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Topological Interference Management With User
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Abstract— Topological interference management (TIM) pro-
vides a promising way to manage interference only based on the
network connectivity information. Previous works on the TIM
problem mainly focus on using the index coding approach and
graph theory to establish conditions of network topologies to
achieve the feasibility of topological interference management.
In this paper, we propose a novel user admission control approach
via sparse and low-rank optimization to maximize the number
of admitted users for achieving the feasibility of topological
interference management. However, the resulting sparse and low-
rank optimization problem is non-convex and highly intractable,
for which the conventional convex relaxation approaches are
inapplicable, e.g., a simple ℓ1-norm relaxation approach yields
the objective unbounded and non-convex. To assist efficient algo-
rithms design for the formulated rank-constrained (i.e., degrees-
of-freedom (DoFs) allocation) ℓ0-norm maximization (i.e., user
capacity maximization) problem, we propose a novel non-convex
but smoothed ℓ1-regularized minimization approach to induce
sparsity pattern with bounded objective values. We further
develop a Riemannian trust-region algorithm to solve the result-
ing rank-constrained smooth non-convex optimization problem
via exploiting the quotient manifold of fixed-rank matrices.
Simulation results demonstrate the effectiveness and optimality
of the proposed Riemannian algorithm to maximize the number
of admitted users for topological interference management.

Index Terms— Topological interference alignment, user admis-
sion control, sparse and low-rank modeling, Riemannian opti-
mization, quotient manifold.

I. INTRODUCTION

THE popularization of innovative applications and new
services, such as Internet of Things (IoT) and wearable

devices [1], is driving the era of wireless big data [2], thereby
revolutionizing the segments of the society. In particular, with
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ultra-low latency and ultra-reliable requirements, Tactile Inter-
net [3] enables a new paradigm shift from content-delivery
to skill-set delivery networks. Network densification [4], sup-
ported by the advanced wireless technologies (e.g., massive
MIMO [5], Cloud-RAN [6], [7], and small cells [8], [9]),
becomes the key enabling technology to accommodate the
exponential mobile data traffic growth, as well as pro-
vides ubiquitous connectivity for massive devices. However,
by adding more radio access points per volume, interference
becomes the bottleneck to harness the benefits of wireless
network densification. Although the recent development of
interference alignment [10] and interference coordination [11]
have been shown to be effective in the interference-limited
communication scenarios, the significant signaling overhead
of obtaining the global channel state information (CSI) limits
its applicability in dense wireless networks [12].

To reduce the CSI acquisition overhead and make it scal-
able in dense wireless networks, the topological interference
management (TIM) approach was proposed in [12] to manage
interference only based on the network connectivity infor-
mation. However, establishing the feasibility of topological
interference management is a challenging task. In the slow
fading scenario, i.e., channels stay constant during transmis-
sion, the TIM problem turns out to be equivalent to the index
coding problem for the linear coding schemes [13]. However,
the index coding problem is NP-hard in general and only
some special cases have been solved [12], [14]. Furthermore,
the topological interference management problems with trans-
mitters cooperation and multiple transmitter antennas were
investigated in [15] and [16], respectively. In the fast fading
scenario, the graph theory and matroids theory were adopted
to find the conditions of network topologies to achieve a
certain amount of DoF allocation [17], [18]. A low-rank matrix
completion approach with Riemannian algorithms has recently
been proposed in [19] to find the minimum channel uses to
achieve feasibility for any network topology.

In contrast, in this paper, we present a different viewpoint
for the TIM problem: given any network topology and DoF
allocation for all the users, we aim at finding the maxi-
mum number of admitted users to achieve the feasibility of
topological interference management, i.e., all the admitted
users achieve the DoF requirements. We call this problem
as user admission control in topological interference man-
agement. Note that the user admission control problem is
fundamentally different from the original TIM problem [19],
where all the users are assumed to be admitted, and the

1536-1276 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



SHI et al.: TOPOLOGICAL INTERFERENCE MANAGEMENT WITH USER ADMISSION CONTROL VIA RIEMANNIAN OPTIMIZATION 7363

corresponding preceding and decoding schemes aim at max-
imizing the achievable DoFs for all the users. User admis-
sion control is critical in wireless communication networks
(i.e., cognitive radio access networks [20], heterogeneous
networks [21] and Cloud-RAN [22]) when quality-of-services
(QoS) requirements are unsatisfied or the channel conditions
are unfavorable [23]. Although the user admission control
problems are normally non-convex mixed combinatorial opti-
mization problems, a large body of recent work has demon-
strated the effectiveness of convex relaxation for solving
such problems [20]–[23] based on the sum-of-infeasibilities
in optimization theory [24]. This is achieved by relaxing
the original non-convex ℓ0-norm minimization problem for
user admission control to the convex ℓ1-norm minimization
problem [24], [25].

Unfortunately, the user admission control problem in topo-
logical interference management turns out to be highly
intractable, which needs to optimize over continuous and
combinatorial variables. To address the intractability, in this
paper, we propose a sparse and low-rank modeling framework
to compute the proposed solutions within polynomial time.
In this model, sparsity of the diagonal entries of the matrix
(i.e., the number of non-zero entries) represents the number
of the admitted users. The fixed low-rank constraint indicates
the DoF allocation [19]. However, the unique challenges
arise in the proposed sparse and low-rank optimization model
including the non-convex fixed-rank constraint and user capac-
ity maximization objective function, i.e., ℓ0-norm objective
maximization. A simple ℓ1-norm relaxation approach yields
the objective unbounded and non-convex. Novel algorithms
thus need to be developed.

A. Related Works
1) User Admission Control: In dense wireless networks,

user admission control is critical to maximize the user capacity
while satisfying the QoS requirements for all the admitted
users. To address the NP-hardness of the mixed combinato-
rial optimization problem, sparse optimization (e.g., ℓ0-norm
minimization) approach, supported by the efficient algorithms
(e.g., ℓ1-norm convex relaxation [20], [21] and the itera-
tive reweighted ℓ2-algorithm [22]), provided an efficient way
to find high quality solutions. However, convex relaxation
approach is inapplicable in our sparse and low-rank opti-
mization problem due to the ℓ0-norm maximization as the
objective. For the ℓ1-norm relaxation approach, it yields
a ℓ1-norm maximization problem, which is still non-convex.
Furthermore, maximizing ℓ1-norm shall yield unbounded val-
ues. We thus propose a novel quadratic term regularized
ℓ1-norm to bound the objective function. Note that the reg-
ularized ℓ1-norm relaxation is still non-convex.

2) Low-Rank Models: Low-rank models [26], [27] inspire
enormous applications in machine learning, recommendation
systems, sensor localization, etc. Due to the non-convexity of
low-rank constraint or objective, many heuristic algorithms
with optimality guarantees have been proposed in the last
few years. In particular, convex relaxation approach using
nuclear norm [28] provides a polynomial time complexity
algorithm with optimality guarantees via convex geometry and

conic integral geometry analysis [29]. The other popular way
for low-rank optimization is based on matrix factorization,
e.g., the alternating minimization [27] and Riemannian opti-
mization method [30].

