convex optimization algorithm [16]. Furthermore, when
problem F (8) is infeasible with all RRHs active, we adopt
the user admission algorithm to find the maximum number of
admitted users [15].

III. GROUP SPARSE BEAMFORMING VIA ITERATIVE

REWEIGHTED-ℓ2 ALGORITHM

In this section, we develop a group sparse beamforming
approach based on the smoothed ℓp-minimization, supported
by an iterative reweighted-ℓ2 algorithm, thereby enhancing
the group sparsity in the beamforming vectors. Instead of
reformulating the QoS constraints in problem P as second-
order cone constraints [7], we use the Lagrangian duality
theory to reveal the structures of the optimal solutions at
each iteration. The results will assist the large system analysis
in Section IV.

A. Group Sparsity Inducing Optimization via
Smoothed ℓp-Minimization

To induce the group sparsity structure in the beamforming
vector v, thereby guiding the RRH ordering, the weighted
mixed ℓ1/ℓ2-norm was proposed in [7]. However, the non-
smooth mixed ℓ1/ℓ2-norm fails to introduce the quadratic
forms in the beamforming vector v, in order to be compatible
with the quadratic QoS constraints so that the Lagrangian
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duality theory can be applied [20]. To address this chal-
lenge, we adopt the following smoothed ℓp-minimization
(0 < p ≤ 1) approach to induce group sparsity [14], [15]:

PGSBF: minimize
v

gp(v; ϵ) :=
L∑

l=1

νl

(
∥ṽl∥2

2 + ϵ2
)p/2

subject to
|hH

k vk|2∑
i ̸=k |hH

k vi |2 + σ 2
k

≥ γk, ∀k, (9)

where ϵ > 0 is some fixed regularizing parameter and νl > 0
is the weight for the beamforming coefficient group ṽl by
encoding the prior information of system parameters [7].
Compared with the mixed ℓ1/ℓ2-norm minimization approach,
the ℓp-minimization approach can induce sparser solutions
based on the fact ∥z∥0 = lim p→0 ∥z∥p

p = lim p→0
∑

i |zi |p.
Unfortunately, problem (9) is non-convex due to the non-
convexity of both the objective function and the QoS
constraints.

B. Iterative Reweighted-ℓ2 Algorithm

We use the MM algorithm and the Lagrangian duality theory
to solve problem (9) with closed-form solutions. Specifically,
this approach generates the iterates {v[n]} by successively
minimizing upper bounds Q(v; v[n]) of the objective function
gp(v; ϵ). We adopt the following upper bounds to approximate
the smoothed ℓp-norm g(v; ϵ) by leveraging the results of the
expectation-maximization (EM) algorithm [44].

Proposition 1: Given the value of v[n] at the n-th iteration,
an upper bound for the objective function gp(v; ϵ) can be
constructed as follows:

Q(v;ω[n]) :=
L∑

l=1

ω[n]
l ∥ṽl∥2

2, (10)

where

ω[n]
l = pνl

2

[∥∥∥ṽ[n]
l

∥∥∥
2

2
+ ϵ2

] p
2 −1

, ∀l = 1, . . . , L . (11)

Proof: The proof is mostly based on [15, Proposition 1].

Therefore, at the n-th iteration, we need to solve the
following optimization problem:

P [n]
GSBF: minimize

v

L∑

l=1

ω[n]
l ∥ṽl∥2

2

subject to
|hH

k vk|2
∑

i ̸=k |hH
k vi |2 + σ 2

k

≥ γk, ∀k, (12)

which is non-convex due to the non-convex QoS constraints.
Although the QoS constraints can be reformulated as second-
order cone constraints as in [7], in this paper, we leverage
the Lagrangian duality theory to obtain explicit structures of
the optimal solution to problem P [n]

GSBF, thereby reducing
the computational complexity and further aiding the large
system analysis in next section. The success of applying the
Lagrangian duality approach is based on the fact that strong
duality holds for problem P [n]

GSBF [45], i.e., the gap between
the primal optimal objective and the dual optimal objective is
zero.

1) Simple Solution Structures: As the strong duality holds
for problem P [n]

GSBF [45], we solve it using duality theory.
Specifically, let λk/(N L) ≥ 0 denote the Lagrange multipliers
corresponding to the QoS constraints in problem P [n]

GSBF.
Define the Lagrangian function L({vk},λ) with λ = {λi } as

L({vk},λ) =
K∑

k=1

λk

L N

⎛

⎝
∑

i ̸=k

|hH
k vi |2 + σ 2

k − 1
γk

|hH
k vk |2

⎞

⎠

+
K∑

k=1

vH
k Q[n]vk, (13)

where Q[n] ∈ CL N×L N is a block diagonal matrix with the
scaled identity matrix ω[n]

l IN as the l-th main diagonal block
square matrix.

