
1022 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 34, NO. 4, APRIL 2016

Smoothed L p-Minimization for Green Cloud-RAN
With User Admission Control

Yuanming Shi, Member, IEEE, Jinkun Cheng, Jun Zhang, Senior Member, IEEE, Bo Bai, Member, IEEE,
Wei Chen, Senior Member, IEEE, and Khaled B. Letaief, Fellow, IEEE

Abstract—The cloud radio access network (Cloud-RAN) has
recently been proposed as one of the cost-effective and energy-
efficient techniques for 5G wireless networks. By moving the signal
processing functionality to a single baseband unit (BBU) pool,
centralized signal processing and resource allocation are enabled
in cloud-RAN, thereby providing the promise of improving the
energy efficiency via effective network adaptation and interference
management. In this paper, we propose a holistic sparse opti-
mization framework to design green cloud-RAN by taking into
consideration the power consumption of the fronthaul links, mul-
ticast services, as well as user admission control. Specifically, we
first identify the sparsity structures in the solutions of both the
network power minimization and user admission control prob-
lems, which call for adaptive remote radio head (RRH) selection
and user admission. However, finding the optimal sparsity struc-
tures turns out to be NP-hard, with the coupled challenges of the
�0-norm-based objective functions and the nonconvex quadratic
QoS constraints due to multicast beamforming. In contrast to
the previous works on convex but nonsmooth sparsity inducing
approaches, e.g., the group sparse beamforming algorithm based
on the mixed �1/�2-norm relaxation, we adopt the nonconvex but
smoothed � p-minimization (0 < p ≤ 1) approach to promote spar-
sity in the multicast setting, thereby enabling efficient algorithm
design based on the principle of the majorization–minimization
(MM) algorithm and the semidefinite relaxation (SDR) technique.
In particular, an iterative reweighted-�2 algorithm is developed,
which will converge to a Karush–Kuhn–Tucker (KKT) point of the
relaxed smoothed � p-minimization problem from the SDR tech-
nique. We illustrate the effectiveness of the proposed algorithms
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with extensive simulations for network power minimization and
user admission control in multicast cloud-RAN.

Index Terms—5G networks, green communications, Cloud-
RAN, multicast beamforming, sparse optimization, semidefi-
nite relaxation, smoothed � p-minimization, and user admission
control.

I. INTRODUCTION

T HE GREAT success of wireless industry is driving the
proposal of new services and innovative applications,

such as Internet of Things (IoT) and mobile Cyber-Physical
applications, which yield an exponential growth of wireless
traffic with billions of connected devices. To handle the enor-
mous mobile data traffic, network densification and hetero-
geneity supported by various radio access technologies (e.g.,
massive MIMO [2] and millimeter-wave communications [3])
have become an irreversible trend in 5G wireless networks [4].
However, this will have a profound impact and bring formidable
challenges to the design of 5G wireless communication systems
in terms of energy efficiency, capital expenditure (CAPEX),
operating expenditure (OPEX), and interference management
[5]. In particular, the energy consumption will become pro-
hibitively high in such dense wireless networks in the era of
mobile data deluge. Therefore, to accommodate the upcoming
diversified and high-volume data services in a cost-effective and
energy-efficient way, a paradigm shift is required in the design
of 5G wireless networks.

By leveraging the cloud computing technology [6], the cloud
radio access network (Cloud-RAN) [7], [8] is a disruptive tech-
nology to address the key challenges of energy efficiency in
5G wireless networks. Specifically, by moving the baseband
units (BBUs) into a single BBU pool (i.e., a cloud data cen-
ter) with shared computation resources, scalable and parallel
signal processing, coordinated resource allocation and coop-
erative interference management algorithms [9], [10] can be
enabled among a large number of radio access points, thereby
significantly improving the energy efficiency [1], [11] and spec-
tral efficiency [12]. As the conventional compact base stations
are replaced by low-cost and low-power remote radio heads
(RRHs), which are connected to the BBU pool through high-
capacity and low-latency fronthaul links, Cloud-RAN provides
a cost-effective and energy-efficient way to densify the radio
access networks [5].

While Cloud-RAN has a great potential to reduce the energy
consumption of each RRH, with additional fronthaul link com-
ponents and dense deployment of RRHs, new challenges arise
for designing green Cloud-RAN. In particular, instead of only
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minimizing the total transmit power consumption via coordi-
nated beamforming [13], the network power consumption con-
sisting of the fronthaul link power consumption and the RRH
power consumption should be adopted as the performance met-
ric for designing green Cloud-RAN [1], [11], [14]. To minimize
the network power consumption, a group sparse beamforming
framework was proposed in [1] to adaptively select the active
RRHs and the corresponding fronthaul links via controlling the
group sparsity structures of the beamforming vectors. Such an
idea of exploiting sparsity structures in the solutions has also
demonstrated its effectiveness in solving other mixed combi-
natorial optimization problems in Cloud-RAN, e.g., the data
assignment problem [15] and the joint uplink and downlink
network power minimization problem [11].

Although network adaption by selecting the active RRHs
provides a promising way to minimize the network power con-
sumption, it is critical to maximize the user capacity (i.e., the
number of admitted users) when the network power minimiza-
tion problem is infeasible [16]–[18]. This infeasibility issue
may often occur in the scenarios with a large number of mobile
devices requesting high data rates or some users with unfavor-
able channel conditions. Furthermore, exploiting the benefits of
integrating diversified unicast and multicast services [19] has
been well recognized as a promising way to improve the energy
efficiency and user capacity, and thus multicast beamform-
ing should be incorporated in Cloud-RAN. From the system
design perspective, to design a green Cloud-RAN with mul-
ticast transmission, a holistic approach is needed to enable
network adaptation for RRH selection and user admission in
a unified way.

Unfortunately, such design problems fall into the category
of highly complicated mixed combinatorial optimization prob-
lems. The key observation to address this challenge is that the
network power minimization and user admission control can be
achieved by adaptively selecting the active RRHs and admitting
the mobile users (MUs) via controlling the sparsity structures in
the corresponding solutions. Specifically, for the network power
minimization problem, selecting active RRHs is equivalent to
controlling the group sparsity structure in the aggregative mul-
ticast beamforming vector [1]. That is, all the beamforming
coefficients of a particular RRH that is switched off need to
be set to zeros simultaneously. For the user admission control
problem that is needed when the network power minimization
problem is infeasible, maximizing the number of admitted users
is equivalent to minimizing the number of violated QoS con-
straints [20]. Mathematically, this is the same as minimizing the
sparsity of the auxiliary vector indicating the violations of the
QoS constraints. Based on these observations, we will thus for-
mulate both design problems as sparse optimization problems
based on the �0-norm minimization in a unified framework,
based on which efficient algorithms will be developed.

A. Contributions

Based on the above discussions, we propose a sparse opti-
mization framework to design a multicast green Cloud-RAN
as shown in Fig. 2, thereby enabling adaptive RRH selec-
tion and user admission. However, in contrast to the previous

works on the multicast beamforming problem [21] with con-
vex objectives but nonconvex QoS constraints and the group
sparse beamforming problem [1] with convex QoS constraints
but nonconvex objective functions in unicast Cloud-RAN, to
design efficient algorithms for the resulting sparse optimiza-
tion problems in multicast Cloud-RAN, we need to address
the following coupled challenges in a unified way: Nonconvex
quadratic QoS constraints due to multicast transmission;

Combinatorial objective functions for RRH selection and
user admission.

In particular, we summarize the major contributions as fol-
lows:

1) Sparse optimization framework based on the �0-norm
minimization is proposed to design a multicast green
Cloud-RAN by adaptive RRH selection and user admis-
sion via controlling the sparsity structures of the solu-
tions.

