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ABSTRACT

The ultra-dense network (UDN) is a promising 
technology to further evolve wireless networks 
and meet the diverse performance requirements 
of 5G networks. With abundant access points, 
each with communication, computation, and stor-
age resources, the UDN brings unprecedented 
benefits, including significant improvement in net-
work spectral efficiency and energy efficiency, 
greatly reduced latency to enable novel mobile 
applications, and the capability of providing mas-
sive access for Internet of Things devices. How-
ever, such great promise comes with formidable 
research challenges. To design and operate such 
complex networks with various types of resourc-
es, efficient and innovative methodologies will be 
needed. This motivates the recent introduction 
of highly structured and generalizable models for 
network optimization. In this article, we present 
some recently proposed large-scale sparse and 
low-rank frameworks for optimizing UDNs, sup-
ported by various motivating applications. Spe-
cial attention is paid to algorithmic approaches 
to deal with nonconvex objective functions and 
constraints, as well as computational scalability.

INTRODUCTION
As mobile data traffic keeps growing at an expo-
nential rate, and mobile applications pose more 
and more stringent and diverse requirements, wire-
less networks are facing unprecedented pressures. 
To further evolve wireless networks and maintain 
their competitiveness, network infrastructure den-
sification stands out as a promising approach. By 
deploying more radio access points, supplemented 
with storage and computational capabilities, we 
can not only increase network capacity, but also 
improve network energy efficiency, enable low-la-
tency mobile applications, and provide access 
for massive mobile devices. Such an ultra-dense 
network (UDN) provides an ideal platform to 
develop disruptive proposals to advance wireless 
information technologies, including cloud radio 
access networks (C-RANs), wireless edge caching, 
and mobile edge computing. These are achieved 
by leveraging innovative ideas in different areas, 
such as software-defined networking, network 
functions virtualization, content-centric networking, 
and cloud and fog computing. 

By enabling capabilities of cloud computing 
and software-defined networking, UDNs can 

easily support C-RAN as an effective network 
architecture to exploit the benefits of network 
densification via centralized signal processing and 
interference management [1, 2]. This is achieved 
by moving the baseband processing function-
ality to the cloud data center via high-capacity 
fronthaul links, supported by massively deployed 
low-cost remote radio heads (RRHs). Meanwhile, 
the Internet is shifting from connection-centric to 
content-centric to support high-volume content 
delivery [3]. By enabling content caching at radio 
access points (i.e., wireless edge caching), UDNs 
can assist the Internet architecture evolution and 
achieve more efficient content delivery for mobile 
users [4]. Another trend is the increasing compu-
tation intensity in mobile applications, which puts 
a heavy burden on resource-constrained mobile 
devices. Mobile edge computing was recently pro-
posed as a promising solution by offloading com-
putation tasks of mobile applications to servers at 
nearby access points. It avoids excessive propaga-
tion delay in the backbone network compared to 
mobile cloud computing, and thus enables laten-
cy-critical applications. All of these systems are 
built on the UDN platform, which enables integra-
tion of the storage, computing, control, and net-
working functionalities at the ubiquitous access 
points. In particular, C-RANs serve the purpose 
of providing higher data rates, while mobile edge 
caching and computing networks enable low-la-
tency content delivery and mobile applications.

However, all the emerging networking para-
digms associated with UDNs bring formidable chal-
lenges to network optimization, signal processing, 
and resource allocation, given the highly complex 
network topology, the massive amount of required 
side information, and the high computational 
requirement. Typical design problems are noncon-
vex in nature and of enormously large scale (i.e., 
with large numbers of constraints and optimization 
variables). For example, the uncertainty or estima-
tion error in the available channel state information 
(CSI) yields nonconvex quality of service (QoS) 
constraints, while such network performance met-
rics as sum throughput and energy efficiency lead 
to nonconvex objective functions. Thus, effective 
and scalable design methodologies, with the capa-
bility of handling nonconvex constraints and objec-
tives, will be needed to fully exploit the benefits of 
UDNs. The aim of this article is to present recent 
advances in sparse and low-rank techniques for 
optimizing dense wireless networks [7–9], with 

Yuanming Shi, Jun Zhang, Wei Chen, and Khaled B. Letaief

HETEROGENEOUS ULTRA DENSE NETWORKS

The authors present 
recently proposed large-
scale sparse and low-rank 
frameworks for optimizing 
UDNs, supported by 
various motivating appli-
cations. Special attention 
is paid to algorithmic 
approaches to deal with 
nonconvex objective 
functions and constraints, 
as well as computational 
scalability.

