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Abstract—Transmit optimization and resource allocation for
wireless cooperative networks with channel state information
(CSI) uncertainty are important but challenging problems
in terms of both the uncertainty modeling and performance
optimization. In this paper, we establish a generic stochastic coor-
dinated beamforming (SCB) framework that provides flexibility in
the channel uncertainty modeling, while guaranteeing optimality
in the transmission strategies. We adopt a general stochastic model
for the CSI uncertainty, which is applicable for various practical
scenarios. The SCB problem turns out to be a joint chance con-
strained program (JCCP) and is known to be highly intractable.
In contrast to all of the previous algorithms for JCCP that can
only find feasible but sub-optimal solutions, we propose a novel
stochastic DC (difference-of-convex) programming algorithm
with optimality guarantee, which can serve as the benchmark
for evaluating heuristic and sub-optimal algorithms. The key
observation is that the highly intractable probability constraint
can be equivalently reformulated as a dc constraint. This further
enables efficient algorithms to achieve optimality. Simulation
results will illustrate the convergence, conservativeness, stability
and performance gains of the proposed algorithm.

Index Terms—Coordinated beamforming, joint chance con-
strained programming, Monte Carlo simulation, performance
benchmarking, stochastic DC programming, wireless cooperative
networks.

I. INTRODUCTION

N ETWORK cooperation is a promising way to improve
both the energy efficiency and spectral efficiency of

wireless networks by sharing control information and/or user
data [1]. Among all the cooperation strategies, jointly pro-
cessing the user data can achieve the best performance by
exploiting the benefits of a large-scale virtual MIMO system
[2], [3]. This inspires a recent proposal of a new network ar-
chitecture, i.e., Cloud radio access network (Cloud-RAN) [4],
[5], which will enable fully cooperative transmission/reception
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by moving all the baseband signal processing to a datacenter
Cloud. In order to fully exploit the benefits of cooperative
networks and develop efficient transmission strategies (i.e.,
coordinated beamforming), channel state information (CSI)
is often required. However, in practical scenarios, inevitably
there will be uncertainty in the obtained channel coefficients,
which may originate from a variety of sources. For instance, in
frequency-division duplex (FDD) systems, the CSI uncertainty
may originate from downlink training based channel estimation
[6] and uplink limited feedback [7]. It could also be due to
the hardware deficiencies, delays in CSI acquisition [8], [9],
and partial CSI acquisition [10], [11]. With full and perfect
CSI, efficient performance optimization can often be achieved
through convex formulations, e.g., coordinated beamforming
via second-order cone programming [5], [12]. However, the
channel knowledge uncertainty due to the partial and imper-
fect CSI brings technical challenges in system performance
optimization.
To address such challenges brought by the channel knowl-

edge uncertainty, one may either adopt a robust optimization
formulation [13] or stochastic optimization formulation [14].
Specifically, for the robust formulation, the channel knowledge
uncertainty model is deterministic and set-based [15]. Thus,
the corresponding transmission strategies aim at guaranteeing
the worst-case performance over the entire uncertainty set. The
primary advantage of robust formulation is the computational
tractability [16]. However, the worst-case formulation might
be over-conservative [16], as the probability of the worst case
could be very small [17]. Meanwhile, how to model the uncer-
tainty set is also challenging [18]. On the other hand, in the
stochastic optimization formulation, the channel knowledge is
modeled by a probabilistic description. Thus, the corresponding
transmission strategies seek to immunize a solution against the
stochastic uncertainty in a probabilistic sense [19]–[23]. The
freedom of the probabilistic robustness can provide improved
system performance [22] and provide a tradeoff between the
conservativeness and probability guarantee [16].
Motivated by the fact that most wireless systems can tol-

erate occasional outages in the quality-of-service (QoS) require-
ments [19]–[21], in this paper, we propose a stochastic coor-
dinated beamforming (SCB) framework to minimize the total
transmit power while guaranteeing the system probabilistic QoS
requirements. In this framework, we only assume that the dis-
tribution information of the channel uncertainty is available,
but without any further structural modeling assumptions (e.g.,
adopting the ellipsoidal error model for robust design [15] or as-
suming complex Gaussian random distribution for the channel
errors [21]–[23] for stochastic design). In spite of the distinct
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advantages, including the design flexibility and the insights ob-
tained by applying the SCB framework to handle the CSI un-
certainty, it falls into a joint chance constrained program (JCCP)
[14], which is known to be highly intractable [24]. All the avail-
able algorithms (e.g., the scenario approach [10], [20], [25] and
the Bernstein approximation method [19], [21], [23], [26]) can
only find feasible but suboptimal solutions without any opti-
mality guarantee.
In contrast, in this paper, we propose a novel stochastic DC

programming algorithm, which can find the globally optimal
solution if the original SCB problem is convex and find a lo-
cally optimal solution if the problem is non-convex. The main
idea of the algorithm is to reformulate the system probabilistic
QoS constraint as a DC constraint, producing an equivalent sto-
chastic DC program. Although the DC programming problem
is still non-convex, it has the algorithmic advantage and can be
efficiently solved by the successive convex approximation al-
gorithm [24], [27].
The main computational complexity of the proposed algo-

rithm comes from solving a large-sized sample problem with
the Monte Carlo approach at each iteration. This makes such
an approach inapplicable in large-size networks. However, the
proposed stochastic DC programming algorithm gives a first
attempt to solve a highly-intractable and highly-complicated
problem with optimality guarantee, while existing algorithms
fail to possess the optimality feature. Therefore, it can serve as
a performance benchmark for evaluating other suboptimal and
heuristic algorithms.