2) To address the combinatorial challenges in the objective
functions, we propose a nonconvex but smoothed �p-
minimization approach to induce the sparsity structures
in the solutions. The main advantage of this method is
that it helps develop the group sparse inducing penalty
with quadratic forms in the multicast beamforming vec-
tors. Therefore, the objective function in the resulting
group sparse inducing optimization problem is compat-
ible with the nonconvex quadratic QoS constraints. The
SDR technique can then be adopted to solve the resulting
nonconvex quadratic group sparse inducing optimization
problem.

3) To address the challenges of the nonconvex smoothed
objective functions and the nonconvex quadratic QoS
constraints, we propose an iterative reweighted-�2 algo-
rithm to solve the resulting nonconvex smoothed �p-
minimization problems based on the principle of the
MM algorithm and the SDR technique. This algorithm
is proven to converge to a KKT point of the relaxed
smoothed �p-minimization problems over the convex
constraint set using the SDR technique.

4) Simulation results will demonstrate the effectiveness of
the proposed algorithms to minimize the network power
minimization and maximize the user capacity, and their
performance gains compared with the existing convex
approximation approaches. In particular, the proposed
algorithms can achieve near-optimal performance in the
simulated settings.

B. Related Works

Sparse optimization by exploiting sparsity structures of the
solutions has been proven to be very powerful to solve various
hard optimization problems in machine learning, compressive
sensing and high-dimensional statistics [22]. This approach
has recently received enormous attentions in designing wire-
less networks, i.e., the group sparse beamforming approach
for network adaption [1], [11], [23], and data assignment in
wireless backhaul networks [15], [24]. In particular, the con-
vex relaxation approaches, e.g., the �1-minimization [17], the
mixed �1/�2-norm [1] and the mixed �1/�∞-norm [25], have
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become popular due to the computational efficiency as well as
performance guarantees in some scenarios [26].

To further improve the performance, there has been a great
interest in applying nonconvex approaches in sparse optimiza-
tion [27]–[30] by enhancing sparsity. In particular, it is observed
that the nonconvex �p-minimization approach performs better
than the traditional convex �1-minimization especially when the
underlying model is very sparse [28]. Motivated by this result,
we adopt the �p-minimization approach to closely approxi-
mate the resulting �0-norm based sparse optimization problems
for multicast green Cloud-RAN. Furthermore, to deal with the
unique challenges with the coupled nonconvex constraints and
combinatorial objectives, thereby enabling efficient algorithm
design, we will use a smoothed version of the �p-minimization
approach to induce the sparsity structures in the solutions. Note
that the existing work on the group sparse beamforming [1]
can only handle problems with a combinatorial objective and
convex seconder-order cone QoS constraints in unicast Cloud-
RAN, and thus cannot be directly applied in the setting of
multicast Cloud-RAN with nonconvex QoS constraints.

C. Organization

The remainder of the paper is organized as follows.
Section II presents the system model and problem formula-
tions. Section III presents an algorithmic framework for net-
work power minimization and user admission control based
on the smoothed �p-minimization. The iterative reweighted-
�2 algorithm is developed in Section IV. Simulation results
will be demonstrated in Section V. Finally, conclusions and
discussions are presented in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first introduce the system model of the
multicast Cloud-RAN. Then, the network power minimization
problem is formulated. For the scenario when it is not feasi-
ble to serve all the MUs, the user admission control problem is
formulated. It will be revealed that both problems are sparse
optimization problems, for which unique challenges will be
identified.

A. System Model

We consider a multicast Cloud-RAN with L multi-antenna
RRHs and K single-antenna MUs, where the l-th RRH is
equipped with Nl antennas, as shown in Fig. 1. Let L =
{1, . . . , L} and N = {1, . . . , K } denote the sets of all the RRHs
and all the MUs, respectively. We assume that the K MUs form
M non-overlapping and non-empty multicast groups, which are
denoted as {G1,G2, . . . ,GM } with ∪iGi = N and G j ∩ G j = ∅
with Gm as the set of MUs in the m-th multicast group. Let
M = {1, . . . , M} be the set of all the multicast groups. We
consider the downlink transmission, and the centralized signal
processing is performed at the BBU pool [1], [7].

The propagation channel from the l-th RRH to the k-th MU
is denoted as hkl ∈ C

Nl ,∀k, l. Let vlm ∈ C
Nl be the transmit

Fig. 1. The architecture of multicast Cloud-RAN, in which, all the RRHs are
connected to a BBU pool through high-capacity and low-latency optical fron-
thaul links. All the MUs in the same dashed circle form a multicast group and
request the same message. To enable full cooperation among all the RRHs, it is
assumed that all the user data and channel state information (CSI) are available
at the BBU pool.

beamforming vector from the l-th RRH to MUs in multicast
group Gm . Then the transmit signal at the l-th RRH is given by

xl =
M∑

m=1

vlmsm,∀l ∈ L, (1)

where sm ∈ C is the encoded information symbol for the multi-
cast group m with E[|sm |2] = 1. Assume that all the RRHs have
their own transmit power constraints, which form the following
feasible set of the beamforming vectors vlm’s,

V =
{

vlm ∈ C
Nl :

M∑
m=1

‖vlm‖22 ≤ Pl ,∀l ∈ L

}
, (2)

where Pl > 0 is the maximum transmit power of the l-th RRH.
The received signal ykm ∈ C at MU k in the m-th multicast

group is given by

ykm =
L∑

l=1

hH
klvlmsm +

∑
i 
=m

L∑
l=1

hH
klvli si + nk,∀k ∈ Gm, (3)

where nk ∼ CN(0, σ 2
k ) is the additive Gaussian noise at MU

k. We assume that sm’s and nk’s are mutually independent and
all the users apply single user detection. Therefore, the signal-
to-interference-plus-noise ratio (SINR) of MU k in multicast
group m is given by

�k,m(v) = vH
m�kvm∑

i 
=m vH
i �kvi + σ 2

k

,∀k ∈ Gm, (4)

where �k = hkhH
k ∈ C

N×N with N =∑L
l=1 Nl and hk =

[hH
k1, hH

k2, . . . , hH
kL ]H ∈ C

N as the channel vector consisting of
the channel coefficients from all the RRHs to MU k, vm =
[vH

1m, vH
2m, . . . , vH

Lm]H ∈ C
N is the beamforming vector con-

sisting of the beamforming coefficients from all the RRHs
to the m-th multicast group, and v = [ṽl ]L

l=1 ∈ C
M N is the

aggregative beamforming vector with ṽl = [vlm]M
m=1 ∈ C

M Nl

as the beamforming vector consisting of all the beamforming
coefficients from the l-th RRH to all the multicast groups.
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B. Network Power Minimization for Green Cloud-RAN