Yuanming Shi is with ShanghaiTech University; Jun Zhang is with Hong Kong University of Science and Technology; Wei Chen is with Tsinghua University;  
Khaled B. Letaief is with Hamad bin Khalifa University and Hong Kong University of Science and Technology.

Digital Object Identifier:
10.1109/MCOM.2018.1700472

Generalized Sparse and Low-Rank 

Optimization for Ultra-Dense Networks

This work was supported in 
part by the National Nature 
Science Foundation of China 
(NSFC) under Grant No. 
61601290, Shanghai Sailing 
Program under Grant No. 
16YF1407700, the Hong 
Kong Research Grant Council 
under Grant No. 16200214, 
the National Natural Science 
Foundation of China under 
Project Nos. 61671269 and 
61621091, the Chinese 
National 973 Program under 
Project No. 2013CB336600, 
and the 10000-Talent Program 
of China.



IEEE Communications Magazine • June 2018 43

comprehensive coverage including modeling, algo-
rithm design, and theoretical analysis. We identify 
two representative classes of design problems in 
UDNs, large-scale network adaptation and side-in-
formation-assisted network optimization.

The first class of design problems are for effi-
cient network adaptation in UDNs, including radio 
access point selection [7], backhaul data assign-
ment, user admission control, user association [10], 
and active user detection [9]. Such large-scale net-
work adaptation problems involve both discrete 
and continuous decision variables, which motivates 
us to enforce sparsity structures in the solutions. 
The success of the structured sparse optimiza-
tion for network adaptation comes from the key 
observation that such adaptation can be achieved 
by enforcing structured sparsities in the solution, 
which are presented later in detail. The second 
class of design problems involve how to effectively 
utilize the available side information for network 
optimization, including topological interference 
management [11], wireless distributed computing 
[12], and mobile edge caching [4]. Network side 
information is critical to design UDNs, and it can 
take various forms, such as the network connectiv-
ity information, cache content placement at access 
points, and locally computed intermediate values in 
wireless distributed computing. We present a gen-
eral incomplete matrix framework to model various 
network side information, which leads to a unified 
network performance metric via the rank of the 
modeling matrix for optimizing UDNs. 

Although the structured sparse and low-rank 
techniques enjoy the benefits of modeling flexibility, 
the sparse function and rank function are noncon-
vex, which brings computational challenges [13, 14]. 
Furthermore, typical optimization problems in UDNs 
bear complicated structures, which make most of 
the existing algorithms and theoretical results inap-
plicable. To address these algorithmic challenges, 
we present various convexification procedures for 
both objectives and constraints throughout our dis-
cussion. Moreover, scalable convex optimization 
algorithms and nonconvex optimization techniques, 
such as Riemannian optimization, are presented. 
This article shall serve the purpose of providing net-
work modeling methodologies and scalable com-
putational tools for optimizing complex UDNs, as 
summarized in Table 1.

STRUCTURED SPARSE OPTIMIZATION FOR 
LARGE-SCALE NETWORK ADAPTATION

In UDNs, to effectively utilize densely deployed 
access points to support massive mobile devices, 
large-scale network adaptation will play a pivotal 
role. For various network adaptation problems in 

UDNs, the solution vector is expected to be sparse 
in a structured manner; for example, radio access 
point selection results in a group sparsity structure. 
To illustrate the power of the generalized sparse 
representation and scalable optimization para-
digms, in this section, we present representative 
examples of group sparse beamforming for green 
C-RANs, and structured sparse optimization for 
active user detection and user admission control. 