To find the optimal vk’s, we take the gradient of the
Lagrangian function L(v,λ) with respect to vk and set it to
zero, which implies

Q[n]vk +
∑

i ̸=k

λk

L N
hi hH

i vk − λk

L Nγk
hkhH

k vk = 0. (14)

By adding λk/(L N) × hkhH
k vk to both sides of (14), we have

(

Q[n] +
K∑

i=1

λi

L N
hi hH

i

)

vk = λk

L N

(
1 + 1

γk

)
hkhH

k vk, (15)

which implies vk =
(

Q[n] + ∑K
i=1 λi/(L N )hi hH

i

)−1
hk ×

(λk/(L N )) (1 + 1/γk) hH
k vk . As (λk/L N ) (1 + 1/γk) hH

k vk is
a scalar, the optimal vk must be parallel to the beamforming
direction

v̄k =
(

Q[n] +
K∑

i=1

λi

L N
hi hH

i

)−1

hk, ∀k. (16)

Therefore, the optimal beamforming vectors v1, . . . , vK can
be written as

vk =
√

pk

L N
v̄k

∥v̄k∥2
, ∀k, (17)

where pk denotes the optimal beamforming power. Observing
that the beamforming powers pk’s need to satisfy the SINR
constraints with equality [20], i.e.,

pk

γk L N

|hH
k v̄k |2

∥v̄k∥2
2

−
∑

i ̸=k

pi

L N

|hH
k v̄i |2

∥v̄i∥2
2

= σ 2
k , ∀k, (18)

the optimal powers thus can be obtained via solving the
following linear equation:

⎡

⎢⎣
p1
...

pK

⎤

⎥⎦ = M−1

⎡

⎢⎣
σ 2

1
...
σ 2

K

⎤

⎥⎦, (19)

where

[M]i j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
γi L N

|hH
i v̄i |2

∥v̄i∥2
2

, i = j,

− 1
L N

|hH
i v̄ j |2

∥v̄ j∥2
2

, i ̸= j.
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Here, [M]i j denotes the (i, j)-th element of the matrix
M ∈ RK×K .

To find the optimal λ-parameter, by multiplying both sides

by hH
k

(
Q[n] + ∑K

i=1
λi

L N hi hH
i

)−1
in (15), we obtain hH

k vk as

λk

L N

(
1 + 1

γk

)
hH

k

(

Q[n] +
K∑

i=1

λi

L N
hi hH

i

)−1

hkhH
k vk, (20)

which implies

λk = L N

⎡

⎣
(

1 + 1
γk

)
hH

k

(

Q[n] +
K∑

i=1

λi

L N
hi hH

i

)−1

hk

⎤

⎦
−1

.

(21)

These fixed-point equations can be computed using iterative
function evaluation.

Based on (17), (19) and (21), we obtain the squared
ℓ2-norm of the optimal solution to problem P [n]

GSBF as
follows:

∥∥∥ṽ[n]
l

∥∥∥
2

2
=

K∑

k=1

vH
k Qlkvk, (22)

where Qlk ∈ CN L×N L is a block diagonal matrix with the
identity matrix IN as the l-th main diagonal block square
matrix and zeros elsewhere. Note that the optimal powers pk’s
(19) and Lagrangian multipliers λk ’s (21) should depend on
the weights ω[n]

l ’s (11) at each iteration n.
The instantaneous CSI based iterative reweighted-ℓ2

algorithm for group sparse beamforming is presented
in Algorithm 1. We have the following result for its perfor-
mance and convergence.

Algorithm 1 Instantaneous CSI Based Iterative Reweighted-ℓ2
Algorithm for Problem PGSBF

input: Initialize ω[0] = (1, . . . , 1); I (the maximum number
of iterations)
Repeat

1) Compute the squared ℓ2-norm of the solution to problem
P [n]

GSBF, ∥ṽ[n]
1 ∥2

2, . . . , ∥ṽ[n]
L ∥2

2, using (17), (19), (21) and (22).
2) Update the weights ω[n+1]

l using (11).
Until convergence or attain the maximum iterations and return
output.
output: RRH ordering criterion θ (7).

Theorem 1: Let {v[n]}∞n=1 be the sequence generated by the
iterative reweighted-ℓ2 algorithm. Then, every limit point v̄ of
{v[n]}∞n=1 has the following properties:

1) v̄ is a KKT point of problem PGSBF (9);
2) gp(v[n]; ϵ) converges monotonically to gp(v⋆; ϵ) for

some KKT point v⋆.
Proof: Please refer to Appendix A for details.

Compared with the algorithm for the smoothed-ℓp mini-
mization in [15], the main novelty of the proposed iterative
reweighted-ℓ2 algorithm is revealing the explicit structures of
the solutions at each iteration in Algorithm 1. Instead of using

the interior-point algorithm to solve the convex subproblems
at each iteration [46], Algorithm 1 with closed-form solutions
helps reduce the computational cost. The proposed iterative
reweighted-ℓ2 algorithm can only guarantee to converge to
a KKT point, which may be a local minimum or the other
stationary point (e.g., a saddle point and local maximum).

Remark 2: The main contributions of the developed
Algorithm 1 include finding the closed-form solutions in the
iterations, in comparison with the work [15] using the interior-
point algorithm, and proving the convergence of the low-
complexity closed-form iterative algorithm for the non-convex
group sparse inducing problem PGSBF (9), instead of the
convex coordinated beamforming problem [45].

Unfortunately, computing the RRH ordering criterion θl ’s
in (7) requires to run Algorithm 1 for each channel realization,
which brings a heavy computation burden. In next section, we
will find deterministic approximations for θl’s to determine the
RRH ordering only based on statistical CSI, which changes
much more slowly than instantaneous channel states, and thus
requires less frequent update.

IV. GROUP SPARSE BEAMFORMING VIA

LARGE SYSTEM ANALYSIS

In this section, we present the large system analysis for
the iterative reweighted-ℓ2 algorithm in Algorithm 1, thereby
enabling RRH ordering only based on statistical CSI. In this
way, the ordering criterion will change only when the long-
term channel attenuation is updated, and thus it can fur-
ther reduce the computational complexity of group sparse
beamforming. The main novelty of this section is providing
the closed-forms for the asymptotic analysis of the optimal
Lagrangian multipliers based on the recent results in [27],
thereby providing explicit expressions for the asymptotic RRH
ordering results.