With densely deployed RRHs, it is critical to enable energy-
efficient transmission via centralized signal processing at the
BBU pool. Coordinated beamforming among RRHs will help
reduce the transmit power. Due to the mobile data traffic varia-
tions in temporal and spatial domains, it is also critical to enable
network adaptation to switch off some RRHs and the corre-
sponding fronthaul links to save power [1], [31]. Thus, we need
to consider the network power consumption when designing
green Cloud-RAN, which is defined as the following combi-
natorial composite function parameterized by the beamforming
coefficients [1],

p(v) = p1(v)+ p2(v), (5)

with the total transmit power consumption, denoted as p1(v),
and the total relative fronthaul links power consumption,
denoted as p2(v), given as

p1(v) =
L∑

l=1

M∑
m=1

1

ηl
‖vlm‖22, (6)

and

p2(v) =
L∑

l=1

Pc
l I (Supp(v) ∩ Vl 
= ∅), (7)

respectively. Here, I (Supp(v) ∩ Vl 
= ∅) is an indicator func-
tion that takes value zero if Supp(v) ∩ Vl = ∅ (i.e., all the
beamforming coefficients at the l-th RRH are zeros, indi-
cating that the corresponding RRH is switched off) and
one otherwise, where Vl is defined as Vl := {M ∑L−1

l=1 Nl +
1, . . . , M

∑L
l=1 Nl}, and Supp(v) is the support of the vec-

tor v. In (6), ηl > 0 is the drain inefficiency coefficient of the
radio frequency power amplifier with the typical value as 25%,
and Pc

l ≥ 0 in (7) is the relative fronthaul link power con-
sumption [1], which is the static power saving when both the
RRH and the corresponding fronthaul link are switched off.
For the passive optical fronthaul network [32], Pc

l is given by
(P rrh

a,l + P fn
a,l)− (P rrh

s,l + P fn
s,l) with P rrh

a,l (P rrh
s,l ) and P fn

a,l (P fn
s,l) as

the power consumptions for the l-th RRH and the l-th fronthaul
link in the active (sleep) mode, respectively. The typical values
are P rrh

a,l = 6.8W , P rrh
s,l = 4.3W , P fn

a,l = 3.85W , P fn
s,l = 0.75W

and Pc
l = 5.6W [1], [32]. Note that the energy consumption

of the optical fronthaul links should depend on the receiv-
ing periods and data transmission [32], which is a function
of the beamforming vectors. Given the target SINR require-
ments (γ1, γ2, . . . , γK ) for all the MUs, to design a multicast
green Cloud-RAN, we propose to minimize the network power
consumption subject to the QoS constraints and the RRH trans-
mit power constraints. Specifically, we have the following QoS
constraints

�k,m(v) ≥ γk,∀k ∈ Gm, m ∈M, (8)

which can be rewritten as the following quadratic constraints

Fk,m(v) = γk

(∑
i 
=m

vH
i �kvi + σ 2

k

)
− vH

m�kvm ≤ 0, (9)

for any k ∈ Gm and m ∈M, which are nonconvex. Therefore,
the network power minimization problem can be formulated as

minimize
v∈V

p1(v)+ p2(v)

subject to Fk,m(v) ≤ 0,∀k ∈ Gm, m ∈M, (10)

which is highly intractable due to the nonconvex combinatorial
composite objective and the nonconvex quadratic QoS con-
straints (9). When there are some RRHs needed to be switched
off to minimize the network power consumption, the solution
of problem (10) has the group sparsity structure [1]. That is, all
the beamforming coefficients in ṽl , which forms a group at the
l-th RRH, are set to be zeros simultaneously if the l-th RRH
needs to be switched off.

Therefore, inspired by the fact that the solution of prob-
lem (10) has the group sparsity structure in the aggregative
beamforming vector v, the weighted mixed �1/�2-norm was
proposed in [1] to relax the combinatorial composite function
as the tightest convex surrogate to induce the group sparsity
structure in the solution v to guide the RRH selection, defined as

J(v) =
L∑

l=1

ρl‖ṽl‖2, (11)

where ρl > 0 is the weight for the beamforming coefficients
group ṽl at RRH l.

To handle the nonconvex QoS constraints in (9), we propose
to lift the problem to higher dimensions with variables Qm =
vmvH

m ∈ C
N×N ,∀m, which will help to apply the semidefinite

relaxation (SDR) technique. However, we cannot extract the
variables Qm’s from the non-smooth mixed �1/�2-norm (11).
Therefore, this convex relaxation approach cannot be directly
applied to solve the network power minimization problem in
multicast Cloud-RAN. Instead, to leverage the SDR technique,
we need to develop a new group sparsity inducing approach
with quadratic forms of the beamforming vectors, which will
be presented in Section III and form one major contribution of
this paper.

C. User Admission Control

With QoS constraints for potentially a large number of MUs
in the serving area, it may happen that the network power
minimization problem (10) is infeasible from time to time. In
such scenarios, the design problem will be to maximize the
user capacity (i.e., the maximum number of MUs that can be
supported) via user admission control [16], [17], while serv-
ing these MUs with the minimum transmit power. While this
aspect is ignored in [1], it is critical for practical applications.
Mathematically, by adding auxiliary variables xk’s to the right-
hand side of the corresponding inequalities in (9), to maximize
the number of admitted MUs is equivalent to minimize the num-
ber of non-zero xk’s [20, Section 11.4]. Therefore, the user
admission control problem can be formulated as the following
sparsity minimization problem,

minimize
v∈V,x∈RK+

‖x‖0

subject to Fk,m(v) ≤ xk,∀k ∈ Gm, m ∈M, (12)
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where R
K+ represents the K -dimensional nonnegative real vec-

tor. Once the admitted MUs are determined, coordinated beam-
forming can then be applied to minimize the total transmit
power. The solution x = [xk] of problem (12) has the individual
sparsity structure, i.e., xk = 0 indicates that the k-th MU can be
admitted. Therefore, the sparsity level will be increased if more
MUs can be admitted.

Observing that both the sparse optimization problems (10)
and (12) possess the same structure with nonconvex quadratic
constraints and combinatorial objectives, in this paper, we will
propose a unified way to handle them based on a smoothed �p-
minimization approach.

D. Problem Analysis

In this subsection, we analyze the unique challenges of
the network power minimization problem (10) and the user
admission control problem (12) in the context of multicast
Cloud-RAN. In particular, the differences from the previous
works [1], [11] will be highlighted.

1) Nonconvex Quadratic Constraints: The physical-layer
multicast beamforming problem [21] yields nonconvex
quadratic QoS constraints (9), while only unicast services were
considered in [1], [11]. The SDR technique [33] proves to
be an effective way to obtain good approximate solutions to
these problems by lifting the quadratic constraints into higher
dimensions, which will also be adopted in this paper.

2) Combinatorial Objective Functions: Although the SDR
technique provides an efficient way to convexify the nonconvex
quadratic QoS constraints in problems (10) and (12), the inher-
ent combinatorial objective functions still make the resulting
problems highly intractable. While the �1-norm can be adopted
to relax the �0-norm in problem (12) after SDR, which is also
known as the sum-of-infeasibilities relaxation in optimization
theory [17], [20], the convex relaxation approach based on the
non-smooth mixed �1/�2-norm [1] cannot be applied to prob-
lem (10), as we cannot extract the variables Qm’s after SDR.

Therefore, in this paper, we propose a new powerful
approach to induce the sparsity structures in the solutions for
both problems (10) and (12), which is based on a smoothed �p-
norm [27]. The main advantage of this method is that it can
help develop group sparsity inducing penalties with quadratic
forms in the beamforming vectors, thereby leveraging the SDR
technique to relax the nonconvex quadratic QoS constraints
for problem (10). Furthermore, by adjusting the parameter p,
this approach has the potential to yield a better approximation
for the original �0-norm based objectives, thereby providing
improved solutions for problems (10) and (12). The smoothed
�p-minimization framework will be presented in Section III,
while the iterative reweighted-�2 algorithm will be developed
in Section IV to solve the smoothed �p-minimization problem.

III. A SMOOTHED �p-MINIMIZATION FRAMEWORK FOR

NETWORK POWER MINIMIZATION WITH USER

ADMISSION CONTROL

In this section, we first present the smoothed �p-
minimization method as a unified way to induce sparsity

structures in the solutions of problems (10) and (12), thereby
providing guidelines for RRH selection and user admission.
After obtaining the active RRHs and admitted MUs by perform-
ing the corresponding selection procedure, we will minimize
the total transmit power consumption for the size-reduced net-
work. The algorithmic advantages and performance improve-
ment of the proposed smoothed �p-minimization based frame-
work will be revealed in the sequel.