A. Related Works

The chance constrained programming has recently received
emerging interests in designing efficient resource allocation
strategies in communication networks by leveraging the dis-
tribution information of uncertain channel knowledge [10],
[11], [19]–[23]. However, due to the high intractability of the
underlying chance or probabilistic constraints (e.g., it is diffi-
cult to justify the convexity or provide analytical expressions),
even finding a feasible solution is challenging. Therefore, it
is common to approximate the probability constraint to yield
computationally tractable and deterministic formulations. One
way is to approximate the chance constraints using analytical
functions, which, however, often requires further assumptions
on the distribution of the uncertain channel knowledge (e.g.,
complex Gaussian distributions for Bernstein-type inequality
approximation [21], [23] or the affine constraint functions in
perturbations for Bernstein approximation [19], [22], [26]).
The other way is to use the Monte Carlo simulation approach to
approximate the chance constraints (e.g., the scenario approach
[10], [20], [25] and the conditional-value-at-risk (CVaR) [28]).
However, all the above approaches only seek conservative
approximations to the original problem. Thus, it is difficult to
prove the optimality and quantify the conservativeness of the
obtained solutions.
Hong et al. [24] recently made a breakthrough on providing

optimality of the highly intractable joint chance constrained pro-
gramming problems for the first time. However, the convexity of
the functions in the chance constraint is required. Our proposed
stochastic DC programming algorithm is inspired by the ideas

in [24]. Unfortunately, the functions in the chance constraint in
our problem are non-convex, and thus, we cannot directly apply
the algorithm in [24]. Instead, by exploiting the special structure
of the functions in the chance constraint, we equivalently refor-
mulate the chance constraint into a DC constraint. The resulting
DC program is further supported by efficient algorithms. Thus,
we extend the work [24] by removing the convexity assumption
on the functions in the chance constraint. Furthermore, to im-
prove the convergence rate, instead of fixing the approximation
parameter as in [24], a joint approximation method is proposed.

B. Contributions

In this paper, we provide a general framework to design op-
timal transmission strategies with CSI uncertainty for wireless
cooperative networks. The major contributions are summarized
as follows:
1) We establish a general SCB framework to cope with the
uncertainty in the available channel knowledge, which in-
tends to minimize the total transmit power with a system
probabilistic QoS guarantee. This framework only requires
the distribution information of the uncertain channel coef-
ficients. Thus, it enjoys the flexibility in modeling channel
knowledge uncertainty without any further structural as-
sumptions. The SCB problem is then formulated as a JCCP
problem.

2) We develop a novel stochastic DC programming algorithm
to solve the SCB problem, which will converge to the glob-
ally optimal solution if the SCB problem is convex or a
locally optimal solution if it is non-convex. The proposed
stochastic DC programming algorithm can be regarded as
the first attempt to guarantee the optimality for the solu-
tions of JCCP without the convexity assumption on func-
tions in the chance constraint [24], while the available al-
gorithms (i.e., the scenario approach and the Bernstein ap-
proximation method) for JCCP can only find a feasible so-
lution without any optimality guarantee.

3) The proposed SCB framework is simulated in Section IV.
In particular, the convergence, conservativeness, stability
and performance gains of the proposed algorithm are illus-
trated.

C. Organization

The remainder of the paper is organized as follows. Section II
presents the system model and problem formulation, followed
by the problem analysis. In Section III, the stochastic DC pro-
gramming algorithm is developed. Simulation results will be
presented in Section IV. Finally, conclusions and discussions
are presented in Section V. To keep the main text clean and
free of technical details, we divert most of the proofs to the
Appendix.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a fully cooperative network1 with radio ac-
cess units (RAUs), where the -th RAU is equipped with
antennas, and there are single-antenna mobile users (MUs).

1The proposed framework can be easily extended tomore general cooperation
scenarios as shown in [15].
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The centralized signal processing is performed at a central pro-
cessor, e.g., at the baseband unit (BBU) pool in Cloud-RAN [5].
The propagation channel from the -th RAU to the -th MU is
denoted as . We focus on the
downlink transmission, for which the joint signal processing is
more challenging. The received signal at MU is given
by

(1)

where is the encoded information symbol for MU with
, is the transmit beamforming vector

from the -th RAU to the -th MU, and is
the additive Gaussian noise at MU . We assume that ’s and
’s are mutually independent and all the users apply single user

detection. The corresponding signal-to-interference-plus-noise
ratio (SINR) for MU is given by

(2)

where with

, and
. The beamforming vectors ’s are designed

to minimize the total transmit power while satisfying the QoS
requirements for all the MUs. The beamformer design problem
can be formulated as

P

(3)

where is the target SINR for MU , and the convex set
is the feasible set of ’s that satisfy the per-RAU power con-
straints:

(4)

with as the maximum transmit power of the RAU .
The problem P can be reformulated as a second-order

conic programming (SOCP) problem, which is convex and
can be solved efficiently (e.g., via the interior-point method).
Please refer to [5] for details. Such coordinated beamforming
can significantly improve the network energy efficiency. How-
ever, solving problem P requires full and perfect CSI
available at the central processor. In practice, inevitably there
will be uncertainty in the available channel knowledge. Such
uncertainty may originate from various sources, e.g., training
based channel estimation [6], limited feedback [7], delays [8],
[9], hardware deficiencies [15] and partial CSI acquisition
[10], [11]. In the next subsection, we will provide a generic
stochastic model for the CSI uncertainty.