In particular, the Riemannian optimization framework has
the capability of exploiting the Riemannian quotient manifold
of the fixed-rank matrices in the search space. Furthermore,
the Riemannian conjugate gradient and trust-region algo-
rithms are globally convergent (i.e., they converge to first-
order and second-order KKT points on manifolds [31]) with
superlinear [32] and even quadratic convergence rates [31].
The Riemannian algorithms thus achieve faster convergence
rates and higher accurate solutions compared with the alter-
nating minimization and gradient descent algorithms [19].
However, due to the ℓ0-norm maximization objective and non-
convex fixed-rank constraint, the sparse and low-rank opti-
mization problem for user admission control reveals unique
challenges. We thus propose novel regularized formulations
that allow to exploit the Riemannian geometry of fixed-rank
matrices and induce sparsity in the diagonal entries of the
matrices.

3) Riemannian Optimization: Basically, the Riemannian
optimization approach requires the smoothness of the objec-
tive function [33]. For the smooth non-convex optimization
over manifolds, the Riemannian algorithms turn out to be
able to achieve global optimality for some specific high-
dimensional statistical optimization problems, e.g., dictionary
learning [34], generalized phase retrieval [34], and com-
munity detection problems [35]. When the sample size is
sufficiently large, all of these problems enjoy the benign
geometric structure that all the local optimum are glob-
ally optimal and all the saddle points can be escaped by
the Riemannian trust-region algorithms [34], [35]. However,
due to the non-convex and non-smooth objective function,
we can not directly apply the existing Riemannian opti-
mization approaches to solve the proposed sparse and low-
rank optimization framework for user admission control.
In this paper, we thus propose a regularized smoothed ℓ1-
minimization approach supported by the Riemannian trust-
region algorithm to find the maximal number of admitted
users.

Based on the above discussions, in contrast to the pre-
vious works on user admission control [20]–[23], ℓ1-norm
relaxation approaches, and low-rank optimization prob-
lems [26], [27], [30], [36], we need to address the following
coupled challenges to solve the sparse and low-rank opti-
mization for user admission control in topological interference
management:

• The objective of maximizing the non-convex ℓ0-norm to
maximize the user capacity, i.e., the number of admitted
users;

• Non-convex fixed-rank constraint to achieve a certain
amount of DoF allocation.

Therefore, unique challenges arise in the user admis-
sion control problem for topological interference manage-
ment. We need to re-design the sparsity-inducing function
and the efficient approaches to deal with the fixed-rank
constraint.
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B. Contributions

In this paper, we propose a sparse and low-rank optimization
framework for user admission control in topological interfer-
ence management. The Riemannian trust-region algorithm is
developed to solve the proposed regularized smoothed ℓ1-norm
sparsity inducing minimization problem, thereby guiding user
selection. The main contributions are summarized as follows:

1) We propose a novel sparse and low-rank optimization
framework to maximize the number of admitted users
for achieving the feasibility of topological interference
management.

2) To address the difficulty that a simple ℓ1-norm relaxation
approach yields the objective in the sparse and low-rank
optimization unbounded and non-convex, we propose
a novel quadratic regularized approach to bound the
objective in the procedure of the sparsity inducing.
Note that the regularized ℓ1-norm minimization is still
non-convex.

3) We further propose novel regularized formulations that
allow to exploit the Riemannian geometry of fixed-
rank matrices and induce sparsity in matrices. This is
achieved by relaxing the ℓ0-norm maximization problem
as the quadratic regularized smoothed ℓ1-norm mini-
mization problem and regularizing the affine constraints
into the objective.

4) A Riemannian trust-region algorithm is further devel-
oped to solve the resulting rank-constrained smooth
optimization problem for sparsity inducing. The
Riemannian trust-region algorithm is globally conver-
gent with superlinear convergence rate, i.e., it converges
to the second-order KKT points starting from any ran-
dom initialization.

5) Numerical results demonstrate the effectiveness and
optimality of the proposed Riemannian trust-region algo-
rithm to maximize the user capacity for topological
interference management.

C. Organization

The remainder of the paper is organized as follows.
Section II presents the system model and problem formula-
tion. A sparse and low-rank optimization framework for user
admission control is proposed in Section III. The Riemannian
optimization algorithm is developed in Section IV. The
ingredients of optimization on quotient manifold are pre-
sented in Section V. Numerical results are illustrated in
Section VI. Finally, conclusions and discussions are presented
in Section VII.

Notations: Throughout this paper, ∥ · ∥p is the ℓp-norm.
Boldface lower case and upper case letters represent vectors
and matrices, respectively. (·)−1, (·)T , (·)H and Tr(·) denote
the inverse, transpose, Hermitian and trace operators, respec-
tively. We use C and R to represent complex domain and
real domain, respectively. E[·] denotes the expectation of a
random variable. | · | stands for either the size of a set or the
absolute value of a scalar, depending on the context. We denote
A = diag{x1, . . . , xN } and I N as a diagonal matrix of order
N and the identity matrix of order N , respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present the channel model, followed by
the user admission control problem to achieve the feasibility
of topological interference management.

A. Channel Model

Consider the topological interference management problem
in the partially connected K -user interference channel with
each node quipped with a single antenna [12], [19]. Let V be
the index set of the connected transceiver pairs such that the
channel coefficient hi j between the transmitter j and receiver
i is non-zero if (i, j) ∈ V , and is zero otherwise. Each
transmitter i wishes to send a message Wi to its corresponding
receiver i . The message Wi is encoded into a vector xi ∈ Cr

of length r . Therefore, over the r channel uses, the received
signal yi ∈ Cr at receiver i is given by

yi = hii xi +
∑

i, j∈V ,i ̸= j

hi j x j + zi , ∀i = 1, . . . , K ,

where zi ∼ CN (0, Ir ) is the additive noise at receiver i .
We consider the block fading channel, where the channel
coefficients stay constant during transmission, i.e., the channel
coherence time is larger than channel uses r for transmis-
sion [12], [19]. We assume that each transmitter has an
average power constraint, i.e., E

[
∥x∥2

]
≤ rρ with ρ > 0

as the maximum average transmit power.
The rate tuple (R1, . . . , RK ) is said to be achievable if

there exists a (2r R1 , . . . , 2r RK , r) code scheme such that the
average decoding error probability is vanishing as the code
length r approaches infinity. Here, we assume that each
message Wk is uniformly and independently chose over the
K message sets Wk := [

1 : 2r Rk
]
. In this paper, we choose

our performance metric as the symmetric DoF [12], [15],
i.e., the highest DoF achieved by all the users simultaneously,
dsym = lim supρ→∞ sup(Rsym,...,Rsym)∈C

Rsym
log ρ , where C is the

capacity region defined as the set of all the achievable rate
tuples. The metric of DoF gives the first-order measurement
of data rates [37].