A. Smoothed �p-Minimization for Sparsity Inducing

To promote sparse solutions, instead of applying the con-
vex �1-minimization approach, we adopt a nonconvex �p-
minimization (0 < p ≤ 1) approach to seek a tighter approx-
imation of the �0-norm in the objective functions in problems
(10) and (12), [27]. This is motivated by the fact that the �0-
norm ‖z‖0 is the limit as p→ 0 of ‖z‖p

p in the sense of
‖z‖0 = limp→0 ‖z‖p

p = limp→0
∑ |zi |p. We thus adopt ‖x‖p

p
as the optimization objective function to seek sparser solutions.
Furthermore, to enable efficient algorithm design as well as
induce the quadratic forms in the resulting approximation prob-
lems, we instead adopt the following smoothed version of ‖z‖p

p
to induce sparsity:

f p(z; ε) :=
m∑

i=1

(z2
i + ε2)p/2, (13)

for z ∈ R
m and some small fixed regularizing parameter ε > 0.

Based on the smoothed �p-norm (13), we will present the algo-
rithmic advantages of the smoothed �p-minimization approach
in Section IV.

1) Smoothed �p-Minimization for Group Sparsity Inducing:
For network power minimization, to seek quadratic forms of
beamforming vectors in the objective functions to leverage the
SDR technique for the non-convex quadratic QoS constraints,
we adopt the smoothed �p-norm f p(z; ε) (13) to induce group
sparsity in the aggregative beamforming vector v for problem
(10), resulting the following optimization problem:

minimize
v∈V

L∑
l=1

ρl(‖ṽl‖22 + ε2)p/2

subject to Fk,m(v) ≤ 0,∀k ∈ Gm, m ∈M. (14)

The induced (approximated) group sparse beamformers will
guide the RRH selection. The resulting problem (14) thus
becomes a quadratic optimization problem and enjoys the
algorithmic advantages.

2) Smoothed �p-Minimization for User Admission Control:
For user admission control, we adopt the smoothed �p-norm
(13) to approximate the objective function in problem (12),
yielding the following optimization problem:

minimize
v∈V,x∈RK+

K∑
k=1

(x2
k + ε2)p/2

subject to Fk,m(v) ≤ xk,∀k ∈ Gm, m ∈M. (15)

This will help to induce individual sparsity in the auxiliary
variables x, thereby guiding the user admission.
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Although the resulting optimization problems (14) and (15)
are still nonconvex, they can readily be solved by the SDR
technique and the MM algorithm. Specifically, we will demon-
strate that the nonconvex quadratic QoS constraints can be
convexified by the SDR technique in the next subsection. The
resulting convex constrained smoothed �p-minimization prob-
lem will be solved by the MM algorithm, yielding an iterative
reweighted-�2 algorithm, as will be presented in Section IV.

B. SDR for Nonconvex Quadratic Constraints

In this part, we will demonstrate how to apply the
SDR technique to resolve the challenge of the noncon-
vex quadratic QoS constraints in both problems (14) and
(15). Specifically, let Qm = vH

mvm ∈ C
N×N with rank(Qm) =

1,∀m ∈M. Therefore, the QoS constraint (9) can be rewritten
as

Lk,m(Q) ≤ 0,∀k ∈ Gm, m ∈M, (16)

with Lk,m(Q) given by

Lk,m(Q) = γk

⎛
⎝∑

i 
=m

Tr(�kQi )+ σ 2
k

⎞
⎠− Tr(�kQm), (17)

where Q = [Qm]M
m=1 and all Qm’s are rank-one constrained.

The per-RRH transmit power constraints (2) can be rewritten as

Q =
{

Qm ∈ C
N :

M∑
m=1

Tr(ClmQm) ≤ Pl ,∀l ∈ L

}
, (18)

where Clm ∈ R
n×n is a block diagonal matrix with the identity

matrix INl as the l-th main diagonal block square matrix and
zeros elsewhere.

Therefore, by dropping the rank-one constraints for all the
matrices Qm’s based on the principle of the SDR technique,
problem (14) can be relaxed as

P : minimize
Q∈Q

L∑
l=1

ρl

(
M∑

m=1

Tr(ClmQm)+ ε2

)p/2

subject to Lk,m(Q) ≤ 0,∀k ∈ Gm,

Qm � 0,∀m ∈M. (19)

Similarly, by dropping the rank-one constraints of all the
matrices Qm’s, problem (15) can be relaxed as

D : minimize
Q∈Q,x∈RK+

K∑
k=1

(x2
k + ε2)p/2

subject to Lk,m(Q) ≤ xk,∀k ∈ Gm,

Qm � 0,∀m ∈M. (20)

Although problems P and D are still nonconvex due to
the nonconvex objective functions, the resulting smoothed �p-
minimization problems preserve the algorithmic advantages,
as will be presented in Section IV. In particular, an iterative
reweighted-�2 algorithm will be developed in Section IV based
on the principle of the MM algorithm to find a stationary
point to the non-convex smoothed �p-minimization problems
P and D .

Fig. 2. Sparse optimization for network power minimization and user admis-
sion control in multicast Cloud-RAN.

C. A Sparse Optimization Framework for Network Power
Minimization With User Admission Control

Denote the solutions of problems P and D as Q
 and x
,
respectively. Based on these induced (approximated) sparse
solutions, we propose a sparse optimization framework for
network power minimization and user admission control in
multicast Cloud-RAN. The main idea is illustrated in Fig. 2
and details will be explained in the following. In particular,
Algorithm 3 will be developed in Section IV, which yields a
KKT point for problems P and D .

1) Network Power Minimization: If problem P is feasible,
once obtaining its solution Q
, we can extract the group sparsity
structure information in the beamforming vector v based on the

relation: ‖ṽl‖2 =
√∑M

m=1 Tr(ClmQm), which will be zero if all
the beamforming coefficients in ṽl are zeros simultaneously. By
further incorporating system parameters to improve the perfor-
mance [1], we adopt the following RRH ordering criteria to
determine the priorities of the RRHs that should be switched
off to minimize the network power consumption,

θl =
√

ηlκl

Pc
l

(∑M

m=1
Tr(ClmQ


m)

)1/2

,∀l ∈ L, (21)

where κl =∑K
k=1 ‖hkl‖22 is the channel gain from the l-th RRH

to all the MUs. The RRHs with a smaller parameter θl will have
a higher priority to be switched off. Intuitively, the RRH with a
lower channel power gain κl , lower drain inefficiency efficiency
ηl , lower beamforming gain ‖ṽl‖2, and higher relative fronthaul
link power consumption Pc

l , should have a higher priority to be
switched off.

In this paper, we adopt a simple RRH selection procedure,
i.e., the bi-section method, to switch off RRHs. This method
was shown to provide good performance in [1]. Specifically,
based on the RRH ordering rule in (21), we sort the coefficients
in the ascending order: θπ1 ≤ θπ2 ≤ · · · ≤ θπL to determine the
active RRHs. Let J0 be the maximum number of RRHs that can
be switched off such that the remaining RRHs can support the
QoS requirements for all the MUs. To find J0, in each bi-section
search iteration, we need to solve the following size-reduced
convex feasibility problems based on the SDR technique,

F (A[i]) : find Q[i]
1 , . . . , Q[i]

M

subject to Lk,m({Q[i]
m }m∈M) ≤ 0,∀k ∈ Gm,

Q[i]
m � 0, Q[i]

m ∈ Q[i],∀m ∈M, (22)
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where Q[i]
m ∈ C

(
∑

l∈A[i] Nl )×(
∑

l∈A[i] Nl ) with A[i] =
{πi+1, . . . , πL} as the active RRH set, Q[i] represents the
per-RRH transmit power constraints for the active RRHs in
A[i] and the QoS constraints are obtained after omitting the
channel coefficients corresponding to the left-out RRHs. If
problem F (A[i]) is feasible, it implies that a feasible solution
exists to F (A[J ]) for all J < i . Likewise, if problem F (A[i])

is infeasible, it implies that no feasible solution exists for
any J > i . Therefore, determining the largest J = J0 that
results in a feasible solution to problem F (A[J ]) can be
accomplished by solving no more than (1+ �log(1+ L)�)
such feasibility problems (22) via bi-section search [20].
Specifically, the set {0, 1, . . . , L} is guaranteed to contain J0,
i.e., J0 ∈ {0, 1, . . . , L} at each step. In each iteration, the set is
divided in two sets, i.e., bisected, so the length of the set after
k iterations is 2−k(L + 1) with (L + 1) as the length of the
initial set. It follows that exactly (1+ �log2(1+ L)�) iterations
are required before the bi-section algorithm terminates. This
procedure mainly reduces the relative fronthaul link power
consumption by switching off RRHs and the corresponding
fronthaul links.