A. Stochastic Modeling of CSI Uncertainty

In this paper, we only assume that the distribution information
of the channel knowledge is available.
That is, is a random vector drawn from the support set

with the distribution as . This helps avoid any structural
assumptions on the deterministic channel uncertainty models
and the assumptions on the distribution types of the stochastic
channel uncertainty models. In the following, we will provide
three examples to justify such a stochastic model.
1) Example One (Additive Error Model): The following ad-

ditive error model is commonly used to model the uncertainty
of CSI acquisition

(5)

where ’s are the estimated imperfect channel coefficients
and ’s are the estimation error vectors. To facilitate the
Bernstein-type inequality approximation for the chance con-
strained programming, one may assumes that the error vectors
follow the complex Gaussian distribution [21]–[23], i.e.,

, where with , is the
covariance matrix of the error vector . Based on this model,
we can reconstruct the distribution of the channels as

(6)

2) Example Two (Gauss-Markov Uncertainty Model): The
imperfect CSI can also be modeled as the following Gauss-
Markov model [29]:

(7)

where with is the channel corre-
lation matrix between MU and RAU ,
is the imperfect estimate of the true channel vector and

is the i.i.d. Gaussian noise term and with
quantifies the estimation quality. Based on this

model, we can reconstruct the distribution of the channels as
follows

(8)

3) Example Three (Partial and Imperfect CSI Model): In
practice, the partial CSI knowledge acquisition [11] (e.g., com-
pressive CSI acquisition [10]) is a practical way to reduce the
CSI signaling overhead by only estimating a subset of channel
links. This approach is based on the fact that the channel links
between the MU and some RAUs far away have negligible
channel gains [10], [11], and thus the state information of
these links contributes little to the performance. In the partial
CSI acquisition methods, statistical channel state information
is often assumed for each link. Therefore, we have mixed
CSI including a subset of imperfect instantaneous CSI and
statistical CSI for the other channel coefficients. Combining
the above Gauss-Markov uncertainty model (7), we can re-
construct the channel distribution for the partial and imperfect
channel knowledge as follows: for the unestimated channel
links, we have , and thus the statistical knowledge is
given as ; for the estimated channel links
with , the distribution of the uncertain channel
links is given by . In
particular, indicates that the corresponding channel
coefficients are perfect.
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B. Stochastic Coordinated Beamforming With Probability
QoS Guarantee

The uncertainty in the available CSI brings a new technical
challenge for the system design. To guarantee performance, we
impose a probabilistic QoS constraint, specified as follows

(9)

where the distribution information of ’s is known,
indicates that the system should guarantee the QoS requirements
for all the MUs simultaneously with probability of at least .
The probability is calculated over all the random vectors ’s.
The SCB is thus formulated tominimize the total transmit power
while satisfying the system probabilistic QoS constraint (9):

P

(10)

which is a joint chance constrained program (JCCP) [14], [24]
and is known to be intractable in general.
1) Problem Analysis: There are two major challenges in

solving P . Firstly, the chance (or probabilistic) constraint
(9) has no closed-form expression in general and thus is difficult
to evaluate. Secondly, the convexity of the feasible set formed
by the probabilistic constraint is difficult to verify. The general
idea to handle such a constraint is to seek a safe and tractable
approximation. “Safe” means that the feasible set formed by the
approximated constraint is a subset of the original feasible set,
while “tractable” means that the optimization problem over the
approximated feasible set should be computationally efficient
(e.g., relaxed to a convex program).
A natural way to form a computationally tractable approxi-

mation is the scenario approach [25]. Specifically, the chance
constraint (9) will be approximated by the following sam-
pling constraints:

(11)

where is the -th realization of the random vector
. Let , then are in-

dependent realizations of the random vector . The
SCB problem P thus can be approximated by a convex
program based on the constraints (11). This approach can find
a feasible solution with a high probability, for which more de-
tails can be found in [10]. An alternative way is to derive an
analytical upper bound for the chance constraint based on the
Bernstein-type inequality [21], [23], [26], resulting in a deter-
ministic convex optimization problem. The Bernstein approxi-
mation based approach thus can find a feasible but suboptimal
solution.
Although the above methods have the advantage of computa-

tional efficiency due to the convex approximation, the common
drawback of all these algorithms is the conservativeness due
to the “safe” approximation. Furthermore, it is also difficult to
quantify the qualities of the solutions generated by the algo-
rithms. This motivates us to seek a novel approach to find a
more reliable solution to the problem P . In this paper, we

will propose a stochastic DC programming algorithm to find the
globally optimal solution toP if the problem is convex and
a locally optimal solution if it is non-convex, which can be re-
garded as the first attempt to guarantee the optimality for the
solutions of the JCCP (10).