GENERALIZED STRUCTURED SPARSE MODELS
In this part, two motivating applications of gen-
eralized sparse models for large-scale network 
adaptation are presented. 

Large-Scale Structured Optimization: We take 
green C-RAN as an example to illustrate struc-
tured optimization for network adaptation. In 
C-RANs, the network power consumption con-
sists of the transmit power of active RRHs and the 
power of the corresponding active fronthaul links. 
By exploiting the spatial and temporal data traffic 
fluctuation, network adaptation via dynamically 
switching off RRHs and the associated fronthaul 
links can significantly reduce the network power 
consumption. To minimize the network power 
of a C-RAN, we need to optimize over both the 
discrete variables (i.e., the selection of RRHs 
and fronthaul links) and continuous variables 
(i.e., downlink beamforming coefficients), yield-
ing a mixed combinatorial optimization problem, 
which is highly intractable. To support efficient 
algorithm design and analysis, a principled group 
sparse beamforming framework was proposed in 
[7] by enforcing the group sparsity structure in 
the solution vectors. This is achieved by a group 
sparsity representation of the discrete optimiza-
tion variables for RRH selection as shown in Fig. 
1. Specifically, by regarding all the beamforming 
coefficients of one RRH as a group, switching off 
this RRH corresponds to setting all the associated 
beamforming coefficients in the same group to be 
zeros simultaneously. We thus enforce the group 
sparsity structure in the aggregative beamforming 
vector to guide switching off the corresponding 
RRHs to minimize the network power consump-
tion. Similar to group sparse beamforming for 
RRH selection, there is a corresponding user side 
node selection problem. With crowded mobile 
devices, it is critical to maximize the user capac-
ity (i.e., the number of admitted users). This user 
admission problem is equivalent to minimizing 
the number of violated QoS constraints (modeled 
as gi(x) x 0 for the ith user; it may be infeasible), 
which can further be modeled as minimizing the 
individual sparsity of the auxiliary vector z = [zi] 
with zi � 0 indicating the violations of the QoS 
constraints. That is, the constraint gi(x) x zi (always 
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Table 1. Generalized sparse and low-rank optimization for UDNs.

Models  Structured sparse optimization (1) Generalized low-rank optimization (2)

Applications

Large-scale network adaptation:
1. Network power minimization
2. User admission control
3. Active user detection

Network optimization with side information: 
1. Topological interference management
2. Wireless distributed computing
3. Mobile edge caching

Algorithms

Convex optimization solver [5]:
1. O(1/k) convergence rate: (k: # iterations)
2. Subspace projection per iteration. Parallel cone
    projection per iteration

Riemannian optimization solver [6]:
1. Superlinear convergence rate with conjugate gradient
2. Quadratic convergence rate with trust region
3. Compute Riemannian gradient and Hessian per iteration



IEEE Communications Magazine • June 201844

feasible as the auxiliary variable zi � 0, zi = 0) indi-
cates that the original QoS constraint gi(x) x 0 
is feasible, while zi > 0 indicates that the original 
QoS constraint gi(x) x 0 is infeasible. Therefore, 
by enforcing this structured sparsity in the solu-
tion, user admission can be effectively handled. 

High-Dimensional Structured Estimation: With 
limited radio resources, it is challenging to support 
massive device connectivity for such applications 
as IoT. Fortunately, only part of the massive devices 
will be active at a time given the sporadic traffic for 
the emerging applications (e.g., machine-type com-
munications, Internet of Things [IoT]) [9]. Active 
user detection is thus a key problem for providing 
massive connectivity in UDNs, which turns out to 
be a structured sparse estimation problem. Specif-
ically, suppose we have N single-antenna mobile 
devices (K of which are active) and one M-antenna 
base station (BS). The received signal at the BS has 
the form Y = HΣQ + W, where Σ £ RN�N is the 
unknown diagonal activity matrix with K non-zero 
diagonals whose positions are to be estimated, H 
£ CM�N is the unknown channel matrix from all 
the devices to the BS, Q £ CN�L is the known pilot 
matrix with training length L, and W is the additive 
noise. We thus need to simultaneously estimate 
the channel matrix H and Σ, which poses a great 
challenge. We observe that detecting the active 
users is equivalent to estimating the group sparsity 
structure of the combined matrix Θ = Σ £ CM�N, 
which has a group structured sparsity in columns 
of matrix Θ induced by the structure of Σ. That is, 
when mobile device N is inactive, all the entries 
in the Nth column in matrix Θ become zeros 
simultaneously. Due to the limited radio resourc-
es, the training length L will be much smaller than 
the channel dimension N, and thus, the estimation 
problem is ill-posed and yields a high-dimensional 
structured estimation problem. 