Finally, denote the set of active RRHs as A
 =
{πJ0+1, . . . , πL}. To further reduce the network power
consumption, we need to solve the following size-reduced
transmit power minimization problem with |A
| RRHs and |N|
MUs based on the SDR technique,

PTP(A
,N) : minimize
Q[J0]∈Q[J0]

∑
l∈A


M∑
m=1

1

ηl
Tr(ClmQ[J0]

m )

subject to Lk,m(Q[J0]) ≤ 0,∀k ∈ Gm,

Q[J0]
m � 0,∀m ∈M, (23)

which is a semidefinite programming (SDP) problem and can
be solved in polynomial time using the interior-point method.

The algorithm for solving the network power minimization
problem is presented in Algorithm 1.

2) User Admission Control: When problem P is infeasi-
ble, we need to perform user admission control to maximize
the user capacity. Specifically, let x
 be the solution to the indi-
vidual sparsity inducing optimization problem D . Observe that
xk represents the gap between the target SINR and the achiev-
able SINR for MU k. We thus propose to admit the MUs with
the smallest xi ’s [17], [18]. We order the coefficients in the
descending order: xπ1 ≥ xπ2 ≥ · · · ≥ xN . The bi-section search
procedure will be adopted to find the maximum number of
admitted MUs. Let N0 be the minimum number of MUs to be
removed such that all the RRHs can support the QoS require-
ments for all the remaining MUs. To determine the value of N0,
a sequence of the following convex sized-reduced feasibility
problems need to be solved,

F (S[i]) : find {Qm}m∈M[i]

subject to Lk,m({Qm}m∈M[i]) ≤ 0,∀k ∈ Gm,

Qm � 0, Qm ∈ Q[i],∀m ∈M[i], (24)

where S[i] = {πi+1, . . . , πK } denotes the set of admitted MUs,
M[i] = {m : Gm ∩ S[i] 
= ∅} is the set of multicast groups, and

Algorithm 1. Network Power Minimization

Step 0: Solve the group sparse inducing optimization problem
P (19) using Algorithm 3 in Section IV.

1) If it is infeasible, go to Algorithm 2 for user admission
control.

2) If it is feasible, obtain the solutions Q

m’s, calculate the

ordering criterion (21), and sort them in the ascending
order: θπ1 ≤ · · · ≤ θπL , go to Step 1.

Step 1: Initialize Jlow = 0, Jup = L , i = 0.
Step 2: Repeat

1) Set i ← � Jlow+Jup
2 �.

2) Solve problem F (A[i]) (22): if it is infeasible, set Jup = i ;
otherwise, set Jlow = i .

Step 3: Until Jup − Jlow = 1, obtain J0 = Jlow and obtain the
optimal active RRH set A
 = {πJ0+1, . . . , πL}.
Step 4: Solve problem PTP(A
,N) (23) to obtain the multicast
beamforming vectors for the active RRHs.
End

Algorithm 2. User Admission Control

Step 0: Solve the individual sparse inducing optimization prob-
lem D (20) using Algorithm 3 in Section IV. Obtain the
solution x
 and sort the entries in the descending order: xπ1 ≥· · · ≥ xN , go to Step 1.
Step 1: Initialize Nlow = 0, Nup = K , i = 0.
Step 2: Repeat

1) Set i ←
⌊

Nlow+Nup
2

⌋
.

2) Solve problem F (S[i]) (24): if it is feasible, set Nup = i ;
otherwise, set Nlow = i .

Step 3: Until Nup − Nlow = 1, obtain N0 = Nup and obtain the
admitted MU set S
 = {πN0+1, . . . , πK }.
Step 4: Solve problem PTP(L, S
) (23) to obtain the multicast
beamforming vectors for the admitted MUs.
End

Q[i] represents the per-RRH transmit power constraints with the
served multicast groups M[i]. In this way, the QoS constraints
of the admitted MUs will be satisfied.

Finally, let S = {πN0+1, . . . , πK } be the admitted MUs. We
need to solve the same type of size-reduced transmit power min-
imization problem (23) with |L| RRHs and |S
| MUs to find
the multicast transmit beamforming vectors for all the admitted
MUs. We denote this problem as PTP(L, S
). The proposed
user admission control algorithm is presented in Algorithm 2.

Remark 1 (Rank-One Approximation After SDR): The solu-
tions for the SDR based optimization problems P , D , F (A[i]),
F (S[i]) and PTP(A, S) may not be rank-one. If the rank-one
solutions are failed to be obtained, the Gaussian randomization
method [33] will be employed to obtain the feasible rank-
one approximate solution. Specifically, the candidate multicast
beamforming vectors are generated from the solution of the
SDR problems, and one is picked yielding a feasible solution to
the original problem with the minimum value of the objective
function. The feasibility for the original problem is guaranteed
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by solving a sequence of multigroup multicast power con-
trol problems with the fixed beamforming directions via linear
programming [33]. Please refer to [33, Section IV] for more
details on the Gaussian randomization method and we adopt
this method in our simulations to find approximate rank-one
feasible solutions. While the optimality of this randomiza-
tion method for general problems remains unknown, it has
been widely applied and shown to provide good performance
[21], [25].

3) Complexity Analysis and Discussions: To implement
Algorithm 1 and Algorithm 2, a sequence of SDP optimiza-
tion or feasibility problems (e.g., P , D , F (A[i]), F (S[i])

and PTP(A, S)) need to be solved. In particular, to find the
active RRH set A
 and admitted MU set S
, we need to
solve no more than (1+ �log(1+ L)�) and (1+ �log(1+
K )�) SDP feasibility problems F (A[i]) and F (S[i]), respec-
tively. In addition, to solve the SDP problem PTP(L,N) (23)
with M matrix optimization variables of size N × N and
(K + L) linear constraints, the interior-point method [20] will
take O(

√
M N log(1/ε)) iterations and cost O(M3 N 6 + (K +

L)M N 2) floating point operations to achieve an optimal solu-
tion with accuracy ε > 0. Therefore, this makes the proposed
network power minimization and user admission algorithms
difficult to scale to large problem sizes with a large number of
RRHs and/or MUs. To further improve the computational effi-
ciency of the proposed SDP based algorithms, one promising
approach is to apply the alternating direction method of multi-
pliers (ADMM) algorithm [34] by leveraging parallelism in the
cloud computing environment in the BBU pool [12]. This is,
however, an on-going research topic, and we will leave it as our
future work.

IV. ITERATIVE REWEIGHTED-�2 ALGORITHM FOR

SMOOTHED �p-MINIMIZATION

In this section, we first develop an iterative reweighted-
�2 algorithm to solve a general non-convex smoothed �p-
minimization problem based on the principle of the MM
algorithm. We then present how to apply this algorithm to
solve the problems P and D to induce sparsity structures
in the solutions, thereby guiding the RRH selection and user
admission.