B. Topological Interference Management

In this paper, we restrict the class of the linear interference
management strategies [10], [12], [19]. Specifically, each
transmitter i encodes its message Wi by a linear precoding
vector vi ∈ Cr over r channel uses: xi = vi si , where si ∈ C is
the transmitted data symbol.1 Here the precoding vectors vi ’s
only depend on the knowledge of network topology V . In this
paper, we assume that the network connectivity information V

1For illustrative purpose, we only consider the scalar linear scheme,
i.e., only one symbol for each message will be sent over r channel uses. The
proposed approach can be extended to more general scenarios with vector
linear coding scheme, i.e., each user sends multiple data symbols over r
channel uses [19]. The basic ideas is to generalize the interference alignment
conditions as (1) det

(
UH

i V i

)
̸= 0, ∀i = 1, . . . , K ; (2) UH

i V j = 0,

∀i ̸= j, (i, j) ∈ V , where V j ∈ Cr×M j and U i ∈ Cr×Mi be the
precoding matrix at transmitter j and the receiver combining matrix at
receiver i , respectively. Here, we assume that each message W j is split into
M j independent scalar data streams for each user.
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is available at the transmitters. Therefore, over the r channel
uses, the received signal yi ∈ Cr at receiver i can be
rewritten as

yi = hii vi si +
∑

i, j∈V ,i ̸= j

hi j v j s j + zi , ∀i = 1, . . . , K .

Let ui ∈ Cr be the decoding vector for each message Wi at
receiver i . In the regime of asymptotically high signal-to-noise
ratio (SNR), to accomplish decoding, we impose the following
interference alignment condition [12], [19] for the precoding
and decoding vectors:

uH
k vk ̸= 0, ∀k = 1, . . . , K , (1)

uH
k vi = 0, ∀i ̸= k, (i, k) ∈ V , (2)

where the first condition is to preserve the desired signal and
the second condition is to align and cancel the interference
signals. If conditions (1) and (2) are satisfied, the parallel
interference-free channels can be obtained over r channel
uses. Therefore, the symmetric DoF of 1/r is achieved for
each message Wi [12]. We call this problem as topological
interference management [12], [19], as only network topology
information is required to establish the interference alignment
conditions.

However, establishing the conditions on r , K and V
to achieve feasibility of the interference alignment
conditions (1) and (2) is challenging. In particular,
given a number of users K and channel uses r (or
DoF allocation 1/r ), the index coding approach [12] and
graph theory [15], [17], [18] were adopted to establish the
conditions on the network topologies V to achieve feasibility
for the interference alignment conditions (1) and (2). The
low-rank matrix completion approach [19] has recently been
proposed to find the minimum number of channel uses r
satisfying conditions (1) and (2), given any network topology
information V and the number of uses K . The feasibility
conditions of antenna configuration for interference alignment
in MIMO interference channel has also been extensively
investigated using algebraic geometry [38]–[40].

In this paper, we put forth a different point of view on the
feasibility conditions of topological interference management:
given a number of K users with any network topology V and
the symmetric DoF allocation 1/r , we present a novel user
admission control approach to find the maximum number of
the admitted users while satisfying the interference alignment
conditions (1) and (2). Although user admission control has
been extensively investigated in the scenarios of multiuser
coordinated beamforming [23], cognitive radio networks [20],
heterogeneous cellular networks [21] and Cloud-RAN [22],
this is the first work using the principle of user admission
control in the framework of topological interference manage-
ment. This shall provide a systematic framework for efficient
algorithms design, as well as provide numerical insights
into this challenging problem of topological interference
management.

III. A SPARSE AND LOW-RANK OPTIMIZATION

FRAMEWORK FOR USER ADMISSION CONTROL

In this section, we present a user admission control approach
to maximize the user capacity, i.e., find the maximum number
of admitted users while satisfying the interference alignment
conditions (1) and (2). This viewpoint is different from the
previous works on finding the conditions of network topologies
and minimal channel uses [19] to achieve the feasibility of
interference alignment [12], [15], [17], [18].

A. Feasibility of Interference Alignment

Given any network connectivity information V for the
partially connected K -user interference channel, we say that
the symmetric DoF allocation 1/r is feasible if there exists
precoding vectors vi ∈ Cr and decoding vectors ui ∈ Cr

such that the interference alignment conditions (1) and (2) are
satisfied. Specifically, the feasibility of topological interference
management problem can be formulated as

F : find {vi }, {ui }
subject to uH

i vi ̸= 0, ∀i = 1, . . . , K ,

uH
i v j = 0, ∀(i, j) ∈ V , (3)

where vi ∈ Cr and ui ∈ Cr are optimization variables.
However, the solutions to the feasibility problem (3)

are unknown in general. In particular, the index coding
approach [12] and the graph theory [15], [17], [18] were
adopted to establish the conditions on the network topology V
to achieve feasibility of interference alignment. On the other
hand, the low-rank matrix completion approach was proposed
in [19] to find the minimum number of channel uses to achieve
interference alignment feasibility for any network topology.

In contrast, in this paper, our goal is to maximize the user
capacity, i.e., finding the maximum number of admitted users
while satisfying the interference alignment conditions:

maximize
{vi },{ui }

|S|

subject to uH
i vi ̸= 0, ∀i ∈ S,

uH
i v j = 0, ∀i ̸= j, i, j ∈ S, (i, j) ∈ V , (4)

where S ⊆ {1, . . . , K } is the admitted users, vi ∈ Cr and
ui ∈ Cr . This problem is called as the user admission control
problem. Unfortunately, it turns out to be highly intractable
due to the non-convex quadratic constraints and the non-
convex combinatorial objective function. To assist efficient
algorithms design, in this paper, we propose a sparse and low-
rank optimization for user admission control via exploiting the
sparse and low-rank structures in problem (4).

B. Sparse and Low-Rank Optimization Paradigms
for User Admission Control

Let X = [Xij ] ∈ CK×K with Xij = uH
i v j ∈ C. The

interference alignment conditions (1) and (2) thus can be
rewritten as

Xkk ̸= 0, ∀k = 1, . . . , K ,

Xki = 0, ∀i ̸= k, (i, k) ∈ V .
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Fig. 1. (a) The topological interference alignment problem for the partially
connected K -user interference channel with only the knowledge of the
network connectivity information available. The interference links are marked
as red while the desired links are marked as black. (b) The corresponding
incomplete matrix with “0” indicating interference alignment and cancellation
and “1” representing desired signal preserving.

For other entries Xki ,∀(k, i) /∈ V , they can be any values.
As X = [uH

i v j ] = UHV ∈ CK×K with U = [u1, . . . , uK ]H ∈
CK×r and V = [v1, . . . , vK ] ∈ Cr×K , we have rank(X) = r .
The achievable symmetric DoF is thus given by [19]

DoF = 1/rank(X) = 1/r,

a low-rank matrix completion problem was proposed in [19]
to find the minimum channel uses while satisfying the interfer-
ence alignment conditions. Fig. 1 demonstrates the procedure
of transforming the topological interference alignment condi-
tions (1) and (2) into the associated incomplete matrix X .