III. STOCHASTIC DC PROGRAMMING ALGORITHM

In this section, we propose a stochastic DC programming al-
gorithm to solve the problemP . We will first propose a DC
programming reformulation for the problemP , which will
then be solved by stochastic successive convex optimization.

A. DC Programming Reformulation for the SCB Problem

The main challenge of the SCB problem P is the
intractable chance constraint. In order to overcome the diffi-
culty, we will propose a DC programming reformulation that
is different from all the previous conservative approximation
methods. We first propose a DC approximation to the chance
constraint (9). Specifically, the QoS constraints
can be rewritten as the following DC constraints [30]

(12)

where , and both

and
are convex quadratic functions in . Therefore, ’s
are DC functions in . Then, the chance constraint (9) can be
rewritten as , with given by

(13)

where is an indicator of set . That is, if
and , otherwise. The indicator function makes
non-convex in general.

The conventional approach to deal with the non-convex
indicator function is to approximate it by a convex function,
yielding a conservative convex approximation. For example,
using will yield the Bernstein approx-
imation [26]. Applying ,
will obtain a conditional-value-at-risk (CVaR) type approxi-
mation [26]. Although these approximations might enjoy the
advantage of being convex, all of them are conservative and
will lose optimality for the solution of the original problem.
More specifically, only the feasibility of the solutions can be
guaranteed with these approximations.
To find a better approximation to in (13), in this paper,

we propose to use the following non-convex function [24, Fig.
2] to approximate the indicator function in (13):

(14)

which is a DC function [30] in . Although the DC function
is not convex, it does have many advantages. In particular,
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Hong et al. [24] proposed to use this DC function to approx-
imate the chance constraint assuming that the functions in
the chance constraint are convex, resulting in a DC program
reformulation. However, we cannot directly extend their results
for our problem, since the functions ’s in (12) are
non-convex. Fortunately, we can still adopt the DC function

in (14) to approximate the chance constraint based on
the following lemma.
Lemma 1 (DC Approximation for the Chance Constraint):

The non-convex function in (13) has the following con-
servative DC approximation for any ,

(15)

where

(16)

is a convex function and the convex quadratic functions
’s are given by

(17)

and is a convex quadratic
function too.

Proof: Please refer to Appendix A for details.
Based on the DC approximation function , we propose

to solve the following problem to approximate the original SCB
problem P :

P

(18)

where is the most accurate approximation func-
tion to . Program P is a DC program with the convex
set , the convex objective function, and the DC constraint
function [30]. One major advantage of the DC approximation
P is the equivalence to the original problem P . That
is, the DC approximation will not lose any optimality of the so-
lution of the SCB problem P , as stated in the following
theorem.
Theorem 1 (DC Programming Reformulation): The DC pro-

gramming problem P in (18) is equivalent to the original
SCB problem P .

Proof: Please refer to Appendix B for details.
Based on this theorem, in the sequel, we focus on how to solve

the problem P .

B. Optimality of Joint Optimization over and

As the constraint in P itself is an optimization problem,
it is difficult to be solved directly. To circumvent this difficulty,
by observing that is nondecreasing in for , as

indicated in (50), one way is to solve the following -approxi-
mation problem [24]

(19)

for any fixed small enough parameter to approximate the
original problem P . However, an extremely small might
cause numerical stability issues and might require more time to
solve the subproblems that will be developed later [24].
We notice that, by regarding as an optimization variable,

problem (19) is still a DC program, as the function is
jointly convex in . Therefore, we propose to solve the fol-
lowing joint approximation optimization problem by treating
as an optimization variable

P

(20)

The following proposition implies that the joint approximation
problemP can enhance the performance of problem (19).
Proposition 1 (Effectiveness of Joint Approximation): De-

note the optimal value of the problem (19) with a fixed
and that of the problem P as and , respectively,
then we have .

Proof: Define the feasible region of problemP as

(21)

The projection of on the set is given by

(22)

Therefore, by fixing , any feasible solution in problem
(19) belongs to the set . Hence, the feasible set of the optimiza-
tion problem (19) is a subset of . As a result, solvingP can
achieve a smaller minimum value with a larger feasible region.

Define the deviation of a given set from another set as
[14]

(23)

then we have the following theorem indicating the optimality of
the joint approximation program P .
Theorem 2 (Optimality of Joint Approximation): Denote the

set of the optimal solutions and optimal values of problems
P , P and the problem (19) with a fixed as

, and , respectively, then

(24)

and

(25)

Proof: Based on Proposition 1, the proof follows [24, The-
orem 2].
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Based on Theorem 2, we can thus focus on solving program
P . Although P is still a non-convex DC program, it has
an algorithmic advantage, as will be presented in the next sub-
section.