A. Iterative Reweighted-�2 Algorithm

Consider the following smoothed �p-minimization problem,

Psm(ε) : minimize
z∈C

f p(z; ε) :=
m∑

i=1

(z2
i + ε2)p/2, (25)

where C is an arbitrary convex set, z ∈ R
m and ε > 0 is some

fixed regularizing parameter. In the following, we first prove
that the optimal solution of the smoothed �p-minimization
problem Psm(ε) is also optimal for the original non-smooth
�p-minimization problem (i.e., Psm(0)) when ε is small. We
then demonstrate the algorithmic advantages of the smooth-
ness in the procedure of developing the iterative reweighted-�2
algorithm.

1) Optimality of Smoothing the �p-Norm: The set of KKT
points of problem Psm(ε) is given as

�(ε) = {z ∈ C : 0 ∈ ∇z f p(z; ε)+NC(z)}, (26)

where NC(z) is the normal cone of a convex set C at point z con-
sisting of the outward normals to all hyperplanes that support C
at z, i.e.,

NC(z) := {s : 〈s, x− z〉 ≤ 0,∀x ∈ C}. (27)

Define the deviation of a given set Z1 from another set Z2
as [35],

D(Z1,Z2) = sup
z1∈Z1

(
inf

z2∈Z2

‖z1 − z2‖
)

. (28)

We then have the following theorem on the relationship
between the smoothed �p-minimization problem Psm(ε) and
the original non-smooth �p-minimization problem Psm(0).

Theorem 1: Let �ε be the set of KKT points of problem
Psm(ε). Then, we have

lim
ε↘0

D(�(ε),�(0)) = 0. (29)

Proof: Please refer to Appendix A for details. �
This theorem indicates that any limit of the sequence of KKT

points of problem Psm(ε) is a KKT pair of problem Psm(0)

when ε is small enough. That is, at least a local optimal solution
can be achieved. In the sequel, we will focus on finding a KKT
point of problem Psm(ε) with a small ε, yielding good approx-
imations to the KKT points of the �p-minimization problem
Psm(0) to induce sparsity in the solutions.

2) The MM Algorithm for the Smoothed �p-Minimization:
With the established asymptotic optimality, we then leverage
the principle of the MM algorithm to solve problem (25).
Basically, this algorithm generates the iterates {zn}∞n=1 by suc-
cessively minimizing upper bounds Q(z; z[n]) of the objective
function f p(z; ε). The quality of the upper bounds will control
the convergence (rate) and optimality of the resulting algo-
rithms. Inspired by the results in the expectation-maximization
(EM) algorithm [36], [37], we adopt the upper bounds in the
following proposition to approximate the smoothed �p-norm.

Proposition 1: Given the iterate z[n] at the n-th iteration,
an upper bound for the objective function of the smoothed
�p-norm f p(z; ε) can be constructed as follows,

Q(z;ω[n]) :=
m∑

i=1

ω
[n]
i z2

i , (30)

where

ω
[n]
i =

p

2

[(
z[n]

i

)2 + ε2
] p

2−1

,∀i = 1, . . . , m. (31)

From the weights given in (31), it is clear that, by adding
the regularizer parameter ε > 0, we can avoid yielding infinite
values when some zi ’s become zeros in the iterations.
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Proof: Define the approximation error as

f p(z; ε)− Q(z;ω[n]) =
m∑

i=1

[κ(z2
i )− κ ′((z[n]

i )2)z2
i ], (32)

where κ(s) = (s + ε2)p/2 with s ≥ 0. The sound property of
the Q-function (30) is that the approximation error (32) attains
its maximum at z = z[n]. In particular, we only need to prove
that the function g(s) = κ(s)− κ ′(s[n])s with s ≥ 0 attains
the maximum at s = s[n]. This is true based on the facts that
g′(s[n]) = 0 and κ(s) is strictly concave. �

Let z[n+1] be the minimizer of the upper bound function
Q(z;ω[n]) at the n-th iteration, i.e.,

z[n+1] := arg min
z∈C

Q(z;ω[n]). (33)

Based on Proposition 1 and (33), we have

f p(z[n+1]; ε) =Q(z[n+1];ω[n])+ f p(z[n+1]; ε)
− Q(z[n+1];ω[n])

≤Q(z[n+1];ω[n])+ f p(z[n]; ε)− Q(z[n];ω[n])

≤Q(z[n];ω[n])+ f p(z[n]; ε)− Q(z[n];ω[n])

= f p(z[n]; ε), (34)

where the first inequality is based on the fact that function
( f p(z; ε)− Q(z;ω[n])) attains its maximum at z = z[n], and
the second inequality follows from (33). Therefore, minimiz-
ing the upper bound, i.e., the Q-function in (30), can reduce the
objective function f p(z; ε) successively.

Remark 2: In the context of the EM algorithm [38] for
computing the maximum likelihood estimator of latent vari-
able models, the functions − f p(z; ε) and −Q(z;ω[n]) can be
regarded as the log-likelihood and comparison functions (i.e.,
the lower bound of the log-likelihood), respectively [36].

The MM algorithm for the smoothed �p-minimization prob-
lem is presented in Algorithm 3.

The convergence of the iterates {z[n]}∞n=1 (35) is presented in
the following theorem.

Theorem 2: Let {z[n]}∞n=1 be the sequence generated by the
iterative reweighted-�2 algorithm (35). Then, every limit point
z̄ of {z[n]}∞n=1 has the following properties

1) z̄ is a KKT point of problem Psm(ε) (25);
2) f p(z[n]; ε) converges monotonically to f p(z
; ε) for

some KKT point z
.

Proof: Please refer to Appendix B for details. �
As noted in [39], without the convexity of f p(z; ε), the KKT

point may be a local minimum or other point (e.g., a saddle
point). We also refer to these points as stationary points [39,
Page 194].

Remark 3: The algorithm consisting of the iterate (35)
accompanied with weights (36) is known as the iterative
reweighted least squares [29], [38], [40] in the fields of statis-
tics, machine learning and compressive sensing. In particular,
with a simple constraint C, the iterates often yield closed-forms
with better computational efficiency. For instance, for the noise-
less compressive sensing problem [29], the iterates have closed-
form solutions [29, (1.9)]. Therefore, this method has a higher

Algorithm 3. Iterative Reweighted-�2 Algorithm

input: Initialize ω[0] = (1, . . . , 1); I (the maximum number of
iterations)
Repeat

1) Solve problem

z[n+1] := arg min
z∈C

m∑
i=1

ω
[n]
i z2

i . (35)

If it is feasible, go to 2); otherwise, stop and return
output 2.

2) Update the weights as

ω
[n+1]
i = p

2

[(
z[n+1]

i

)2 + ε2
] p

2−1

,∀i = 1, . . . , m. (36)

Until convergence or attain the maximum iterations and
return output 1.

output 1: z
; output 2: Infeasible.

computational efficiency compared with the conventional �1-
minimization approach for compressive sensing [26], wherein
a linear programming problem needs to be solved via algo-
rithms such as interior-point or barrier methods. Furthermore,
empirically, it was observed that the iterative reweighted least
squares method can improve the signal recovery capability
by enhancing the sparsity for compressive sensing over the
�1-minimization method [29], [40].

In contrast to the existing works on the iterative reweighted
least squares methods, we provide a new perspective to develop
the iterative reweighted-�2 algorithm to solve the smoothed
�p-minimization problem with convergence guarantees based
on the principle of the MM algorithm. Furthermore, the main
motivation and advantages for developing the iterates (35) is to
induce the quadratic forms in the objective function in prob-
lem P (19) to make it compliant with the SDR technique,
thereby inducing the group sparsity structure in the multicast
beamforming vectors via convex programming.