A. Deterministic Equivalent of Optimal Parameters

In this subsection, we provide asymptotic analysis for the
optimal beamforming parameters pk’s (19) and λk ’s (21) when
N → ∞. In a Cloud-RAN with distributed RRHs, the channel
can be modeled as hk = &

1/2
k gk,∀k, where gk ∼ CN (0, IN L )

is the small-scale fading and ,k = diag{dk1, . . . , dkL} ⊗ IN
with dkl as the path-loss from RRH l to MU k. With this chan-
nel model, we have the following result for the deterministic
equivalent of the λ-parameter.

Lemma 1 (Asymptotic Results for λ-Parameter): Assume

0 < lim inf N→∞ K/N ≤ lim sup
N→∞

K/N < ∞.

Let {dkl} and {γk} satisfy lim supN maxk,l {dkl} < ∞
and lim supN maxk γk < ∞, respectively. We have

max1≤k≤K |λk − λ◦
k |

N→∞−→ 0 almost surely, where λ◦
k is

given by

λ◦
k = γk

(
1
L

L∑

l=1

dklηl

)−1

. (23)
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Here, ηl is the unique solution of the following set of
equations:

ηl =
(

1
N L

K∑

i=1

dil
1
L

∑L
j=1 di jη j

γi

1 + γi
+ ω[n]

l

)−1

. (24)

Proof: Please refer to Appendix B for details.
Based on the above results, we further have the following

asymptotic result for the optimal powers pk’s.
Lemma 2 (Asymptotic Results for Optimal Powers): Let

. ∈ CK×K be such that

[.]k,i := 1
N L

γi

(1 + γi )2

ψ ′
ik

ψ◦2
i

. (25)

If and only if lim supK ∥.∥2 < 1, then maxk |pk − p◦
k |

N→∞−→ 0
almost surely, where p◦

k is given by

p◦
k = γk

ψ ′
k

ψ◦2
k

(
τk

(1 + γk)2 + σ 2
k

)
. (26)

Here ψ◦
k , ψ ′

k and ψ ′
ik are given as follows:

ψ◦
k = 1

L

L∑

l=1

dklηl , (27)

and

ψ ′
k = 1

L

L∑

l=1

dklη
2
l + 1

N L

K∑

j=1

λ◦2
j ψ

′
j

(1 + γ j )2

1
L

L∑

l=1

dild j lη
2
l , (28)

and

ψ ′
ik = 1

L

L∑

l=1

dil dklη
2
l +

1
N L

K∑

j=1

λ◦2
j ψ

′
j k

(1+γ j)2

1
L

L∑

l=1

dild j lη
2
l , (29)

respectively; and τ = [τ1, . . . , τK ]T is given as

τ = σ 2 (IK −.)−1 δ, (30)

where δ = [δ1, . . . , δK ]T with

δk = 1
N L

K∑

i=1

γi
ψ ′

ik

ψ◦2
i

. (31)

Proof: Please refer to Appendix C for details.

B. Statistical CSI Based Group Sparse
Beamforming Algorithm

Based on the deterministic equivalents of the optimal
beamforming parameters λk’s and pk’s in Lemma 1 and
Lemma 2, respectively, we have the following theorem on
the squared ℓ2-norm of the solution to problem P [n]

GSBF, i.e.,
∥ṽ[n]

1 ∥2
2, . . . , ∥ṽ[n]

L ∥2
2.

Theorem 2 (Asymptotic Results for the Beamformers):
At the n-th iteration, for the squared ℓ2-norm of the
solution to problem P [n]

GSBF, ∥ṽ[n]
1 ∥2

2, . . . , ∥ṽ[n]
L ∥2

2, we have

maxl

∣∣∣∥ṽ[n]
l ∥2

2 − χ̄l

∣∣∣ N→∞−→ 0 almost surely with

χ̄l = 1
N L

K∑

k=1

p◦
k
ψkl

ψ ′
k

, (32)

where ψkl = 1
N L dklη2

l + 1
N L

∑K
j=1

λ◦2
j ψ jl

(1+γ j )2
1
L

∑L
l=1 dil

d j lη2
l .
Proof: Please refer to Appendix D for details.

We thus have the following deterministic equivalent of the
weights ω[n]

l ’s (11):

ω̄[n]
l = pνl

2

[
χ̄l + ϵ2

] p
2 −1

, ∀l = 1, . . . , L . (33)

Note that the asymptotic results of the powers p◦
k ’s (26)

and Lagrangian multipliers λ◦
k ’s (23) should depend on the

weights ω̄[n]
l ’s (33) at each iteration. Based on (7), we have

the following asymptotic result for the RRH ordering criterion:

θ̄l = κl χ̄
⋆
l , (34)

where χ̄ ⋆l is the deterministic equivalent of the squared
ℓ2-norm of the solution to problem PGSBF using the iterative
reweighted-ℓ2 algorithm. Therefore, the RRH with a smaller
θ̄l will have a higher priority to be switched off. This order-
ing criterion will change only when the long-term channel
attenuation is updated. Note that global instantaneous CSI is
still needed in stage II to find the active RRHs, i.e., solving a
sequence of convex feasibility problems F (A[i]) (8).

The statistical CSI based iterative reweighted-ℓ2 algorithm
for group sparse beamforming is presented in Algorithm 2.