C. Successive Convex Approximation Algorithm

In this subsection, we will present a successive convex
approximation algorithm [24], [27] to solve the non-convex
joint approximation programP . We will prove in Theorem
3 that this algorithm still preserves the optimality properties,
i.e., achieving the Karush-Kuhn-Tucker (KKT) pair of the
non-convex program P . The main idea is to upper bound
the non-convex DC constraint function in P by a convex
function at each iteration. Specifically, at the -th iteration,
given the vector , for the convex function

, we have

(26)

where for any and the gradient of
function is given as follows.
Lemma 2: The complex gradient of with respect to
(the complex conjugate of ) is given by

(27)

where , and

with given by

,

,

and with
. Furthermore, the gradient of with re-

spect to is zero, as is a constant in the function .
Proof: Please refer to Appendix C for details.

Therefore, at the -th iteration, the non-convex DC constraint
function inP can be upper bounded
by the convex function with

(28)

Based on the convex approximation (28) to the DC constraint
in P , we will then solve the following stochastic convex
programming problem at the -th iteration:

P

(29)

The proposed stochastic DC programming algorithm to the
SCB problem P is thus presented in Algorithm 1.

Algorithm 1: Stochastic DC Programming Algorithm

Step 0: Find the initial solution and set the
iteration counter ;

Step 1: If satisfies the termination criterion, go to
End;

Step 2: Solve problemP and obtain the optimal
solution ;

Step 3: Set and go to Step 1;

End.

Based on Theorem 2 on the optimality of the joint approxima-
tion, the convergence of the stochastic DC programming algo-
rithm is presented in the following theorem, which reveals the
main advantage compared with all the previous algorithms for
the JCCP problem, i.e., it guarantees optimality.
Theorem 3 (Convergence of Stochastic DC Programming):

Denote as the sequence generated by the stochastic
DC programming algorithm. Suppose that the limit of the se-
quence exists, i.e., , which sat-
isfies the Slater’s condition2, then is the globally optimal so-
lution of the SCB problemP if it is convex. Otherwise,
is a locally optimal solution. Furthermore, converges to zero
for most scenarios, except that

(30)

if .
Proof: Please refer to Appendix D for details.

Based on Theorem 3, in the sequel, we focus on how to effi-
ciently implement the stochastic DC programming algorithm.

D. Sample Average Approximation Method for the Stochastic
DC Programming Algorithm

In order to implement the stochastic DC programming algo-
rithm, we need to address the problem on how to solve the sto-
chastic convex programP (29) efficiently at each
iteration.
We propose to use the sample average approximation (SAA)

based algorithm [14] to solve the stochastic convex problem
P at the -th iteration. Specifically, the SAA es-
timate of is given by

(31)

where are independent realizations of the
random vector . Similarly, the SAA estimate of the
gradient is given by

(32)

2Slater’s condition is a commonly used constraint qualification to ensure the
existence of KKT pairs in convex optimization [31].
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where . Therefore, the SAA

estimate of the convex function (28) is given
by

(33)

which is jointly convex in and . We will thus solve the fol-
lowing SAA based convex optimization problem

P

(34)

to approximate the stochastic convex optimization problem
P , which can be reformulated as the following
convex quadratically constraint quadratic program (QCQP)
[31]:

P

(35)

which can then be solved efficiently using the interior-point
method [31], where is the collection
of the slack variables.
The following theorem indicates that the SAA based pro-

gramP for the stochastic convex optimiza-
tionP will not lose any optimality in the asymp-
totic regime.
Theorem 4: Denote the set of the optimal solutions

and optimal values of problems P and
P as and

, respectively, then we have

(36)

and

(37)

with probability one, as the sample size increases, i.e., as
.
Proof: Please refer to Appendix E for details.

Based on Theorems 1–4, we conclude that the proposed sto-
chastic DC programming algorithm converges to the globally
optimal solution of the SCB problem if it is convex and to a
locally optimal solution if the problem is non-convex, in the
asymptotic regime, i.e., .
Remark 1: Although the scenario approach based on con-

straints (11) is also a Monte Carlo algorithm, its performance

can not be improved by generating more samples of the channel
vector [24], which is in contrast to our proposed stochastic
DC programming algorithm. The reason is that increasing the
sample size will make the resultant optimization problem more
conservative, as more constraints need to be satisfied. This
might result in worse solutions, i.e., beamformers with a higher
transmit power.

E. Complexity Analysis and Discussions

To implement the stochastic DC programming algorithm, at
each iteration, we need to solve the convex QCQP program
P with ( is the number of
independent realizations of the random vector ) constraints
and optimization variables. The convex
QCQP problem can be solved with a worst-case complexity of

given a solution accuracy
using the interior-point method [32]. As theMonte Carlo sample
size could be very large in order to reduce the approximation
bias [24], the computational complexity of the stochastic DC
programming algorithm could be higher than other determin-
istic approximation methods, e.g., the Bernstein approximation
method.
In order to further improve the computational efficiency of

the stochastic DC programming algorithm, other approaches
can be explored (e.g., the {alternating direction method of mul-
tipliers (ADMM) method [33]) to solve the large-scale conic
program P in (35) at each iteration. This is an on-going
research topic, and we will leave it as our future work.
Furthermore, as the stochastic DC programming algorithm

only requires distribution information of the random vector to
generate the Monte Carlo samples, this approach can be widely
applied for any channel uncertainty model. As the proposed sto-
chastic DC programming algorithm provides optimality guar-
antee, it can serve as the performance benchmark in various
beamforming design problems with CSI uncertainty and prob-
abilistic QoS guarantees, and thus it will find wide applications
in future wireless networks.