Fortunately, the embedded low-dimensional 
structure (i.e., the structured sparsity) can be algorith-
mically exploited to ensure the success of the high-di-
mensional structured estimation, as illustrated in Fig. 2 
for the behaviors of phase transitions and normalized 
mean square error (NMSE) . Phase transition defines 
a sharp change in the behavior of a computation-
al problem as its parameters vary. Convex geome-
try and conic integral geometry provide principled 
ways to theoretically predicate the phase transitions 
precisely [15]. In particular, the phase transition phe-
nomenon in Fig. 2a reveals the fundamental limits of 
sparsity recovery in the best cases (i.e., without noise). 

Specifically, such study reveals that the required train-
ing length, or the number of measurements, depends 
on the sparsity level of Θ, and highly accurate user 
activity detection can be achieved with sufficient 
measurements. Figure 2b further demonstrates that 
the low-dimensional structure can be exploited to 
significantly reduce the training length for active user 
detection even in noisy scenarios. 

A GENERALIZED SPARSE OPTIMIZATION PARADIGM
We have demonstrated that effective network 
adaptation can be achieved by either inducing vec-
tor sparsity in the structured manner or estimating 
the structured sparsity pattern. In this part, we pro-
vide a generalized sparse optimization framework 
to algorithmically exploit the low-dimensional struc-
tures in UDNs. This is achieved by optimizing a 
constrained composite combinatorial objective,

minimize
z∈!n

f (z) := f1(Supp(z))+ f2(z)    subject to z ∈ C,

 (1)
where Supp(z) is the index set of non-zero coef-
ficients of a vector z, f1 is a combinatorial posi-
tive-valued set-function to control the structured 
sparsity in z, f2 is a continuous convex function 
in z to represent the system performance such as 
transmit power consumption, and the constraint 
set C serves the purpose of modeling system con-
straints (e.g, transmit power constraints and QoS 
constraints). The most natural convex surrogate for 
a nonconvex function f is its convex envelope (i.e., 
its tightest convex lower bound). The main motiva-
tion for convexifying function f is that the convexi-
fied optimization problems make it possible to use 
the convex geometry theory [15] to reveal benign 
properties about the globally optimal solutions, 
which can be computed with efficient algorithms. 
For example, the individual sparsity function with 
l0-norm in z can be convexified to the l1-norm. The 
group sparsity function can be convexified by the 
mixed l1/l2-norm. More general convex relaxation 
results can be derived based on the principles of 
convex analysis [15]. Note that it is critical to estab-
lish the optimality for various convex relaxation 
approaches in UDNs. For example, for the non-
convex active user detection problem from earlier, 
the optimality condition can be established via the 
conic geometry approach in [15].

The constraint set C serves the purpose of 
modeling various QoS constraints including uni-
cast beamforming, multicast beamforming, and 
stochastic beamforming, just to name a few. For 
example, the nonconvex QoS constraints for uni-
cast beamforming can be equivalently transformed 
into convex second-order cone constraints [7]. 
Furthermore, physical layer integration techniques 
can effectively improve the network performance 
via providing multicast services, which, howev-
er, yield nonconvex quadratic QoS constraints. 
The semidefinite relaxation (SDR) technique turns 
out to be effective to convexify the nonconvex 
quadratic constraints via lifting the original vector 
problem to higher matrix dimensions, followed by 
dropping the rank-one constraints. For stochastic 
beamforming with probabilistic QoS constraints 
due to CSI uncertainty, the probabilistic QoS con-
straints can be convexified based on the princi-
ples of the majorization-minimization procedure, 
yielding sequential convex approximations. In 