Algorithm 2 Statistical CSI Based Iterative Reweighted-ℓ2
Algorithm for Problem PGSBF

input: Initialize ω[0] = (1, . . . , 1); I (the maximum number
of iterations)
Repeat

1) Compute deterministic equivalent of the squared ℓ2-norm
of the solution to P [n]

GSBF, ∥ṽ[n]
1 ∥2

2, . . . , ∥ṽ[n]
L ∥2

2, using χ̄ [n]
l

(32).
2) Update the weights ω̄[n+1]

l using (33).
Until convergence or attain the maximum iterations and return
output.
output: Asymptotic result of the RRH ordering criterion θ̄
(34).

Remark 3: Although stage 2 and stage 3 still require
instantaneous CSI, the RRH ordering criterion computed by
Algorithm 2 in stage 1 is only based on statistical CSI and thus
will be updated only when the long-term channel propagation
is changed. Therefore, Algorithm 2 serves the purpose of
further reducing the computation complexity of Algorithm 1
for RRH ordering. A promising future research direction is to
select RRHs in stage 2 only based on statistical CSI. However,
the main challenge is the infeasibility issue if only statistical
CSI is available, as discussed in Remark 1.

V. SIMULATION RESULTS

In this section, we will simulate the proposed algorithms
for network power minimization for Cloud-RANs. In all the
realizations, we only account the channel realizations making
the original problem P feasible. If problem P is infeasible,
further works on user admission are required [15]. We set
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Fig. 2. Convergence of the iterative reweighted-ℓ2 algorithm.

p = 1, ϵ = 10−3 and ω[0] = (1, . . . , 1) for all the
simulations. The proposed iterative reweighted-ℓ2 algorithms
(Algorithm 1 and Algorithm 2) will terminate if either the
number of iterations exceeds 30 or the difference between the
objective values of consecutive iterations is less than 10−3.

A. Convergence of the Iteratively Reweighted-ℓ2 Algorithm

Consider a network with L = 5 30-antenna RRHs and
5 single antenna MUs uniformly and independently distributed
in the square region [−2000, 2000] × [−2000, 2000] meters.
Fig. 2 shows the convergence of the iterative reweighted-ℓ2
algorithm in different scenarios with different realizations of
RRH and MU positions. For each scenario, the numerical
results are obtained by averaging over 100 small-scale fading
realizations. The large-scale fading (i.e., statistical CSI) is
randomly generated and fixed during simulations. In the two
curves of each scenario, Algorithm 1 and Algorithm 2 are
applied for Stage I of group sparse beamforming, respec-
tively. It demonstrates that the large system analysis based
Algorithm 2 provides accurate approximation even in a small
system. Fast convergence is observed in the simulated setting.

B. Network Power Minimization

Consider a network with L = 5 10-antenna RRHs and
6 single antenna MUs uniformly and independently distributed
in the square region [−1000, 1000] × [−1000, 1000] meters.
The relative transport link power consumption are set to be
Pc

l = (5.6 + 2l)W, l = 1, . . . , L. We average over 200 small-
scale channel realizations. Fig. 3 demonstrates the average
network power consumption using different algorithms. This
figure shows that the proposed iterative reweighted-ℓ2 algo-
rithm outperforms the weighted mixed ℓ1/ℓ2-norm algorithm
in [7]. Furthermore, it illustrates that the large system analysis
provides accurate approximations for the iterative reweighted-
ℓ2 algorithm in finite systems with reduced computation
overhead. In Table I, for the simulated scenarios, we see
that the iterative reweighted-ℓ2 algorithms achieve similar
performance with different values of parameter p and the large

Fig. 3. Average network power consumption versus target SINR with
different algorithms.

TABLE I

NETWORK POWER CONSUMPTION USING ALGORITHM 1
AND ALGORITHM 2 WITH DIFFERENT PARAMETERS p

system analysis provides accurate approximations. Although
the simulated results demonstrate that the performance is
robust to different values of parameter p, it is very interesting
to theoretically identify the typical scenarios, where smaller
values of parameter p will yield much lower network power
consumption.

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, we developed an enhanced three-stage group
sparse beamforming framework with reduced computation
overhead in Cloud-RANs. In particular, closed-form solutions
for the group sparse optimization problem were obtained by
developing the iterative reweighted-ℓ2 algorithm based on the
MM algorithm and Lagrangian duality theory. This is the first
effort to reduce the computation cost for RRH ordering in
the first stage of group sparse beamforming. Based on the
developed structured iterative algorithm, we further provided
a large system analysis for the optimal Lagrangian multipliers
at each iteration via random matrix theory, thereby computing
the RRH ordering criterion only based on the statistical CSI.
This is the second effort to enable computation scalability for
RRH ordering in the first stage.

Several future directions of interest are listed as follows:
• Although computing the RRH ordering criterion in the

first stage with Algorithm 2 only needs statistical CSI,
the second stage still requires global instantaneous CSI
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to find the active RRHs by solving a sequence of convex
feasibility problems. It is thus particularly interesting to
investigate efficient algorithms to select the active RRHs
only based on the statistical CSI.

• It is desirable to establish the optimality of the iterative
reweighted-ℓ2 algorithm for the network power mini-
mization problem P . However, considering the compli-
cated problem structures of problem P , this becomes
challenging. It is also interesting to apply the developed
statistical CSI based iterative reweighted-ℓ2 algorithm for
more complicated network optimization problems, e.g.,
the wireless caching problem [33], [34], the computation
offloading problem [36], and beamforming problems with
CSI uncertainty [32].