IV. SIMULATION RESULTS

In this section, we simulate the proposed stochastic DC al-
gorithm for coordinated beamforming design. We consider the
following channel model for the link between the -th user and
the -th RAU [12], [29]:

(38)

where is the path-loss at distance , as given in
[5, Table I], is the shadowing coefficient, is the an-
tenna gain, is the estimated imperfect
small-scale fading coefficient and is the CSI error. We
assume that the BBU pool can accurately track the large-scale
fading coefficients ’s [11]. The error vector is modeled
as . The parameters ’s depend on the
CSI acquisition schemes, e.g., channel estimation errors using
MMSE. We use the standard cellular network parameters as
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shown in [5, Table I]. The maximum outage probability that the
system can tolerate is set as . The proposed stochastic
DC programming algorithm will stop if the difference between
the objective values ofP (29) of two consecutive
iterations is less than .
The proposed stochastic DC programming algorithm is com-

pared to the following two algorithms:
• The scenario approach: The main idea of this algorithm
is to approximate the probabilistic QoS constraint by mul-
tiple “sampling” QoS constraints [20], [25]. This algorithm
can only find a feasible solution for problemP with a
high probability. Please refer to [10] for more details.

• The Bernstein approximation method: The main idea of
this algorithm is to use the Bernstein-type inequality to find
a closed-form approximation for the chance constraint (9)
[21], [23]. The original stochastic optimization problem
P can be conservatively approximated by a determin-
istic optimization problem. Therefore, the computational
complexity of the deterministic approximation method is
normally much lower than the Monte Carlo approaches,
e.g., the scenario approach and the stochastic DC program-
ming algorithm. Nevertheless, the Bernstein approxima-
tion method can also only find a feasible but suboptimal so-
lution, and the conservativeness of this method is difficult
to quantify. Moreover, to derive closed-form expressions,
the Bernstein approximation method restricts the distribu-
tion of the random vector to be complex Gaussian dis-
tribution. Therefore, this method is not robust against the
distribution of the random vector .

Due to the computational complexity of solving large-size
sample problems for both the stochastic DC programming al-
gorithm and the scenario approach, we only consider a simple
and particular network realization to demonstrate the perfor-
mance benchmarking capability of the proposed stochastic DC
programming algorithm. Specifically, consider a network with

single-antenna RAUs and single-antenna MUs
uniformly and independently distributed in the square region

meters. In this scenario, we consider
a mixed CSI uncertainty model [10], [11], i.e., partial and im-
perfect CSI. Specifically, for MU , we set

(i.e., the obtained channel coefficients are imperfect) and
, where includes the indices of the 2 largest

entries of the vector consisting of all the large-scale fading coef-
ficients for MU . That is, only 40% of the channel coefficients
are obtained in this scenario. The QoS requirements are set as

. The sample size for the scenario approach is
308 [25], which yields a solution that satisfies the probability
constraint (10) (i.e., a feasible solution to problemP ) with

Fig. 1. Optimal value versus different Monte Carlo replications.

probability at least 99%. The sample size for the stochastic DC
programming algorithm is set to be 1000. The simulated channel
data is given in (39), shown at the bottom of the page, where

and . In the following, we will il-
lustrate the convergence, conservativeness, stability and perfor-
mance gains of the stochastic DC programming algorithm (See
equation at bottom of page).

A. Stability of the Algorithms

As both the stochastic DC programming and scenario ap-
proach use Monte Carlo samples to obtain the solutions, the
corresponding solutions should depend on the particular sam-
ples. Therefore, it is essential to investigate the stability of so-
lutions obtained by the stochastic algorithms. We thus run the
algorithms 50 replications with different Monte Carlo samples
for each replication to illustrate the stability of the algorithms.
From Fig. 1 and Fig. 2, we can see that the solutions and the

estimated probability constraints obtained from the stochastic
DC programming algorithm are very stable, as they converge to
a similar solution. In particular, the average total transmit power
is 10.5228 dBm, with the lowest being 10.4614 dBm and the
highest being 10.5804 dBm. The corresponding average proba-
bility constraint is 0.9010, with the range of 0.8933 to 0.9067.
However, the solutions and the estimated probability con-

straints obtained from the scenario approach drastically differ
from replication to replication due to the randomness in the
Monte Carlo samples. In particular, the average total transmit
power is 11.1004 dBm, with the lowest being 10.6260 dBm
and the highest being 11.5826 dBm. The corresponding average

(39)
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Fig. 2. Probability constraint versus different Monte Carlo replications.

probability constraint is 0.9731, and is in the range between
0.9522 and 0.9891.
We can see that the stochastic DC programming algorithm

can achieve a lower transmit power than the scenario approach
on average. The scenario approach yields a much more con-
servative approximation for the probability constraint. Further-
more, the performance of the scenario approach cannot be im-
proved by increasing the sampling size as this will cause more
conservative solutions. This is in contrast to the proposed sto-
chastic DC programming algorithm, as Theorem 4 indicates that
more samples can improve the Monte Carlo approximation per-
formance and most Monte Carlo approach based stochastic al-
gorithms possess such a property.
Finally, the average value of the parameter is

and is in the rang between and when the
stochastic DC programming algorithm terminates. This justifies
the conclusion that the parameter will converge to zero as
presented in Theorem 3.