Figure 1. Group sparse beamforming for green cloud-RAN design, with L RRHs 
and K users. Switching off the lth RRH and the corresponding fronthaul link 
corresponds to setting all the beamforming coefficients in the lth beam-
forming coefficients group ~zl = [zl1, …, zlk to be zeros simultaneously, where 
zlk is the transmit beamforming vector from RRH L to mobile user k. Note 
that, when switching off one RRH, the remaining RRHs need to support the 
QoS requirements for all the mobile users.
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summary, the general formulation in Eq. 1 enables 
efficient algorithm design and analysis for network 
adaptation in UDNs. 

GENERALIZED LOW-RANK OPTIMIZATION 
WITH NETWORK SIDE INFORMATION

UDNs are highly complex to optimize, for which 
it is critical to exploit the available network side 
information. For example, network connectivity 
information, cached content at the access points, 
and locally computed intermediate values all 
serve as exploitable side information for efficiently 
designing coding and decoding in UDNs.

In this section, we provide a generalized low-
rank matrix modeling framework to exploit the net-
work side information, which helps to efficiently 
optimize across the communication, computation, 
and storage resources. To demonstrate the power 
of this framework, we present topological interfer-
ence alignment as a concrete example and then 
extend it to cache-aided interference channels and 
wireless distributed computing systems. A general 
low-rank optimization problem is then formulated 
by incorporating the network side information. 

NETWORK SIDE INFORMATION 
MODELING VIA INCOMPLETE MATRIX

To exploit the full performance gains of network 
densification, recent years have seen progress on 
interference management under various scenari-
os depending on the amount of shared CSI and 
user messages. Typical interference management 
strategies include interference alignment, inter-
ference coordination, and coordinated multipoint 
transmission and reception, to name just a few. 
However, the significant overhead of acquiring 
global CSI motivates numerous research efforts 
on CSI overhead reduction strategies (e.g., 
delayed CSI, alternating CSI, and mixed CSI). One 
of the most promising strategies is topological 
interference management (TIM) [11], for which 
only network connectivity information is required. 
This is based on the fact that most of the wireless 
channel propagation links are weak enough to 

be ignored, thanks to path loss and shadowing. 
However, the TIM problem turns out to be linear 
index coding problems [11], which are in general 
highly intractable, and only partial results exist for 
special cases. Recently, a new proposal was made 
for the TIM problem, which can greatly assist the 
algorithm design. The main innovation is to model 
the network connectivity pattern in UDNs as an 
incomplete matrix. Then the TIM problem can be 
formulated as a generalized matrix completion 
problem,1 which helps to develop effective lin-
ear precoding and decoding strategies. Figure 3 
demonstrates the modeling framework, with Fig. 
3a showing a five-user interference channel as an 
example and Fig. 3c showing the corresponding 
modeling matrix. The task of TIM is to complete 
the side information modeling matrix, which will 
then determine the precoder and decoder [8].

This modeling framework is very powerful, and 
can be adopted to consider other design problems 
in UDNs. By equipping the densely deployed radio 
access points and mobile devices with isolated 
cache storages, caching the content at the edge of 
the network provides a promising way to improve 
the throughput and reduce latency, as well as 
reduce the load of the core network and RANs [4]. 
In general, content-centric communications consist 
of two phases, a content placement phase followed 
by a content delivery phase. However, due to the 
coupled wireline and wireless communications in 
cache-aided UDNs, unique challenges arise in the 
edge caching problem. Fortunately, the incomplete 
matrix modeling framework can capture the infor-
mation of the content cached at different nodes. 
Figure 3b shows an example for cache-aided five-us-
er interference channels, where the side informa-
tion is represented in the side information modeling 
matrix in Fig. 3c. Similarly, this modeling framework 
can also be extended to wireless distributed com-
puting networks [12]. For the prevalent distributed 
computing structures like MapReduce and Spark, 
the basic idea is that intermediate values computed 
in the “map” phase based on the locally available 
dataset can be regarded as the side information for 
the “reduce” phase to compute the output value 