Remark 4: The advantages of the iterative reweighted-�2
algorithm include the capability of enhancing the sparsity,
as well as inducing the quadratic forms for the multicast
beamforming vectors by inducing the quadratic formulations
(35). Note that the reweighted �1-minimization algorithm in
[30] can also induce the quadratic forms in the beamforming
vectors ṽl ’s by rewriting the indicator function (7) as the �0-
norm of the squared �2-norm of the vectors ṽl ’s, i.e., ‖ṽl‖22.
Furthermore, the key ideas of the convergence proof of the iter-
ative reweighted-�2 algorithm (i.e., Algorithm 3), by leveraging
the EM theory to establish upper bounds in the iterates of the
MM algorithm, should be useful for other iterative algorithms,
e.g., [41].

B. Sparsity Inducing for RRH Selection and User Admission

In this subsection, we demonstrate how to apply the devel-
oped iterative reweighted-�2 algorithm to solve the nonconvex
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sparse optimization problems P and D for RRH selection and
user admission, respectively. In this way, we can find a KKT
point for the nonconvex smoothed �p-minimization problems
P and D with convex constraints. Specifically, let � := {Q ∈
Q : Lk,m(Q) ≤ 0, Qm � 0,∀k ∈ Gm, m ∈M} be the set of con-
straints in problem P . The iterative reweighted-�2 algorithm
for problem P generates a sequence {Q[n]}∞n=1 as follows:

P [n]
SDP : minimize

Q∈�

L∑
l=1

ω
[n]
l

(
M∑

m=1

Tr(ClmQm)

)
, (37)

with the weights as

ω
[n]
l =

ρl p

2

[∑M

m=1
Tr
(
ClmQ[n]

m

)+ ε2
] p

2−1

,∀l ∈ L. (38)

Applying Algorithm 3 to problem D is straightforward.

V. SIMULATION RESULTS

In this section, we will simulate the proposed algorithms
based on the iterative reweighted-�2 algorithm (IR2A) for
network power minimization and user admission control in
multicast Cloud-RAN. We set the parameters as follows: Pl =
1W,∀l; Pc

l = [5.6+ l − 1]W,∀l; ηl = 1/4,∀l; σk = 1,∀k.
Denote the channel propagation from the l-th RRH and the k-th
MU as hkl = Dklgkl with Dkl as the large-scale fading coeffi-
cients and gkl ∈ CN(0, I) as the small-scale fading coefficients.
We set ε = 10−3 in the iterative reweighted-�2 algorithm and
the algorithm will terminate if either the number of iterations
exceeds 30 or the difference between the objective values of
consecutive iterations is less than 10−3. The pre-determined
number of randomization is set to be 50 in the Gaussian
randomization method.

A. Convergence of the Iterative Reweighted-�2 Algorithm

Consider a network with L = 6 2-antenna RRHs and 2
multicast groups with 2 single-antenna MUs in each group.
The channels are spatially uncorrelated. For each MU k, we
set Dlk = 1,∀l ∈ �1 with |�1| = 2; Dlk = 0.7,∀l ∈ �2 with
|�2| = 2; Dlk = 0.5,∀l ∈ �3 with |�3| = 2. All the sets �i ’s
are uniformly drawn from the RRH set L = {1, . . . , L} with
∪�i = �. Fig. 3 illustrates the convergence of the iterative
reweighted-�2 algorithm for the smoothed �p-minimization
problem P with different initial points and different channel
realizations. Specifically, we set p = 1. The three different
channel realizations are generated uniformly and indepen-
dently. For each channel realization, we simulate Algorithm 3
with the fixed initial point as ω[0] = (1, . . . , 1) and ran-
domly generated initial point ω[0]. The random initialization
instances for the three channel realizations are given as
ω

[0]
ch1 = [0.1389, 0.2028, 0.1987, 0.6038, 0.2722, 0.1988],

ω
[0]
ch2 = [0.5657, 0.7165, 0.5113, 0.7764, 0.4893, 0.1859],

ω
[0]
ch3 = [0.4093, 0.4635, 0.6109, 0.0712, 0.3143, 0.6084],

respectively. In particular, this figure shows that the sequence
of the objective functions converges monotonically, which

Fig. 3. Convergence of the iterative reweighted-�2 algorithm for the smoothed
�p-minimization problem P with different channel realizations and initial
points.

confirms the convergence results in Theorem 2. In addition, it
illustrates the robustness of the convergence of the reweighted-
�2 algorithm with different initial points and different problem
parameters. Furthermore, it also demonstrates the fast conver-
gence rate of the proposed algorithm in the simulated setting.
Empirically, the iterative reweighted-�2 algorithm converges in
20 iterations on average in all the simulated channels in this
paper.

B. Network Power Minimization

Consider a network with L = 12 2-antenna RRHs and 5
multicast groups with 2 single-antenna MUs in each group.
The channels are spatially uncorrelated. For each MU k,
we set Dlk = 1,∀l ∈ �1 with |�1| = 4; Dlk = 0.7,∀l ∈ �2
with |�2| = 4; Dlk = 0.5,∀l ∈ �3 with |�3| = 4. All the sets
�i ’s are uniformly drawn from the RRH set L = {1, . . . , L}
with ∪�i = �. The proposed iterative reweighted-�2 algorithm
is compared with the reweighted �1/�∞-norm based algo-
rithm [25], in which, the objective function in problem P
is replaced by

∑L
l1=1

∑L
l2 maxm maxnl1

maxnl2
|Qm(nl1, nl2)|

with Qm(i, j) as the (i, j)-th entry in Qm . And the RRHs
with smaller beamforming beamforming coefficients (measured
by �∞-norm) have higher priorities to be switched off. Fig. 4
demonstrates the average network power consumption with dif-
ferent target SINRs using different algorithms. Each point of
the simulation results is averaged over 50 randomly generated
channel realizations for which problem P is feasible. From
this figure, we can see that the proposed iterative reweighted-
�2 algorithm can achieve near-optimal performance compared
with the exhaustive search algorithm (i.e., solving problem (10)
with convexified QoS constraints based on the SDR technique).
It yields lower network power consumption compared with the
existing �1/�∞-norm based algorithm [25], while the coordi-
nated multicast beamforming algorithm [13], [21] with all the
RRHs active has the highest network power consumption. Note
that the number of SDP problems F (A[i]) (22) needed to be



1032 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 34, NO. 4, APRIL 2016

Fig. 4. Average network power consumption versus target SINR with different
algorithms.

TABLE I
THE AVERAGE NUMBER OF ACTIVE RRHS WITH DIFFERENT

ALGORITHMS

TABLE II
THE AVERAGE RELATIVE FRONTHAUL LINKS POWER CONSUMPTION

WITH DIFFERENT ALGORITHMS

solved grows logarithmically with L for the proposed network
power minimization algorithm and the previous �1/�∞-norm
based algorithm [25]. But the number of SDP problems (22)
to be solved for exhaustive search grows exponentially with L .
Although the coordinated beamforming algorithm has the low-
est computational complexity by only solving the total transmit
power minimization problem PTP(L,N) (23) with all the
RRHs active, it yields the highest network power consumption.
Our proposed algorithm thus achieves a good trade-off between
computational complexity and performance.