Define X(S) ∈ C|S|×|S| as the submatrix of X , i.e., X(S) =
[Xij ]i, j∈S . The rank of the submatrix X(S) equals r . The user
admission control problem (4) can be further reformulated as
follows:

maximize
X∈CK×K ,S

|S|

subject to rank(X(S)) = r,

Xii ̸= 0, ∀i ∈ S,

Xij = 0, ∀i ̸= j, i, j ∈ S, (i, j) ∈ V , (5)

where the first constraint is to preserve the symmetric DoF
allocation as 1/r . However, problem (5) is still a highly
intractable mixed combinatorial optimization problem with a
non-convex fixed-rank constraint and a combinatorial objective
function.

To enable the capability of polynomial-time complexity
algorithm design, we further reveal the sparsity structure in
problem (5) for user admission control. Notice that the sparsity
of the vector consisting of the diagonal entries in X equals the
number of admitted users |S|, i.e.,

∥diag(X)∥0 = |S|, (6)

where diag(·) extracts the diagonal of a matrix and ∥ · ∥0 is
the ℓ0-norm of a vector, i.e., the count of non-zero entries.
Problem (5) can be further reformulated as the following
sparse and low-rank optimization problem, i.e.,

P : maximize
X∈RK×K

∥diag(X)∥0
subject to rank(X) = r,

Xij = 0, ∀i ̸= j, (i, j) ∈ V . (7)

The equivalence means that if X⋆ is a solution to problem (7),
then {X⋆, S⋆} with S⋆ = {i : X⋆

ii ̸= 0} is a solution to
problem (5), and vice versa. As we are particularly interested
in the scenario with high DoF allocation requirements, where
the interference alignment is infeasible, user admission control
is thus critical. Therefore, low-rankness in matrix X is from the
high DoF requirements constraint (i.e., rank(X) = r < K ),
and sparsity in the diagonal entries in matrix X is from user
admission control (i.e., |S = {i : Xii ̸= 0}| < K ). Notice
that we only need to consider problem P in the real field
without losing any performance in terms of admitted users.
The reason is that the affine constraint in (7) is restricted in
real field and the diagonal entries of matrix X can be further
restricted to the real field while achieving the same value of
∥diag(X)∥0 in the complex field. Furthermore, problem P is
always feasible, as X = I r with rank(X) = r and Ir as the
diagonal matrix with only r entries being one, is one trivial
solution.

Sparse optimization has shown to be powerful for the user
admission problems [20]–[23] via ℓ0-norm minimization using
the sum-of-infeasibilities convex relaxation heuristic in opti-
mization theory [24, Sec. 11.4]. In particular, to maximize the
number of admitted users is equivalent to minimize the number
of violated inequalities for the quality-of-service (QoS) con-
straints. Although problem P adopts the same philosophy of
ℓ0-norm to count the number of admitted users (6), it reveals
unique challenges due to ℓ0-norm maximization and non-
convex fixed-rank constraint. However, compared with the
original formulation (5), the sparse and low-rank optimiza-
tion formulation (7) holds algorithmic advantages, which are
demonstrated in the sequel via the Riemannian optimization
approach [33].

Remark 1: In [19], the low-rank matrix completion
approach was proposed to maximize the achievable DoF,
i.e., minimize the rank of matrix X , given any network
topology. In particular, a Riemannian pursuit approach was
presented to solve the low-rank optimization problem by alter-
natively performing rank increase and solving the fixed-rank
least-square problems, which can be solved via Riemannian
optimization [33]. Note that the fixed-rank least-square
problem has a convex objective function and a non-convex
fixed-rank constraint. In our presented user admission control
problem P , however, we need to maximize a non-convex
objective function, i.e., ℓ0-norm, with a non-convex fixed-
rank constraint. The coupled challenges with both the non-
convex ℓ0-norm maximization objective and the non-convex
fixed-rank constraint motive us to propose novel non-convex
regularized smoothed ℓ1-minimization approach to solve prob-
lem P in Section IV, thereby applying the matrix manifold
optimization technique [33]. Note that, with ℓ0-norm maxi-
mization as the objective, a simple ℓ1-norm relaxation still
yields a non-convex and unbounded objective, as maximizing
a convex function is non-convex.

C. Problem Analysis

In this subsection, we reveal the unique challenges of solv-
ing the sparse and low-rank optimization problem P for user
admission control in topological interference management.
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Fig. 2. The non-convex regularized sparsity inducing norm
f (z) = ∥z∥1 − λ∥z∥22 (λ = 0.5) with bounded values in z ∈ R2.

1) Non-Convex Objective Function: Although ℓ1-norm
serves the convex surrogate for the non-convex
ℓ0-norm [24], [25], it is inapplicable in problem P for
ℓ0-norm maximization, as it yields unbounded values, as well
as non-convexity for ℓ1-norm maximization. To aid efficient
algorithms design, we propose a novel non-convex regularized
ℓ1-norm to induce sparsity with bounded values. This is
achieved by adding a negative quadratic term in the ℓ1-norm
as follows:

f (z) = ∥z∥1 − λ∥z∥22, (8)

where z ∈ Rn and λ ≥ 0 is a weighting parameter. A typical
example with f (z) = ∥z∥1−0.5∥z∥22 and z ∈ R2 is illustrated
in Fig. 2, which upper bounds all the diagonal values by 1.

Remark 2: Although regularized ℓ1-norm approach has
recently been intensively investigated in computational high-
dimensional statistics [41], e.g., Lasso estimator, where the
corresponding ℓ1-norm minimization problem normally is
convex. However, a simple ℓ1-norm relaxation yields the
objective in problem P unbounded and non-convex, due to
ℓ1-norm maximization. We thus propose to add a negative
quadratic term in (8) to bound the objective value. Note that
optimizing the proposed quadratic regularized ℓ1-norm f (z)
becomes non-convex, as the sparsity inducing function f (z) is
non-convex. In summary, the proposed non-convex quadratic
regularized sparsity inducing norm (8) serves the purpose of
inducing the sparsity and bounding the objective value.

2) Non-Convex Fixed-Rank Constraint: Matrix factorization
serves a powerful way to address the non-convexity of the
fixed-rank matrices. One popular way is to factorize a fixed
rank-r matrix X (in real field) as UV T with U ∈ RK×r and
V ∈ RK×r , followed by alternatively optimizing over U and
V holding the other fixed [27], [36]. However, due to the
non-convex objective function in problem P , the resulting
optimization problem over U or V is still non-convex. Further-
more, such factorization is not unique as X remains unchanged
under the transformation of the factors

(U, V ) -→ (U M−1, V MT ),

for all non-singular matrices M of size r × r . As a result,
the critical points of an objective function parameterized with

Fig. 3. The proposed three-stage Riemannian framework for user admis-
sion control in topological interference alignment via sparse and low-rank
optimization. z⋆ ∈ RK is the induced sparsity pattern for user selection and
S⋆ ⊆ {1, . . . , K } is set of admitted users.

U and V are not isolated on RK×r ×RK×r . This profoundly
affects the performance of second-order optimization algo-
rithms which require non degenerate critical points, which is
no longer the case here. We propose to address this issue
by exploiting the quotient manifold geometry of the set of
fixed-rank matrices [42]. The resulting non-convex optimiza-
tion problem is further solved by exploiting the Riemannian
optimization framework which provides systematic ways to
develop algorithms on quotient manifolds [33].