1 B. Hassibi, “Topological Inter-
ference Alignment in Wireless 
Networks,” Smart Antennas 
Workshop, Aug. 2014.

Figure 2. a) Phase transitions for structured sparse estimation for massive device connectivity, given the 
random measurement Y = ΘQ with N = 100 and M = 2. The heat map indicates the empirical probabili-
ty of success (black = 0%; white = 100%); b) NMSE of estimating Θ, given the noisy model Y = ΘQ + W 
with N = 100, M = 2, K = 20, and Wij ~ CN(0,0.01). Each entry in Q £ CN�L is distributed as Qij ~ CN(0,1) 
with L as the number of random measurements.
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for a given input. This can then help reduce the 
communication overhead in the “shuffle” phase to 
obtain the intermediate values that are not com-
puted locally in the “map” phase. The incomplete 
matrix modeling approach will help to formulate the 
design problems for wireless caching and distributed 
computing systems. 

A GENERALIZED LOW-RANK OPTIMIZATION PARADIGM
We have presented an effective and general frame-
work to model various network side information in 
UDNs. Next, we present a low-rank optimization 
formulation to exploit the available network side 
information. The side information modeling matrix 
M as shown in Fig. 3c helps cancel interference 
over N channel uses, yielding an interference-free 
channel with 1/N degrees of freedom (DoF) (i.e., 
the first-order data characterization). Observe that 
the rank of the side information modeling matrix 
M, denoted by rank (M), equals the number of 
channel uses N, which equals the inverse of the 
achievable DoF. To maximize the achievable DoF, 
we thus can minimize the rank of the side informa-
tion modeling matrix, yielding the following gener-
alized low-rank optimization problem,

minimize
M∈!p×q

 rank(M)  subject to M ∈D,
  

(2)

where the constraint set D encodes the network 
side information. Low-rank optimization has been 
proved to be a key design tool in machine learning, 
high-dimensional statistics, signal processing, and 
computational mathematics [14]. The rank function 
is nonconvex and thus is computationally difficult, 
but convexifying it leads to efficient algorithms. For 
example, the nuclear norm (i.e., the summation 
of singular valves of a matrix) provides a convex 
surrogate of the rank function that is analogous to 
the l1-norm relaxation of the cardinality of a vector. 

Given the special structure of the side infor-
mation modeling matrix in UDNs, most existing 
algorithmic and theoretical results for low-rank opti-
mization are inapplicable. Recent work [8] contrib-
uted a novel proposal of nonconvex paradigms 
for solving the generalized low-rank optimization 
problem (Eq. 2) by optimizing over the nonconvex 
rank constraints directly via Riemannian optimiza-
tion and matrix factorization. Figure 4 illustrates 
the phase transition behavior for the generalized 

low-rank optimization in topological interference 
management, which characterizes the relationships 
between the achievable DoF and the number of 
connected interference links on average. Given the 
rank, representing the achievable DoF, with more 
connected interference links, the success proba-
bility for recovering the incomplete side informa-
tion modeling matrix is lower. It thus provides the 
guidelines for network deployment in dense wire-
less networks, content placement in cache-aided 
interference channels, and dataset placement in 
wireless distributed computing systems. 

OPTIMIZATION ALGORITHMS AND ANALYSIS
We have seen quite a few algorithmic challeng-
es for the sparse and low-rank modeling frame-
works for UDNs. In this section, we present some 
new trends in optimization algorithms for solving 
the generalized sparse and low-rank optimization 
problems in the forms of Eqs. 1 and 2, respective-
ly. Basically, numerical optimization algorithms 
can be classified in terms of first vs. second order 
methods, depending on whether they use only 
gradient-based information vs. calculations of 
both the first and second derivatives. The con-
vergence rates of second-order methods are usu-
ally faster with the caveat that each iteration is 
more expensive. In general, there is a trade-off 
between the per-iteration computation cost vs. 
the total number of iterations, although first-order 
methods often scale better to large-scale high-di-
mensional statistics problems [13]. While optimi-
zation problems in communication systems are 
typically solved in the convex paradigm with the 
second-order methods, thanks to the ease of use 
of the CVX toolbox, we have observed the neces-
sity of the first-order methods and the importance 
of the nonconvex paradigm, as elaborated in the 
following subsections. 