APPENDIX A
PROOF OF THEOREM 1

1) Observing that the phases of vk will not change
the objective function and constraints of problem
PGSBF, the QoS constraints thus can be equivalently
transformed to the second-order cone constraints:

C =
{

v :
√∑

i ̸=k |hH
k vi |2 + σ 2

k ≤ R(hH
k vk)/γk,∀k

}
, which

are convex cones. The KKT points of problem PGSBF should
satisfy:

0 ∈ ∇vgp(v; ϵ) + NC(v), (35)

where NC(v) is the normal cone of the second-order cone at
point v [47]. We shall show that any convergent subsequence
{v[nk ]}∞k=1 of {v[n]}∞n=1 satisfies (35). Specifically, let v[nk ] → v̄
be one such convergent subsequence with

lim
k→∞

v[nk+1] = lim
k→∞

v[nk ] = v̄. (36)

Based on the strong duality result for problem P [n]
GSBF, the fol-

lowing KKT condition holds at v[nk+1]:

0 ∈ ∇v Q(v[nk+1];ω[nk ]) + NC(v[nk+1]). (37)

Based on (36) and (11), we have
limk→∞ ∇v Q(v[nk+1];ω[nk ]) = ∇vgp(v̄; ϵ). Furthermore,
based on [47, Proposition 6.6] and (36), we have
lim supv[nk+1]→v̄ NC(v[nk+1]) = NC(v̄). Therefore, by taking
k → ∞ in (37), we have 0 ∈ ∇v Q(v̄; ω̄) + NC(v̄), which
indicates that v̄ is a KKT point of problem PGSBF. We thus
complete the proof.

2) We first conclude the following fact:

gp(v[n+1]; ϵ)
= Q(v[n+1];ω[n]) + gp(v[n+1]; ϵ) − Q(v[n+1];ω[n])

≤ Q(v[n+1];ω[n]) + gp(v[n]; ϵ) − Q(v[n];ω[n])
≤ Q(v[n];ω[n]) + gp(v[n]; ϵ) − Q(v[n];ω[n])

= gp(v[n]; ϵ), (38)

where the first inequality is based on the fact that function
(gp(v; ϵ) − Q(v;ω[n])) attains its maximum at v = v[n]

[15, Proposition 1], and the second inequality follows
from (37). Furthermore, as gp(v; ϵ) is continuous and C is
compact, the limit of the sequence gp(v[n]; ϵ) is finite. Based
on the convergence results in 1), we thus complete the proof.

APPENDIX B
PROOF OF LEMMA 1

The proof technique here is mainly based on the work [26].
However, we have to modify their proof as we have different
weighting matrices Q[n] in vectors v̄k (16) at the n-th iteration
and such modification is non-trivial. Based on the following
matrix inversion lemma [48], xH(U + cxxH)−1 = xHU−1

1+cxHU−1x
,

(21) can be rewritten as

γk

λk
= 1

L N
hH

k

⎛

⎝ 1
L N

∑

i ̸=k

λi hi hH
i + Q

⎞

⎠
−1

hk, (39)

which can be further rewritten as

γkρk = λ◦
k

L N
hH

k

⎛

⎝ 1
L N

∑

i ̸=k

λ◦
i

ρi
hi hH

i + Q

⎞

⎠
−1

hk, (40)

where ρk = λ◦
k/λk .

Assume that 0 ≤ ρ1 ≤ ρ2 ≤ · · · ≤ ρK . From (40), replacing
ρi with ρK and using monotonicity arguments, we have

γKρK ≤ λ◦
K

L N
hH

K

⎛

⎝ 1
L N

∑

i ̸=K

λ◦
i

ρK
hi hH

i + Q

⎞

⎠
−1

hK , (41)

or, equivalently

γK ≤ λ◦
K

L N
hH

K

⎛

⎝ 1
L N

∑

i ̸=K

λ◦
i hi hH

i + ρK Q

⎞

⎠
−1

hK . (42)

Assume now that ρK is infinitely often larger than (1+ℓ) with
ℓ being some positive value [27]. Let us restrict ourselves to
such a subsequence. From (42), using monotonicity arguments
we obtain

γK ≤ λ◦
K

L N
hH

K

⎛

⎝ 1
L N

∑

i ̸=K

λ◦
i hi hH

i + (1 + ℓ)Q

⎞

⎠
−1

hK . (43)

Define

mk(ℓ)=
1

L N
hH

k

⎛

⎝ 1
L N

∑

i ̸=k

λ◦
i hi hH

i + (1 + ℓ)Q

⎞

⎠
−1

hk . (44)

Now we investigate the deterministic equivalents for mk(ℓ).
We first introduce the following important lemma:

Lemma 3 ([23, Lemma 14.2]): Let A1, A2, . . . , with AN ∈
CN×N be a series of random matrices generated by the
probability space (4,F , P) such that, for ω ∈ A ⊂ 4, with
P(A) = 1, ∥AN (ω)∥ < K (ω) < ∞, uniformly on N . Let
x1, x2, . . . , with xN ∈ CN , be random vectors of i.i.d. entries
with zero mean, variance 1/N , and the eighth-order moment
of order O(1/N4), independent of AN . Then

xH
N AN xN − 1

N
Tr(AN )

N→∞−→ 0, (45)

almost surely.
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Therefore, based on Lemma 3, we have

mK (ℓ)− 1
L N

Tr,K

⎛

⎝ 1
L N

∑

i ̸=K

λ◦
i hi hH

i +(1+ℓ)Q

⎞

⎠
−1

N→∞−→ 0.

(46)

We further introduce the following important lemma to
derive the deterministic equivalent for the mk(l).