Tables I-III show the corresponding average number of
active RRHs, average fronthaul network power consumption
and average total transmit power consumption, respectively.
Specifically, Table I confirms the existence of the group sparsity
pattern in the aggregative multicast beamforming vector. That
is, the switched off RRHs indicate that all the beamforming
coefficients at the RRHs are set to be zeros simultaneously. It
also shows that the proposed iterative reweighted-�2 algorithm
has the capability of enhancing sparsity, thereby switching off
more RRHs compared with the �1/�∞-norm based algorithm

TABLE III
THE AVERAGE TOTAL TRANSMIT POWER CONSUMPTION WITH

DIFFERENT ALGORITHMS

Fig. 5. Average number of admitted MUs versus target SINR with different
algorithms.

except for very low SNR. Table II shows that the proposed
iterative reweighted-�2 algorithm can achieve much lower fron-
thaul network power consumption and attain similar values with
exhaustive search. With all the RRHs being active, the coor-
dinated multicast beamforming algorithm yields the highest
fronthaul network power consumption and the lowest trans-
mit power consumption as shown in Table II and Table III,
respectively. This indicates that it is critical to take the rela-
tive fronthaul link power consumption into consideration when
designing a green Cloud-RAN. Although the exhaustive search
may yield higher transmit power consumption in some sce-
narios as shown in Table III, overall it achieves the lowest
network power consumption as much lower relative fronthaul
network power consumption can be attained as indicated in
Table II. Furthermore, we can see that, in the simulated settings,
different values of p in the proposed iterative reweighted-�2
algorithm yield similar performance, while all achieve near-
optimal performance compared with the exhaustive search.

C. User Admission Control

Consider a network with L = 6 2-antenna RRHs and 4 mul-
ticast groups with 2 single-antenna MUs in each group. The
channel model is the same as Section V-A. The proposed
iterative reweighted-�2 algorithm based user admission con-
trol algorithm is compared with the existing convex relaxation
approach (i.e.. the multicast membership deflation by relaxation
(MDR) [16]) and the exhaustive search. The simulation results
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are illustrated in Fig. 5 for the average number of admitted
MUs. Each point of the simulation results is averaged over 200
randomly generated channel realizations for which problem P
is infeasible. From Fig. 5, we can see that the proposed iter-
ative reweighted-�2 algorithm outperforms the existing MDR
approach [16]. In particular, the performance of the iterative
reweighted-�2 algorithm is almost the same with different val-
ues of p and achieves near-optimal performance compared to
the exhaustive search via solving problem (12) with convexified
QoS constraints based on the SDR technique. Although all the
simulated results demonstrate that the performances are robust
to the parameter p, it is very interesting to theoretically identify
the typical scenarios, where smaller values of p will yield much
better performances.

VI. CONCLUSIONS AND FUTURE WORKS

This paper developed a sparse optimization framework for
network power minimization and user admission in green
Cloud-RAN with multicast beamforming. A smoothed �p-
minimization method was proposed to induce the sparsity
structures in the solutions, thereby guiding the RRH selection
and user admission. This approach has the advantages in terms
of promoting sparsity and assisting algorithmic design by intro-
ducing the quadratic forms in the group sparse inducing penalty.
In particular, by leveraging the MM algorithm and the SDR
technique, we developed an iterative reweighted-�2 algorithm
with convergence and optimality guarantees (i.e., KKT points)
to solve the resulting smoothed �p-minimization problems P
and D with convex constraints. The effectiveness of the pro-
posed algorithms was demonstrated via simulations for network
power minimization and user admission control.

Several future directions are listed as follows:
• Although the proposed methods only need to solve a

sequence of convex optimization problems, the complex-
ity of solving the large-scale SDP problem using the
interior-point method is prohibitively high. One promis-
ing option is to use the first-order method (e.g., the
operator splitting method [42], [12]) by leveraging the
parallel computing platform in the BBU pool [5], [43],
which will require further investigation.
• It is desirable to establish the optimality and perform

probabilistic analysis for the iterative reweighted-�2 algo-
rithm in the context of inducing group sparsity in the
multicast beamforming vectors. However, with the com-
plicated constraints set, this becomes much more chal-
lenging compared with the compressive sensing problems
with simple constraints (e.g., affine constraints) [29]. It
is also interesting to apply this algorithm to solve other
mixed combinatorial optimization problems in wireless
networks, e.g., wireless caching problems [44].
• It is interesting to apply the proposed smoothed �p-

minimization approach with the iterative reweighted-�2
algorithm in the scenarios with CSI uncertainty. The only
requirement is that the resulting non-convex constraints
due to the CSI uncertainty can be convexified [45], [46].
It is also interesting but challenging to characterize the

performance degradations due to CSI acquisition errors
in multicast Cloud-RANs [47], [48].

APPENDIX A
PROOF OF THEOREM 1

We first need to prove that

lim sup
ε↘0

�(ε) ⊂ �(0), (39)

where lim supε↘0 �(ε) is defined as [49, Page 152]

lim sup
ε↘0

�(ε) : =
⋃

ε[n]↘0

lim sup
n→∞

�(ε[n])

= { z̄|∃ε[n] ↘ 0, ∃z[n] → z̄}, (40)

where z[n] ∈ �(ε[n]). Therefore, for any z̄ ∈ lim supε↘0 �(ε),
there exists z[n] ∈ �(ε[n]) such that z[n] → z̄ and ε[n] ↘ 0. To
prove (39), we only need to prove that z̄ ∈ �(0). Specifically,
z[n] ∈ �(ε[n]) indicates that

0 ∈ ∇z f p(z[n]; ε[n])+NC(z[n]). (41)

As f p(z; ε) is continuously differentiable in both z and ε, we
have

lim
n→∞∇z f p(z[n]; ε[n]) = lim

z[n]→ z̄
lim

ε[n]↘0
∇z f p(z[n]; ε[n])

=∇z f p( z̄; 0). (42)

Furthermore, based on results for the limits of normal vectors
in [49, Proposition 6.6], we have

lim sup
z[n]→ z̄

NC(z[n]) = NC( z̄). (43)

Specifically, if z[n] → z̄, s[n] ∈ NC(z[n]) and s[n] → s, then
s ∈ NC( z̄). That is, the set {(z, s)|s ∈ NC(z)} is closed relative
to C× R

m . Based on (42) and (43) and taking n→∞ in (41),
we thus prove (39). Based on [50, Theorem 4] we complete the
proof for (29).

APPENDIX B
CONVERGENCE OF THE ITERATIVE REWEIGHTED-�2

ALGORITHM

1) We will show that any convergent subsequence {z[nk ]}∞k=1
of {z[n]}∞n=1 satisfies the definition of the KKT points of
problem Psm(ε) (26). Specifically, let z[nk ] → z̄ be one
such convergent subsequence with

lim
k→∞ z[nk+1] = lim

k→∞ z[nk ] = z̄. (44)

As

z[nk+1] := arg min
z∈C

Q(z;ω[nk ]), (45)

which is a convex optimization problem, the KKT condi-
tion holds at z[nk+1], i.e.,

0 ∈ ∇z Q(z[nk+1];ω[nk ])+NC(z[nk+1]). (46)

Based on [49, Proposition 6.6] and (44), we have
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lim sup
z[nk+1]→ z̄

NC(z[nk+1]) = NC( z̄). (47)

Furthermore, based on (44), we also have

lim
k→∞∇z Q(z[nk+1];ω[nk ]) = lim

k→∞ 2
m∑

i=1

ω[nk ]znk+1
i

= lim
k→∞

m∑
i=1

pz[nk+1][(
z[nk ]

i

)2 + ε2

]1− p
2

=∇z f p( z̄; ε). (48)

Therefore, taking k →∞ in (46), we have

0 ∈ ∇z Q( z̄; ω̄)+NC( z̄), (49)

which indicates that z̄ is a KKT point of problem Psm(ε).
We thus complete the proof.

2) As f p(z; ε) is continuous and C is compact, we have the
fact that the limit of the sequence f p(z[n]; ε) is finite.
Furthermore, we have f p(z[n+1]; ε) ≤ f p(z[n]; ε) accord-
ing to (34). Based on the results in 1), we complete the
proof. Note that a similar result was presented in [37] by
leveraging the results in the EM algorithm theory.
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