In summary, in this paper, we propose a new regularized
smooth formulation to induce the sparsity in the solution
to problem P , followed by the Riemannian optimization
approach via exploiting the quotient manifold geometry of
fixed-rank matrices. The induced sparsity pattern guides user
selection for user admission control.

IV. REGULARIZED SMOOTHED ℓ1-MINIMIZATION FOR

SPARSE AND LOW-RANK OPTIMIZATION VIA

RIEMANNIAN OPTIMIZATION

In this section, we present a Riemannian framework for
sparse and low-rank optimization problem P via regular-
ized smoothed ℓ1-minimization by exploiting the quotient
manifold geometry of fixed-rank matrices. The induced spar-
sity solution to problem P provides guideline for user
admission control, supported by a user selection procedure.
In the final stage, a low-rank matrix completion approach
with Riemannian optimization is adopted to design the linear
topological interference management strategy. The proposed
three-stage Riemannian framework for user admission control
in topological interference management is presented in Fig. 3.

A. Stage One: Regularized Smoothed ℓ1-Minimization
for Sparsity Inducing

In order to make problem P (7) numerically tractable,
we relax the non-convex ℓ0-norm objective function to its con-
vex surrogate ℓ1-norm, resulting in the following optimization
problem:

maximize
X∈RK×K

∥diag(X)∥1
subject to rank(X) = r,

Xij = 0, ∀i ̸= j, (i, j) ∈ V . (9)

Although the ℓ1-norm is tractable, it is unbounded from
above due to ℓ1-norm maximization, which makes problem (9)
ill-posed. Note that maximizing a convex ℓ1-norm is still
non-convex.

To circumvent the unboundness issue, we add the quadratic
term −λ∥diag(X)∥22 to the objective function in problem (9),
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where λ ≥ 0 is a weighting parameter that bounds the overall
objective function from above leading to the formulation

maximize
X∈RK×K

∥diag(X)∥1 − λ∥diag(X)∥22
subject to rank(X) = r,

Xij = 0, ∀i ̸= j, (i, j) ∈ V . (10)

For example, if λ = 0.5, then the diagonal values of X are
upper bounded by 1. It should be emphasized that the role
of λ in (10) is to upper bound the objective function and it
does not affect the sparsity pattern that is expected from (9).
This is further be confirmed in Section IV-D via simulations.
Additionally, if X⋆ is the solution to (7), then αX⋆ is also a
solution of (7) for all non-zero scalar α. Equivalently, there
exists continuum of solutions, which is effectively resolved by
the objective function in (10).

Although problem (10) is still non-convex due to the
non-convex objective and non-convex fixed-rank constraint,
it has the algorithmic advantage that it can be solved effi-
ciently (i.e., numerically) in the framework of Riemannian
optimization [33].

Riemannian Optimization for Fixed-Rank Optimization:
In this subsection, we propose a Riemannian optimization
algorithm to solve the non-convex optimization problem (10),
which is equivalent to

minimize
X∈RK×K

−∥diag(X)∥1 + λ∥diag(X)∥22
subject to rank(X) = r,

Xij = 0, ∀i ̸= j, (i, j) ∈ V . (11)

However, the intersection of rank constraint and the affine con-
straint is challenging to characterize. We, therefore, propose
to solve problem (11) via a regularized version as follows:

PRS : minimize
X∈CK×K

1
2

∑

i ̸= j,(i, j )∈V

X2
i j

︸ ︷︷ ︸
network topology

+ρ
K∑

i=1

(λX2
ii − (X2

ii + ϵ2)1/2)

︸ ︷︷ ︸
admission

subject to rank(X) = r, (12)

where ρ ≥ 0 is the regularization parameter and ϵ is
the parameter that approximates |Xii | with the smooth term(
X2

ii + ϵ2)1/2 that makes the objective function differentiable.
A very small ϵ leads to ill-conditioning of the objective
function in (12). Since we intend to obtain the sparsity pattern
of the optimal X , we set ϵ to a high value, e.g., 0.01,
to make problem (12) well conditioned. Problem PRS is an
optimization problem over the set of fixed-rank matrices and
can be solved via a Riemannian trust-region algorithm [33].

Remark 3: Although Riemannian optimization turns out to
be effective for solving rank-constrained optimization, it nor-
mally requires that the objective function is smooth and the
constraint set is a Riemannian manifold. Unfortunately, to uti-
lize Riemannian optimization technique to solve problem (11),
unique challenges arise. The reason is that the objective

function in problem (11) is nonsmooth and the constraint in
problem (11) is not a Riemannian manifold due to the affine
constraint. We thus contribute to smoothing the objective value
by approximating |Xii | with the smooth term

(
X2

ii + ϵ2)1/2,
followed by regularizing the affine constraint into the objective
function, resulting a Riemannian manifold constrain with the
fixed-rank constraint.

B. Stage Two: Finding Sparsity Pattern for
User Admission Control

Let X⋆ be the solution to the regularized smoothed
ℓ1-minimization problem PRS. We order the diagonal entries
of matrix X⋆, i.e., the vector z⋆ = diag(X⋆) ∈ RK , in the
descending order: |zπ1 | ≥ |zπ2 | ≥ · · · ≥ |zπK |. Intuitively,
the large coefficient zi indicates that the corresponding users
are allocated high desired signal power. Therefore, the user
with larger coefficient zi ’s has a higher priority to be admitted
with higher desired signals. We adopt the bi-section search
procedure to find the maximum number of admitted users.
Specifically, let N0 be the maximum number of users that
can be admitted while satisfying the interference alignment
conditions. To determine the value of N0, a sequence of the
following size-reduced topological interference management
feasibility problem needs to be solved,

F (S[m]) : find X(S[m])
subject to rank(X(S[m])) = r,

Xii = 1, ∀i ∈ S[m],
Xij = 0, ∀i ̸= j, i, j ∈ S[m], (i, j) ∈ V ,

(13)

where S[m] = {π1, . . . ,πm}.
To check the feasibility, we rewrite problem (13) as follows:

minimize ∥P((X(S[m]))− I |S[m]|∥2F
subject to rank(X(S[m])) = r, (14)

where ( = {(i, j)|i, j ∈ S[m], (i, j) ∈ V } and P((Y ) :
Rn×n → Rn×n is the orthogonal projection operator onto
the subspace of matrices which vanish outside ( such that
the (i, j)-th component of P((Y) equals to Yi j if (i, j) ∈ (
and zero otherwise. If the objective value approaches to zero,
we say that the set of users S[m] can be admitted. Problem (14)
can be solved by Riemannian trust-region algorithms [32]
via Manopt [43]. Note that, theoretically, the Riemannian
algorithm can only guarantee convergence to a first-order
critical point, but empirically, we observe convergence to
critical points that are local minima.