CONVEX OPTIMIZATION ALGORITHMS
We have presented a variety of methodologies 
to convexify the nonconvex objective functions 
and nonconvex constraints for the generalized 
sparse optimization problem (Eq. 1). Newton 
iteration-based interior-point methods supported 
by many user-friendly software packages (e.g., 
CVX) provide a general way to solve constrained 
convex optimization problems. However, the 

Figure 3. a) A partially connected 5-user interference channel with the index set of connected links as V = 
{(1, 3), (1, 4), (2, 3), (2, 4), (3, 1), (3, 5), (4, 1), (4, 5), (5, 1)}; b) a cache-aided 5-user interference chan-
nel with cached messages at each receiver indexed by C1 = {2, 5}, C2 = {1,5}, C3 = {2, 4}, C4 = {2, 3}, and 
C5 = {1, 3, 4}; c) let M = [Mij] £ CK�K with Mij = ui

Hvi £ C, where ui £ Cn and vi £ Cn are the precoding 
and decoding vectors with N as the number of channel uses for transmission. The incomplete matrix 
M with partial known entries indexed by V serves as the side information modeling matrix for a) and 
b); that is, Mii = 1 means to preserve the desired signals for each receiver, Mij = 0, ∀(i, j) £ V represents 
cancelling the interference, and Mij = *, ∀(i, j) ¤ V � {(i, i)} can be any (unknown) values.
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cubic computational complexity of each Newton 
step limits its capability to scale to large network 
sizes in UDNs. This motivates enormous research 
efforts to improve the computational efficiency 
for convex programs, including the techniques of 
first-order methods, randomization, and parallel 
and distributed computing. 

Parallel and distributed optimization provides a 
principled way to exploit the distributed computing 
environments to increase the levels of scalability 
while reducing the communication costs. To solve 
a general large-scale convex program, a principled 
two-stage framework has recently been proposed 
in [5] with the capability of providing certificates of 
infeasibility, enabling parallel and scale computing. 
This is achieved, in the first stage, by the matrix 
stuffing technique to quickly transform the original 
convex programs into the standard conic optimi-
zation problem form via updating the associated 
values in the pre-stored structure of the standard 
conic program. In the second stage, the ADMM-
based algorithm is adopted to solve the standard 
large-scale conic optimization problem via exploit-
ing the problem structures [5] to enable parallel 
cone projection at each iteration.

Other lines of work have focused on the use 
of first-order methods and randomization to solve 
large convex programs. In particular, for sparse 
convex optimization problems, Frank-Wolfe-type 
algorithms (a.k.a. conditional gradient) have recent-
ly gained enormous interest, fueled by the excel-
lent scalability with projection-free operations via 
exploiting the well structured sparsity constraints. 
The coordinate descent method has gained popu-
larity for scalability by choosing a single coordinate 
(or a block of coordinates) to be updated within 
each iteration, thereby reducing the iteration com-
puting cost. Approximation techniques, including 
randomization methods and sketching methods, 
further provide algorithmic opportunities to enable 
scalability for, in particular, first-order methods, via 
speeding up numerical linear algebra or reducing 
problem dimensions. In particular, the stochastic 
gradient method provides a generic way to sto-
chastically approximate the gradient descent meth-
od to solve large-scale machine learning problems. 
All the above presented algorithmic and theoretical 
results may be leveraged to solve large-scale con-
vex optimization problems in UDNs. 