B. Convergence of the Stochastic DC Programming Algorithm

We report a typical performance on the convergence of the
stochastic DC programming algorithm, as shown in Fig. 3, with
the initial point being the solution from the Bernstein approxi-
mation method. This figure shows that the convergence rate of
the proposed stochastic DC programming is very fast for the
simulated scenario. We can see that the stochastic DC program-
ming algorithm can achieve a much lower transmit power than
the Bernstein approximation method. This figure also demon-
strates the effectiveness of jointly optimizing over the parameter
and beamforming vector , as this can significantly improve

the convergence rate. Furthermore, the parameter is
when the proposed stochastic DC programming algorithm ter-
minates under this scenario.

C. Conservativeness of the Algorithms

We also report the typical performances of all the algo-
rithms on the conservativeness of approximating probability
constraints in the SCB problem under the same scenario as

Fig. 3. Convergence of the stochastic DC programming algorithm.

Fig. 4. Probability constraint.

the above subsection. The estimated probability constraint in
P is shown in Fig. 4, which is 0.988 using the Bern-
stein approximation. On the other hand, for the stochastic
DC programming algorithm, we can see that the probability
constraint becomes tight when it terminates, and thus the Bern-
stein approximation is too conservative. This coincide with
the fact that the suboptimal algorithms only seek conservative
approximations to the chance constraint.

V. CONCLUSIONS AND FUTURE WORKS

This paper presented a generic stochastic coordinated beam-
forming framework for the optimal transmission strategy design
with a probabilistic model for the CSI uncertainty. This frame-
work frees us from the structural modeling assumptions and dis-
tribution types assumptions for the uncertain channel knowl-
edge, and thus it provides modeling flexibility. With the op-
timality guarantee, the proposed stochastic DC programming
algorithm can serve as the benchmark for evaluating subop-
timal and heuristic algorithms. The benchmarking capability
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was demonstrated numerically in terms of conservativeness, sta-
bility and optimal values by comparing with the Bernstein ap-
proximation method and scenario approach. Furthermore, the
proposed algorithm has a better convergence rate by jointly op-
timizing the approximation parameter . As the proposed sto-
chastic DC programming algorithm provides optimality guar-
antee, we believe this algorithm can be applied in various beam-
forming design problems with probabilistic QoS guarantees due
to the CSI uncertainty, and it will find wide applications in fu-
ture wireless networks.
Several future research directions are listed as follows:
• Although our framework only requires the distribution in-
formation of the uncertain channel knowledge, so as to
generate Monte Carlo samples for the stochastic DC pro-
gramming algorithm, it might be challenging to obtain the
exact information in some scenarios. Therefore, one may
either seek more sophisticated measuring methods to esti-
mate the distribution information or adopt the distribution-
ally robust optimization approaches to deal with the am-
biguous distributions, e.g., [34].

• The main drawback of the stochastic DC programming al-
gorithm is the highly computational complexity with the
sample problem P at each iteration, one may ei-
ther resort to ADMM [33] based algorithms to solve the
large-sized sample problem in parallel or reduce the opti-
mization dimensions by fixing the directions of the beam-
formers and only optimizing the transmit power allocation
(e.g., in [22], the corresponding power allocation problem
is a linear program and can be solved with a much lower
computational complexity).

APPENDIX A
PROOF OF LEMMA 1

For simplicity, we denote ,

and . For any
, , is a DC function on ,

as both and are convex functions of . For any
, we first prove that the following function

(40)

is also a DC function. The function can be rewritten as

(41)

Therefore, the following function

(42)

is a DC function, as both the functions and
are convex in . Furthermore, for any and

, we have . Therefore,

(43)

is a DC function of , as

(44)

is a convex function of . According to [30, Proposition 2.1],
is a DC function on

. Therefore, the proof is completed.
APPENDIX B

PROOF OF THEOREM 1

In order to prove Theorem 1, we need to prove the following
equality:

(45)

First, we need to prove the monotonicity of the function
in the variable . According to (43) and (44), the

function can be rewritten as

(46)

where

(47)

for any and . Therefore, we only need to prove
the monotonicity of the function in the variable .

Define , then we have

(48)

For any and any , we have

(49)

Therefore, is nondecreasing in for . Hence, we
have

(50)
where indicates that decreasingly goes to 0. Thus,
based on (50), in order to prove (45), we only need to prove

(51)

Furthermore, if the partial derivation of exists, we have

(52)
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Therefore, we need to prove that exists and
.

According to (44), we have
. As

(53)

for any , and ,

where (42), we
conclude that exists.

Let with being an open set

such that the cumulative distribution function
of the random variable

is continuously differentiable for any
. Next we will show that

(54)

For any and , define the random variable
, then we have the

following two facts:
1) The limit of exists and we have

(55)

with probability one.
2) is dominated by a constant , i.e., ,
where . This can be justified by

where and the last
inequality is based on the fact .