C. Stage Three: Low-Rank Matrix Completion for
Topological Interference Management

Let S⋆ = {π1, . . . ,πN0 } be the admitted users. We need
to solve the following sized-reduced rank-constrained matrix
completion problem:

PLRMC(S⋆) : minimize ∥P((X(S⋆))− I |S⋆|∥2F
subject to rank(X(S⋆)) = r, (15)
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to find the precoding vectors vi ’s and decoding vectors ui ’s for
the admitted users in S⋆. Specifically, let X⋆ be the solution of
problem PLRMC(S⋆). The precoding vectors vi ’s and decoding
vectors ui ’s can be extracted by QR decomposition for matrix
X⋆ = [uH

i v j ] using the Gram-Schmidt process.
Therefore, the proposed three-stage Riemannian optimiza-

tion based user admission control algorithm is presented in
Algorithm 1.

Algorithm 1 User Admission Control for Topological Inter-
ference Management via Riemannian Optimization
Step 0: Solve the sparse inducing optimization problem PRS
(12) using the Riemannian trust-region algorithm in Section V.
Obtain the solution X⋆ and sort the diagonal entries in the
descending order: |zπ1 | ≥ · · · ≥ |zπK |, go to Step 1.
Step 1: Initialize Nlow = 0, Nup = K , i = 0.
Step 2: Repeat

1) Set i ←
⌊

Nlow+Nup
2

⌋
.

2) Solve problem F (S[i]) (13) via (14) using the
Riemannian trust-region algorithm in Section V: if
it is feasible, set Nlow = i ; otherwise, set Nup = i .

Step 3: Until Nup − Nlow = 1, obtain N0 = Nup and obtain
the admitted users set S⋆ = {π1, . . . ,πN0 }.
Step 4: Solve problem PLRMC(S⋆) (15) to obtain the precod-
ing and decoding vectors for the admitted users.
End

D. The Framework of Fixed-Rank Riemannian
Manifold Optimization

The optimization problems (12), (14), and (15) are least-
square optimization problems with fixed rank constraint.
A rank-r matrix X ∈ RK×K is parameterized as X = UV T ,
where U ∈ RK×r and V ∈ RK×r are full column-rank
matrices. Such a factorization, however, is not unique as X
remains unchanged under the transformation of the factors

(U, V ) -→ (U M−1, V MT ), (16)

for all non-singular matrices M ∈ GL(r), the set of
r × r non-singular matrices. Equivalently, X = UV T =
U M−1(V MT )T for all non-singular matrices M. As a result,
the critical points of an objective function parameterized with
U and V are not isolated on RK×r × RK×r .

The classical remedy to remove this indeterminacy requires
further (triangular-like) structure in the factors U and V . For
example, LU decomposition is a way forward. In contrast,
we encode the invariance map (16) in an abstract search space
by optimizing directly over a set of equivalence classes

[(U, V )] := {(U M−1, V MT ) : M ∈ GL(r)}. (17)

The set of equivalence classes is termed as the quotient space
and is denoted by

Mr := M /GL(r), (18)

where the total space M is the product space RK×r × RK×r .

Fig. 4. Optimization on a quotient manifold. The dotted lines represent
abstract objects and the solid lines are their matrix representations. The
points X and Y in the total (computational) space M belong to the same
equivalence class (shown in solid blue color) and they represent a single
point [X] := {Y ∈ M : Y ∼ X} in the quotient space M / ∼. An algorithm
by necessity is implemented in the computation space, but conceptually,
the search is on the quotient manifold. Given a search direction ξX at X,
the updated point on M is given by the retraction mapping RX .

Consequently, if an element X ∈ M has the matrix charac-
terization (U, V ), then (12), (14), and (15) are of the form

minimize
[X]∈Mr

f ([X]), (19)

where [X] = [(U, V )] is defined in (17) and f : M → R :
X -→ f (X) is a smooth function on M , but now induced (with
slight abuse of notation) on the quotient space Mr (18).

The quotient space Mr has the structure of a smooth
Riemannian quotient manifold of M by GL(r) [42].
The Riemannian structure conceptually transforms a rank-
constrained optimization problem into an unconstrained
optimization problem over the non-linear manifold Mr .
Additionally, it allows to compute objects like gradient (of
an objective function) and develop a Riemannian trust-region
algorithm on Mr that uses second-order information for faster
convergence [33].

V. MATRIX OPTIMIZATION ON QUOTIENT MANIFOLDS

In this section, we present the Riemannian trust-region algo-
rithm for the smooth optimization over manifolds by exploiting
symmetry in the search space of fixed-rank matrices.

A. Problem Structures

We exploit the symmetry in the fixed-rank constraint to
design efficient Riemannian optimization algorithm.

1) Quotient Manifold: Consider an equivalence relation ∼
in the total (computational) space M . The quotient manifold
M / ∼ generated by this equivalence property consists of
elements that are equivalence classes of the form [X] = {Y ∈
M : Y ∼ X}. Equivalently, if [X] is an element in M / ∼,
then its matrix representation in M is X . In the context of
fixed-rank constraint, M / ∼ is identified with Mr , i.e., the
fixed-rank manifold. Fig. 4 shows a schematic viewpoint of
optimization on a quotient manifold. In particular, we need
the notion of “linearization” of the search space, “search”
direction, and a way “move” on a manifold. Below we show
the concrete development of these objects that allow to do
develop a second-order trust-region algorithm on manifolds.

Since the manifold M / ∼ is an abstract space, the elements
of its tangent space T[X](M / ∼) at [X] also call for a matrix
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representation in the tangent space TX M that respects the
equivalence relation ∼. Equivalently, the matrix representation
of T[X](M / ∼) should be restricted to the directions in the
tangent space TX M on the total space M at X that do
not induce a displacement along the equivalence class [X].
This is realized by decomposing TX M into complementary
subspaces, the vertical and horizontal subspaces such that
VX ⊕HX = TX M . The vertical space VX is the tangent space
of the equivalence class [X]. On the other hand, the horizontal
space HX , which is any complementary subspace to VX in
TX M , provides a valid matrix representation of the abstract
tangent space T[X](M / ∼) [33, Sec. 3.5.8]. An abstract tangent
vector ξ[X] ∈ T[X](M / ∼) at [X] has a unique element in the
horizontal space ξX ∈ HX that is called its horizontal lift.
Our specific choice of the horizontal space is the subspace of
TX M that is the orthogonal complement of VX in the sense
of a Riemannian metric (an inner product).

A Riemannian metric or an inner product gX : TX M ×
TX M → R at X ∈ M in the total space defines a Riemannian
metric g[X] : T[X](M / ∼)× T[X](M / ∼)→ R, i.e.,

g[X](ξ[X], η[X]) := gX(ξX , ηX), (20)

on the quotient manifold M / ∼, provided that the expression
gX(ξX , ηX) does not depend on a specific representation along
the equivalence class [X]. Here ξ[X] and η[X] are tangent
vectors in T[X](M / ∼), and ξX , ηX are their horizontal lifts
in HX at X . Equivalently, if Y is another element that belongs
to [X] and ξY and ηY are the horizontal lifts of ξ[X] and η[X]
at Y , then the metric in (20) obeys the equality gX(ξX , ηX) =
gY (ξY , ηY ). Such a metric is then said to be invariant to the
equivalence relation ∼.