Lemma 4 ([24, Th. 1]): Let BN = XH
N XN + SN with SN ∈

CN×N Hermitian nonnegative definite and XN ∈ Cn×N

random. The i -th column xi of XH
N is xi = 5i yi , where

the entries of yi ∈ Cri are i.i.d. of zero mean, variance
1/N and have eighth-order moment of order O(1/N4). The
matrices 5i ∈ CN×ri are deterministic. Furthermore, let
,i = 5i5H

i ∈ CN×N and define QN ∈ CN×N deterministic.
Assume lim supN→∞ sup1≤i≤n ∥,i∥ < ∞ and let QN have
uniformly bounded spectral norm (with respect to N). Define

mBN ,QN (z) := 1
N

TrQN (BN − zIN )−1. (47)

Then, for z ∈ C\R+, as n, N grow large with ratios βN,i :=
N/ri and βN := N/n such that 0 < lim inf N βN ≤
lim supN βN < ∞ and 0 < lim inf N βN,i ≤ lim supN βN,i <
∞, we have that

mBN ,QN (z) − m◦
BN ,QN

(z)
N→∞−→ 0 (48)

almost surely, with m◦
BN ,QN

(z) given by

m◦
BN ,QN

(z)= 1
N

TrQN

⎛

⎝ 1
N

n∑

j=1

, j

1+eN, j (z)
+SN −zIN

⎞

⎠
−1

,

(49)

where the functions eN,1(z), . . . , eN,n(z) from the unique
solution of

eN,i (z)=
1
N

Tr,i

⎛

⎝ 1
N

n∑

j=1

, j

1+eN, j (z)
+SN −zIN

⎞

⎠
−1

, (50)

which is the Stieltjes transform of a nonnegative finite measure
on R+. Moreover, for z < 0, the scalars eN,1(z), . . . , eN,n(z)
are unique nonnegative solutions to (50).

Therefore, based on Lemma 4, we have

ψK (ℓ) − ψ◦
K (ℓ)

N→∞−→ 0 (51)

almost surely with ψ◦
K (ℓ) being the unique positive solution

to

ψ◦
K (ℓ) = 1

N L
Tr(,K A(ℓ)) (52)

where

A(ℓ) =
(

1
N L

K∑

i=1

λ◦
i,i

1 + λ◦
i ψ

◦
i (ℓ)

+ (1 + ℓ)Q

)−1

. (53)

From (51), recalling (43) yields

lim
K→∞

inf ψ◦
K (ℓ) ≥ γK /λ◦

K (54)

Using the fact that ψ◦
K (ℓ) is a decreasing function of ℓ, it can

be proved [23] that for any ℓ > 0, we have

lim
K→∞

supψ◦
K (ℓ) < γK /λ◦

K . (55)

However, this is against the former condition and creates a
contradiction on the initial hypothesis that ρK < 1+ℓ infinitely
often. Therefore, we must admit that ρK ≤ 1 + ℓ for all
large values of K . Reverting all inequalities and using similar
arguments yields ρK ≥ 1 − ℓ for all large values of K .

We eventually obtain that 1 − ℓ ≤ ρK ≤ 1 + ℓ from
which we may write max |ρK − 1| ≤ ℓ for all large values
of K . Taking a countable sequence of ℓ going to zero yields
max |ρK − 1| → 0 from which using ρK = λ◦

K /λK and
assuming limK→∞ sup γK < ∞, we obtain

max |λK − λ◦
K | N→∞−→ 0, (56)

almost surely. From (40), we have γK /λ◦
K = ψ◦

K (0) = ψ◦
K .

Therefore, we obtain λ◦
K = γK /ψ◦

K , where ψ◦
K is the solution

of the following equation:

ψ◦
K = 1

N L
Tr,K

(
1

N L

K∑

i=1

,i

ψ◦
K

γi

1 + γ i
+ Q

)−1

. (57)

Following the same steps for k = 1, . . . , K yields the
following desired result:

λ◦
k = γk/ψ

◦
k , ∀k. (58)

As ,k = diag{dk1, . . . , dkL} ⊗ IN , we have

ψ◦
k = 1

L N
Tr(,kA) = 1

L

L∑

l=1

dklηl , (59)

where A = A(0) in (53) and {ηl} is the unique positive solution
to the following set of equations

ηl =
(

1
N L

K∑

i=1

dil

1/L
∑L

j=1 dkjη j

γi

1 + γi
+ ω[n]

l

)−1

. (60)

We thus complete the proof for the asymptotic results of the
optimal Lagrange multipliers in Lemma 1.

APPENDIX C
PROOF OF LEMMA 2

The SINR for MU k (2) can be rewritten as

sinrk =
pk

N L
|hH

k ṽk |2
∥ṽk∥2

2
∑

i ̸=k
pi

N L
|hH

k ṽi |2
∥ṽi∥2

2
+ σ 2

k

, (61)

where ṽk =
(∑K

i=1
λ◦

i
L N hi hH

i + Q1/2
)−1

hk . The interference
part of the denominator of 7k in (61) can be rewritten as

1
N L

∑

i ̸=k

pi
|hH

k ṽi |2
∥ṽi∥2

2
= 1

N L

∑

i ̸=k

pi hH
k

(
ṽi ṽH

i

∥ṽi∥2
2

)

hk

= 1
N L

hH
k V

(
1

N L
H[k]P[k]H[k]H

)
Vhk

(62)
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with V =
(

1
N L

∑K
i=1 λ

◦
i hi hH

i + Q
)−1

, H[k] :=
[h1, . . . , hk−1, hk+1, . . . , hK ] ∈ CN L×(K−1) and P[k] :=
diag

{
p1

1
N L ∥ṽ1∥2

2
, . . . , pk−1

1
N L ∥ṽk−1∥2

2
, pk+1

1
N L ∥ṽk+1∥2

2
, . . . , pK

1
N L ∥ṽK ∥2

2

}
.