From the above two facts on the random variable , by the
dominated convergence theorem to interchange an expectation
and the limit as , and together with [35, Proposition 1],
we have

(56)

Therefore, we complete the proof by

(57)

APPENDIX C
PROOF OF LEMMA 2

It is well known that non-constant real-valued functions of
complex variables are not holomorphic (or -differentiable)

[36]. Thus, the real-valued functions in (12) are
not differentiable in the complex domain (i.e., with
respect to the complex vector ). Define a real-valued function

, which is convex in
. Although this function is not holomorphic in , it can be
viewed as a function of both and its complex conjugate
, i.e., . It is easy to verify that the function

is holomorphic in for a fixed and is also
holomorphic in for a fixed . Proving Lemma 2 is equivalent
to proving that the gradient of with respect to
exists and equals

(58)

Based on the chain rule [36], the complex gradient of the
function with respect to exists and is given by

(59)

with probability one, where . It

is a vector operator and gives the direction of the steepest ascent
of a real scalar-valued function.
Denote and

, where , and define the
following complex random variable

(60)

where , and for
simplicity, then we have the following two facts on the random
variable :
1) The limit of exists and equals

(61)

with probability one.
2) The random variable is dominated by a random variable
with , i.e.,

(62)

which can be verified by the following lemma.
Lemma 3: For any , there exists a random variable
with such that

(63)

Proof: As is convex in , we have

(64)

(65)

Based on the above two inequalities and by the Cauchy-Schwarz
inequality, we have

(66)
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Furthermore, for , we have

(67)

where is a random variable with , and for
, we have

(68)

where is a random variable with . Therefore,

letting with , we have

(69)

According to (66) and (69), we have the inequality (63).
Based on the above two facts (61) and (62) on the random

variable , and by the dominated convergence theorem
to interchange an expectation and the limit as and [35,
Proposition 1], we have

(70)
Based on the fact

(71)

we get (58) and thus complete the proof.
APPENDIX D

PROOF OF THEOREM 3

For simplicity, we only consider the case with real variables
and functions. The extension to complex variables is straight-
forward. Specifically, define as the
feasible set of the SCB problemP . To ensure the existence
of the KKT paris for the SCB problem P , we assume the
following constraint qualification [37, Corollary 6.15] for pro-
gram P , i.e., for any feasible point , is the
only value that satisfies the following linear system:

(72)

where , and is the normal cone to the convex set
at , i.e.,

(73)

With this constraint qualification, we have the KKT pairs
[37, Corollary 6.15] for the SCB problem as

(74)

where is the objective function ofP .
Similarly, let be a KKT pair of the joint approx-

imation program P as follows

In order to prove Theorem 3, we first prove the following
lemma illustrating the relationship between and .
Lemma 4: Suppose that there exists ,

such that , then we have that
.

Proof: We only need to consider two cases in terms of
being zeros or not.
Case one: suppose there exists a subsequence of

such that . As ’s belong
to , we have , which implies that

, as . This indicates .
Case two: suppose that , for sufficiently large . In

this case, we have , as
and . Based on (57), let such that

, we have

(75)

Furthermore, as , based on the KKT pairs in , we
have

(76)

and

(77)

According to (56), we have

(78)

Therefore, we have

(79)
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where , due to the mean-value theorem.
Dividing both sides of (76) and (77) by , respectively,

let and suppose that , based on (75) and
(79), we have

(80)

However, this contradicts the constraint qualification (72).
Therefore, we conclude that . We thus assume
that with . Let , based on
(75), (76), (77) and (79), we obtain

(81)
This indicates that . We thus complete the proof.
Based on Lemma 4, we further investigate whether con-

verges to zero. The answer is positive in most scenarios except
two special cases. Suppose that is a KKT point of the
problem P . We consider two particular cases in terms of
whether the SCB programP attaining its optimal value at
the interior point or not.
Case one: When the SCB programP attains the optimal

value at the interior point of its feasible region, then program
P also attains its optimal value at the interior point of its
feasible region based on Theorem 2. In this scenario, the DC
constraint in P does not need to be tight. Thus, is not
necessary to be zero and it has multiple choices, while
still belongs to .
Case two:When all the optimal solutions of the SCB program
P make the probability constraint tight. In this scenario, we
have . This reveals that is a
minimizer of the function with respect to , i.e.,

(82)

where the calculation is based on (54). On the other hand, as
satisfies the KKT conditions of program P , we have

(83)

According to [38, Theorem 10] and [39, Appendix A4], themin-
imizer (i.e., in (83)) of the function with
respect to satisfies

(84)

Combining (82) and (84), we conclude that
. This implies

that the optimization variable in P converges to zero, if
for any , we have

(85)

From numerical examples in Section IV, we will demonstrate
that variable will indeed converge to zero.

Finally, based on Lemma 4, we only need to prove that the se-
quence generated by the stochastic DC programming algorithm
converges to a KKT point of the program P . This directly
follows [24, Property 3]. We thus complete the proof.

APPENDIX E
PROOF OF THEOREM 4

By [14, Theorem 7.50] and [24, Theorem 6], we have
that the SAA estimate (33) converges to

uniformly on the convex compact set with
probability one as , i.e.,

(86)
with probability one. Furthermore, by [14, Theorem
5.5], we have and

with probability one as
. Therefore, we complete the proof.
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