2) Riemannian Metric: In the context of fixed-rank matri-
ces, there exist metrics which are invariant. A particular
invariant Riemannian metric on the total space M that takes
into account the symmetry (16) imposed by the factorization
model and that is well suited to a least-squares objective
function [44] is

gX(ξX , ηX) = Tr((V T V )ξT
U ηU ) + Tr((UT U)ξT

V ηV ), (21)

where X = (U, V ) and ξX , ηX ∈ TX M . It should be noted that
the tangent space TX M has the matrix characterization RK×r×
RK×r , i.e., ηX (and similarly ξX ) has the matrix representation
(ηU , ηV ) ∈ RK×r ×RK×r .

To show that (21) is invariant to the transformation (16),
we assume that another element Y ∈ [X] has matrix repre-
sentation (U M−1, V M) for a non singular square matrix M.
Similarly, we assume that the tangent vector ηY (similarly ξY )
has matrix representation (ηU M−1, ηV MT ) ∈ RK×r × RK×r .
If ηX and ηY (similarly for ξX and ξY ) are the horizontal lifts
of η[X] at X and Y , respectively. Then, we have ηU M−1 =
ηU M−1 and ηV M = ηV MT [33, Example 3.5.4]. Similar
results can be obtained for ξY . A few computations then
show that gX(ξX , ηX ) = gY (ξY , ηY ), which implies that the
metric (21) is invariant to the transformation (16) along the
equivalence class [X]. This implies that we have a unique
metric on the quotient space M / ∼.

Motivation for the metric (21) comes from the fact that
it is induced from a block diagonal approximation of the

Hessian of a simpler cost function ∥U V T − I∥2F , which is
strictly convex in U and V individually. This block diago-
nal approximation ensures that the cost of computing (21)
depends linearly on K and the metric is well suited for
least-squares problems. Similar ideas have also been exploited
in [19], [45], and [46] which show robust performance of
Riemannian algorithms for various least-squares problems.

B. Matrix Representation for the Quotient Manifolds

Once the metric (21) is defined on M , the development of
the geometric objects required for second-order optimization
follow [33], [44]. The matrix characterizations of the tangent
space TX M , vertical space VX , and horizontal space HX are
straightforward with the expressions:

TX M = RK×r × RK×r ,

Vx = {(−U", V"T ) : " ∈ Rr×r },
Hx = {(ζU , ζU ) : UT ζU V T V = UT Uζ T

V V }, (22)

where ζU , ζV ∈ RK×r .
Apart from the characterization of the horizontal space,

we need a linear mapping ,X : TX M -→ HX that projects
vectors from the tangent space onto the horizontal space.
Projecting an element ηX ∈ TX M onto the horizontal space is
accomplished with the operator

,X(ηX) = (ηU + U", ηV − V"T ), (23)

where " ∈ Rr×r is uniquely obtained by ensuring that
,X(ηX) belongs to the horizontal space characterized in (22).
Finally, the expression of " is given by

UT (ηU +U")V T V
= UT U(ηV−V"T )T V

⇒ " = 0.5(ηT
V V (V T V )−1−(UT U)−1UT ηU ).

1) Gradient and Hessian Computations: The choice of the
metric (21) and of the horizontal space (as the orthogonal
complement of VX ) turns the quotient manifold M / ∼
into a Riemannian submersion of (M , g) [33, Sec. 3.6.2].
This special construction allows for a convenient matrix
representation of the gradient [33, Sec. 3.6.2] and the
Hessian [33, Proposition 5.3.3] on the quotient mani-
fold M / ∼. Below we show the gradient and Hessian compu-
tations for the problem (19).

The Riemannian gradient grad[X] f of f on M / ∼ is
uniquely represented by its horizontal lift in M which has
the matrix representation

horizontal lift of grad[X] f = gradX f

= (
∂ f
∂U

(V T V )−1,
∂ f
∂V

(UT U)−1),

(24)

where gradX f is the gradient of f in M and ∂ f /∂U and
∂ f /∂V are the partial derivatives of f with respect to
U and V , respectively.

In addition to the Riemannian gradient computation (24),
we also require the directional derivative of the gradient along
a search direction. This is captured by a connection ∇ξX ηX ,
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which is the covariant derivative of vector field ηX with
respect to the vector field ξX . The Riemannian connection
∇ξ[X]η[X] on the quotient manifold M / ∼ is uniquely repre-
sented in terms of the Riemannian connection ∇ξX ηX in the
total space M [33, Proposition 5.3.3] which is

horizontal lift of ∇ξ[X]η[X] = ,X(∇ξX ηX), (25)

where ξ[X] and η[X] are vector fields in M / ∼ and ξX
and ηX are their horizontal lifts in M . Here ,X(·) is
the projection operator defined in (23). It now remains to
find out the Riemannian connection in the total space M .
We find the matrix expression by invoking the Koszul formula
[33, Th. 5.3.1]. After a routine calculation, the final expression
is given by [44]

∇ξX ηX = DηX [ξX ] + (AU , AV ) ,

where

AU = ηU Sym(ξT
V V )(V T V )−1 + ξU Sym(ηT

V V )(V T V )−1

−USym(ηT
V ξV )(V T V )−1

AV = ηV Sym(ξT
U U)(UT U)−1 + ξV Sym(ηT

U U)(UT U)−1

−VSym(ηT
UξU )(UT U)−1 (26)

and Dξ [η] is the Euclidean directional derivative Dξ [η] :=
limt→0 (ξX+tηX̄

− ξX )/t . Sym(·) extracts the symmetric part
of a square matrix, i.e., Sym(Z) = (Z + ZT )/2.

The directional derivative of the Riemannian gradient in the
direction ξ[X] is given by the Riemannian Hessian operator
Hess[X] f [ξ[X]] which is now directly defined in terms of the
Riemannian connection ∇. Based on (25) and (26), the hori-
zontal lift of the Riemannian Hessian in M / ∼ has the matrix
expression:

horizontal lift of Hess[X] f [ξ[X]] = ,X (∇ξX gradX f ), (27)

where ξ[X] ∈ T[X](M / ∼) and its horizontal lift ξX ∈ HX .
,X(·) is the projection operator defined in (23).

2) Retraction: An iterative optimization algorithm involves
computing a search direction (e.g., negative gradient) and
then “moving in that direction”. The default option on a
Riemannian manifold is to move along geodesics, leading to
the definition of the exponential map. Because the calculation
of the exponential map can be computationally expensive,
it is customary in the context of manifold optimization to
relax the constraint of moving along geodesics. To this end,
we define retraction RX : HX → M : ξX -→ RX (ξX)
[33, Definition 4.1.1]. A natural update on the manifold M
is, therefore, based on the update formula X+ = RX(ξX),
i.e., defined as

RU (ξU ) = U + ξU

RV (ξV ) = V + ξV , (28)

where ξX = (ξU , ξV ) ∈ HX is a search direction and X+ ∈ M .
It translates into the update [X+] = [RX(ξX )] on M / ∼.