In order to eliminate the dependence between hk and V,
rewrite (62) as

1
N L

hH
k V

(
1

N L
H[k]P[k]H[k]H

)
Vhk

= 1
N L

hH
k V[k]

(
1

N L
H[k]P[k]H[k]H

)
Vhk

+ 1
N L

hH
k

(
V − V[k]

)(
1

N L
H[k]P[k]H[k]H

)
Vhk, (63)

where V[k] =
(

1
N L

∑
i ̸=k λ

◦
i hi hH

i + Q
)−1

. Using the resolvent

identity [48] (i.e., U−1 − V−1 = −U−1(U − V)V−1 with U
and V as two invertible complex matrices of size N × N),
we have

V − V[k] = −V(V−1 − V[k]−1)V[k]. (64)

Then, observing that V−1 − V[k]−1 = λ◦
k

N L hkhH
k . From (63),

one gets

1
N L

hH
k V

(
1

N L
H[k]P[k]H[k]H

)
Vhk

= 1
N L

hH
k V[k]

(
1

N L
H[k]P[k]H[k]H

)
Vhk

− λ̄k

N L
hH

k Vhk

[
1

N L
hH

k V[k]
(

1
N L

H[k]P[k]H[k]H
)

Vhk

]
.

(65)

Lemma 5 ([24, Lemma 7]): Let U, V,, ∈ CN×N be of
uniformly bounded spectral norm with respect to N and
let V be invertible. Further, define x := ,1/2z and y :=
,1/2q, where z, q ∈ CN have i.i.d. complex entries of zero
mean, variance 1/N , and finite eighth-order moment and be
mutually independent as well as independent of U, V. Define
c0, c1, c2 ∈ R+ such that c0c1 − c2

2 ≥ 0 and let µ :=
1
N Tr,V−1 and µ′ := 1

N Tr(,UV−1). Then, we have

xHU(V + c0xxH + c1yyH + c2xyH + c2yxH)−1x

− µ′(1 + c1µ)

(c0c1 − c2
2)µ

2 + (c0 + c1)µ + 1
N→∞−→ 0 (66)

almost surely. Furthermore,

xHU(V + c0xxH + c1yyH + c2xyH + c2yxH)−1y

− c2µµ′

(c0c1 − c2
2)µ

2 + (c0 + c1)µ + 1
N→∞−→ 0 (67)

almost surely.
Therefore, applying Lemma 5, we obtain that

1
N L

hH
k V[k]

(
1

N L
H[k]P[k]H[k]H

)
Vhk − µ′

1 + λ◦
kµ

N→∞−→ 0

(68)

almost surely, where µ = 1
N L Tr

(
,kV[k]) and µ′ =

1
N L Tr

( 1
N L P[k]H[k]HV[k],kV[k]H[k]). Furthermore, we have

λ◦
k

N L
hH

k Vhk

[
1

N L
hH

k V[k]
(

1
N L

H[k]P[k]H[k]H
)

Vhk

]

− λ◦
kµµ′

(1 + λ◦
kµ)2

N→∞−→ 0 (69)

almost surely. Based on the results in (65), (68), (69), we have

1
N L

hH
k V

(
1

N L
H[k]P[k]H[k]H

)
Vhk − µ′

(1 + λ◦
kµ)2

N→∞−→ 0

(70)

almost surely.
From Lemma 1, we have µ − ψ◦

k
N→∞−→ 0 almost surely.

Applying [24, Lemma 6], we have

1
N L

Tr
(

1
N L

P[k]H[k]HV[k],kV[k]H[k]
)

− 1
N L

Tr
(

1
N L

P[k]H[k]HV,kVH[k]
)

N→∞−→ 0 (71)

almost surely. We further rewrite

1
N L

Tr
(

1
N L

P[k]H[k]HV,kVH[k]
)

= 1
N L

∑

i ̸=k

pi

1
N L hH

i V,kVhi
1

N L hH
i V2hi

. (72)

Applying [24, Lemma 1, 4 and 6], we obtain almost surely

1
N L

hH
i V,kVhi −

1
N L Tr(,iV,kV)

[
1 + 1

N L λ
◦
i Tr(,i V)

]2 → 0. (73)

To derive a deterministic equivalent for 1
N L tr (,i V,kV), we

write
1

N L
Tr (,i V,kV) = 1

N L
∂

∂z
Tr

(
,i

(
V−1 − z,k

)−1
)∣∣∣∣

z=0
.

(74)

Observe now that [24, Theorem 1]

Tr
(
,i

(
V−1 − z,k

)−1
)

− ψik(z) → 0, (75)

almost surely, where ψik (z) is given by ψik (z) =
1

N L Tr(,i Tk(z)) and Tk(z) is computed as

Tk(z) =

⎛

⎝ 1
N L

K∑

j=1

λ◦
j, j

1 + λ◦
jψ j k(z)

+ Q − z,k

⎞

⎠
−1

. (76)

By differentiating along z, we have ψ ′
ik(z) = 1

N L Tr(,i T′
k(z)),

where T′
k(z) = ∂Tk(z)

∂z is given by

T′
k(z) = Tk(z)

⎛

⎝ 1
N L

K∑

j=1

λ◦2
j ψ

′
j k(z), j

(
1 + λ◦

kψ j k(z)
)2 +,k

⎞

⎠ Tk(z).