NONCONVEX OPTIMIZATION ALGORITHMS
Recently, a new line of work has attracted sig-
nificant attention, which focuses on solving 
the nonconvex optimization problems directly 
via developing efficient nonconvex procedures, 
sometimes with optimality guarantee. We have 
seen recent progress on nonconvex procedures 
based on various algorithms (e.g., projected/sto-
chastic/conditional gradient methods, Riemannian 
manifold optimization algorithms) for a class of 
high-dimensional statistical problems and machine 
learning problems, including low-rank matrix com-
pletion, phase retrieval, and blind deconvolution, 
to name just a few. In particular, optimization by 
directly exploiting problems’ manifold structures 
is becoming a general and powerful approach 
to solve various nonconvex optimization prob-
lems. The structured constraints such as rank and 
orthogonality appear in many machine learning 
applications, including sensor network localization, 

dimensionality reduction, low-rank matrix recovery, 
phase synchronization, and community detection. 

From a high-level standpoint, Riemannian opti-
mization is the extension of standard unconstrained 
optimization searching in the Euclidean space to 
optimization in the Riemannian manifold space by 
generalizing concepts such as the gradient and Hes-
sian [6]. A graphic representation of Riemannian 
optimization algorithms is illustrated in Fig. 5. Spe-
cifically, the Euclidean gradient ∇ f(Xk) needs to be 
projected to the tangent space TXkM of manifold 
M to define a search direction ξXk (which can be 
computed based on the principles of the conjugate 
gradient method or trust-region method), followed 
by the retraction operator RXk to define a new 
iteration xk+1 = RXk(aξk) (a is the step size) on the 
manifold M. In particular, we exploit the manifold 
geometry of fixed-rank matrices to solve the low-
rank optimization problem (Eq. 2) efficiently. Figure 
5b demonstrates the effectiveness of Riemannian 
optimization-based methods. It shows that the Rie-
mannian optimization enjoys fast convergence rates, 
for example, compared to an existing approach 
based on alternating minimization. 

CONCLUSIONS AND FUTURE DIRECTIONS
This article presents generalized sparse and low-
rank optimization techniques for optimizing across 
communication, computation, and storage resourc-
es in UDNs by exploiting network structures and 
side information. Illustrated by important applica-
tion examples, various structured sparse model-
ing methods are introduced, and an incomplete 
matrix representation is presented to model differ-
ent types of network side information. Methodolo-
gies of designing scalable algorithms are discussed, 
including both convex and nonconvex methods. 
The presented results and methodologies demon-

Figure 4. Phase transitions for the topological interference management prob-
lem for a partially connected K-user interference channel with the network 
side information modeling constraint set D = {M £ R30�30|Mii =1, Mij = 0, 
∀(i, j) £ S}, where the set S is randomly and uniformly sampled. The heat 
map indicates the empirical probability of success (blue = 0%; yellow = 
100%).
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strate the effectiveness of structured optimization 
techniques for designing UDNs. 

Despite the encouraging progress, there still 
remain a variety of interesting open questions. 
To date, generalized sparse and low-rank optimi-
zation techniques are mainly applied to improve 
the network energy efficiency and spectral effi-
ciency in UDNs. However, emerging mobile 
applications have strong demands for user priva-
cy and ultra-low-latency communications, which 
call for more general mathematical models and 
formulations. Other interesting problems concern 
the theoretical analysis for the generalized sparse 
and low-rank optimization models and algorithms. 
Although we have seen significant progress in theo-
retical understanding of sparse and low-rank optimi-
zation problems via convex relaxation approaches 
[15] and nonconvex procedures, it is challenging to 
apply existing results to the generalized sparse and 
low-rank optimization problems (Eqs. 1 and 2) due 
to the complicated structures. Finally, there are a 
variety of interesting research directions associated 
with improving the computational scaling behavior 
of various algorithms via recent proposals (e.g., ran-
domized algorithms based on sketching). 
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Figure 5. a) Graphic representation of Rieman-
nian optimization algorithms at each iteration; 
b) solving rank-constrained optimization 
problem minimizeM£M f(M) withM = {M £ 
R100�100|rank(M) = 5} and f(M) = Σ100

i=1(Mii – 
1)2 + Σ(i,j)£WM2

ij (|W| = 400) via Riemannian opti-
mization algorithms by factorizing rank-r matrix 
M, yielding a quotient manifold [M] = {(UQU, 
QU

T ΣQV, VQV): QU, QV £ Q(r)}, where O(r) is 
the set of all r � r orthogonal matrices.
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