(77)

Setting z = 0 yields

ψ ′
ik (0) = 1

N L
Tr(,i T′

k(0)), (78)
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where

T′
k(0) = Tk(0)

⎛

⎝ 1
N L

K∑

j=1

λ◦2
j ψ

′
j k(0),k

(1 + γk)2 +,k

⎞

⎠ Tk(0). (79)

In writing the above result, we have taken into account that
A = T j (0), ψ j k(0) = 1

N L Tr(, j Tk(0)) = 1
N L Tr(, j A) = ψ◦

j
and γ j = λ◦

jψ
◦
j . Plugging (79) into (78) and neglecting the

functional dependence from z = 0, ψ ′
k = [ψ ′

1k . . . ,ψ ′
K k]T is

found as the unique solution of

ψ ′
ik = 1

N L
Tr

⎛

⎝,i A

⎛

⎝ 1
N L

K∑

j=1

λ◦2
j ψ

′
j k, j

(1 + γ j )2 +,k

⎞

⎠ A

⎞

⎠

= 1
N L

Tr(,i A,kA)

+ 1
N L

K∑

j=1

λ◦2
j ψ

′
j k

(1 + γ j )2

1
N L

Tr
(
,i A, j A

)
. (80)

Observing that

1
N L

Tr(,i A, j A) = 1
L

L∑

l=1

dild j lη
2
l . (81)

Let ψ ′
k = [ψ ′

1k, . . . ,ψ
′
K k ]T ∈ CK and J = [Ji j ] ∈ CK×K

with

Ji j =
λ◦2

j

N L(1 + γ j )2

(
1
L

L∑

l=1

dil d j lη
2
l

)

. (82)

We can rewrite the above system of equations in the compact
form as

ψ ′
k = ck + Jψ ′

k, (83)

where ck = [cik] with cik = 1
L

∑L
l=1 dil d j lη2

l .
On the basis of above results, using 1

N L λ
◦
i tr(,iA)−γi → 0,

we eventually obtain that

1
N L

hH
i V,kVhi − ψ ′

ik

(1 + γi )2
N→∞−→ 0 (84)

almost surely. Following similar arguments of above yields

1
N L

hH
i V2hi − ψ ′

i

(1 + γi )2
N→∞−→ 0 (85)

almost surely with ψ ′ = [ψ ′
1, . . . ,ψ

′
K ]T = (IK −J)−1c where

c ∈ CK has elements [c]i = 1
L

∑L
l=1 dliη2

l .
Putting the results in (84) and (85) together, we obtain

almost surely

1
N L

∑

i ̸=k

pi

1
N L hH

i V,kVhi
1

N L hH
i V2hi

− 1
N L

∑

i ̸=k

pi
ψ ′

ik

ψ ′
i

N→∞−→ 0. (86)

The deterministic equivalent of the numerator of the SINR
in (61) is now easily obtained as

pk
| 1

N L hH
k vk|2

1
N L hH

k V2hk
− pk

ψ◦2
k

ψ ′
k

N→∞−→ 0, (87)

since 1
N L hH

k vk − ψ◦
k

1+γk

N→∞−→ 0 and 1
N L hH

k V2hk − ψ ′
k

(1+γk)2
N→∞−→

0 almost surely.

Therefore, the deterministic equivalent SINR is given by

sinr◦k = ψ◦2
k

ψ ′
k

pk

I ◦
k + σ 2

k

, (88)

where

I ◦
k := 1

(1 + γk)2

(
1

N L

K∑

i=1

pi
ψ ′

ik

ψ ′
i

)

. (89)

From (88), it follows that p◦
k such that sinr◦k = γk is

obtained as

p◦
k = γk

ψ ′
k

ψ◦2
k

(I ◦
k + σ 2

k ), (90)

which can be further rewritten as

p◦
k
ψ◦2

k

ψ ′
k

1
γk

= I ◦
k + σ 2

k = 1
(1 + γk)2

(
1

N L

K∑

i=1

p◦
i
ψ ′

ik

ψ ′
i

)

+ σ 2
k .

(91)

Therefore, the deterministic equivalent for the powers is
given by

⎡

⎢⎣
p◦

1
...

p◦
K

⎤

⎥⎦ = M◦−1

⎡

⎢⎣
σ 2

1
...
σ 2

K

⎤

⎥⎦,

where

[M◦]i j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
γi

ψ◦2
i

ψ ′
i

, i = j,

− 1

(1 + γ 2
i )L N

ψ ′
j i

ψ ′
j
, i ̸= j.

We thus complete the proof for the asymptotic results for
optimal powers in Lemma 2.

APPENDIX D
PROOF OF THEOREM 2

We rewrite ∥ṽl∥2
2 as

∥ṽl∥2
2 =

K∑

k=1

vH
k Qlkvk = 1

N L

K∑

k=1

pk
ṽH

k Qlk ṽk

∥ṽk∥2
2

= 1
N L

K∑

k=1

pk
hH

k VQlkVhk

hH
k V2hk

, (92)

where Qlk ∈ CN L×N L is a block diagonal matrix with the
identify matrix IN as the l-th main diagonal block square
matrix and zeros elsewhere.

Based on the similar arguments in Appendix C, we have
the deterministic equivalents

hH
k VQlkVhk − ψkl

(1 + γk)2
N→∞−→ 0, (93)

where

ψkl = 1
N L

Tr(,kAQklA)

= 1
N L

K∑

j=1

λ◦2
j ψ j l

(1 + γ j )2

1
N L

Tr
(
,i A, j A

)
. (94)
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Observing that
1

N L
Tr(,kAQklA) = 1

L
dklη

2
l , (95)

we obtain the final result. We thus complete the proof for the
asymptotic results for ∥ṽ[n]

l ∥2
2’s in Theorem 2.
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