C. Riemannian Trust-Region Algorithm

Analogous to trust-region algorithms in the Euclidean space
[47, Ch. 4], trust-region algorithms on a Riemannian quotient
manifold with guaranteed superlinear rate convergence and
global convergence have been proposed in [33, Ch. 7]. At each
iteration we solve the trust-region sub-problem on the quotient
manifold M / ∼. The trust-region sub-problem is formulated
as the minimization of the locally-quadratic model of the
objective function, say f : M → R at X ∈ M ,

minimize
ξX∈HX

gX(ξX , gradX f ) + 1
2

gX(ξX , HessX f [ξX ])

subject to gX(ξX , ξX ) ≤ .2, (29)

where . is the trust-region radius, gX is the Riemannian
metric (21), and gradX f and HessX f are the Riemannian
gradient and Riemannian Hessian operations defined
in (24) and (27), respectively.

Solving the above trust-region sub-problem (29) leads to
a direction ξX that minimizes the quadratic model. Depend-
ing on whether the decrease of the cost function is suf-
ficient or not, the potential iterate is accepted or rejected.
The concrete matrix characterizations of Riemannian gradi-
ent (24), Riemannian Hessian (27), projection operator (23),
and retraction (28) allow to use an off-the-shelf trust-region
implementation on manifolds, e.g., in Manopt [43], which
implements [33, Algorithm 1] that solves the trust-region sub-
problem inexactly at every iteration.

The Riemannian trust-region algorithm is globally conver-
gent, i.e., it converges to a critical point starting from any
random initialization. The rate of convergence analysis of
the algorithm is in [33, Ch. 7]. Theoretically, the algorithm
converges to a critical point, but often in practice the conver-
gence is observed to a local minimum. Under certain regularity
conditions, the trust-region algorithm shows a superlinear
rate of convergence locally near a critical point. The recent
work [31] also establishes worst-case global rates (i.e., number
of iterations required to obtain a fixed accuracy) of conver-
gence over manifolds, it converges to the second-order KKT
points starting from any random initial points. In practice,
however, we observe better rates.

In summary, the concrete manifold-related ingredients are
shown in Table I, which are based on the developments in [44].

D. Computational Complexity

The numerical complexity of the algorithm in Algorithm 1
depends fixed-rank Riemannian optimization algorithm for
solving (12), (14), and (15) and sorting the diagonal entries of
rank-r matrix. The sorting operation depends linearly with K
(and logarithmic factors of K ). The computational cost of the
Riemannian algorithm depends on i) the computational cost of
the computing the partial derivatives of the objective functions
in (12), (14), and (15) and ii) the manifold-related operations.
The computational cost of the manifold-related ingredients are
shown below.

1) Computation of partial derivatives of the objective func-
tions in (12), (14), and (15) with respect to U and V :
O(|V |r).
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TABLE I

MANIFOLD-RELATED INGREDIENTS

2) Computation of Riemannian gradient with the
formula (24): O(Kr2 + r3).

3) Computation of the projection operator (23):
O(Kr2 + r3).

4) Computation of retraction Rx̄ in (28): O(Kr).

5) Computation of Riemannian Hessian with the
formulas (25), (26), and (27): O(r3 + Kr2).

It is clear that all the manifold-related operations are of linear
complexity in K and cubic in r . Overall, the cost per iteration
of the proposed algorithm in Algorithm 1 is linear with |V |.

VI. SIMULATION RESULTS

In this section, we simulate our proposed Riemannian
trust-region (RTR) algorithm for the user admission control
problem P in topological interference management. All sim-
ulations are performed in Matlab on a 2.4 GHz octa-core Intel
Xeon E5-2630 v3 machine (2 processors) with 64 GB RAM.
All the simulated algorithms are initialized randomly. The
RTR algorithms for the rank-constrained optimization prob-
lems (12), (14) and (15) are implemented based on the mani-
fold optimization toolbox Manopt [43]. Furthermore, the RTR
algorithm is terminated when either the Frobenius norm of
the Riemannian gradient is below 10−8 or the number of
iterations exceeds the maximal iteration number, which is
set to be 300. We set 1

2∥P((X(S[m])) − I |S[m]|∥2F = 10−6

in (14) as the certificate of satisfaction for the affine constraint
P((X(S[m])) = I |S[m]| for all the algorithms. In the proposed
RTR algorithm, we choose a reasonable small ϵ to achieve
good approximation for ℓ1-norm as well as avoid numerical
issues. Any value between 0 and 1 is a good candidate for
parameter λ as indicated in Fig. 8. We choose a good value
for parameter ρ via cross validation.

The proposed Riemannian trust-region algorithm are com-
pared to the following algorithms:

• Riemannian conjugate gradient (RCG) algorithm: The
RCG algorithm is adopted to solve the rank-constrained
optimization problems (12), (14) and (15). Based on the

matrix representation of the Riemannian gradient in (24)
and the retraction mapping operator in Section V-B.2,
we implement the first-order RCG algorithm using the
toolbox Manopt [43]. The RCG algorithm is terminated
when either the Frobenius norm of the Riemannian gradi-
ent is below 10−8, i.e., ∥gradX f ∥ ≤ 10−8, or the number
of iterations exceeds the maximal iteration number 1000.

• Alternating minimization (AltMin) algorithm: The
AltMin algorithm [27] is used to solve the rank-
constrained optimization problems (12), (14) and (15).
This is achieved by fixing U or V alternatively and solv-
ing the resulting problems (maybe non-convex) using the
gradient descent algorithm. For the gradient descent algo-
rithm, backtracking line-search is used to determine the
step size. The inner loop of the gradient descent algorithm
will be terminated either when the relative difference of
objective values between two consecutive iterations is less
than 10−8, i.e., | f (X [ j+1])− f (X [ j ])/ f (X [ j ])| < 10−6,
or the number of iterations exceeds 1000 (unless
otherwise stated). The stopping criterion of the outer loop
of AltMin algorithm is given as either when the relative
difference of objective value between two consecutive
iteration falls below 10−6 or the number of iterations
exceeds 50 (unless otherwise stated).

A. Convergence Rates

Consider a 20-user partially connected interference chan-
nel with 169 interference links. Each cross link belongs to
interference channel links V with connectivity probability
p = 0.4. We solve the fixed-rank optimization problem (14)
with all the users admitted using difference algorithms. In this
experiment, the maximal number of iteration is set to be
100 for both of the inner and outer loop in the AltMin
algorithm. Fig. 5 demonstrates the convergence rates of all
algorithms with rank r = 8. This figure shows that the
RTR algorithm has the fast (quadratic) convergence rate while
the RCG algorithm also converges faster than the AltMin
algorithm by exploiting the second-order information in the
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Fig. 5. Convergence rate results of different algorithms. All the algorithm
are randomly initialized at the same point.

Fig. 6. The average number of admitted users versus the achievable DoFs
with different algorithms.

Riemannian metric [32]. The rapid convergence rate of the
RTR algorithm with high precision solutions in a few iterations
yields better performance in the procedure of user admission
control.

B. Admitted Users Versus Achievable DoFs and
Optimal Admitted Users

Consider a 20-user partially connected interference channel
where each cross link belongs to interference channel set V
with connectivity probability p = 0.8. The proposed three-
stage Riemannian trust-region algorithm based user admis-
sion approach is compared with the RCG algorithm and the
alternating minimization algorithm. We set λ = 0.5 and
ϵ = 0.001 in the sparse inducing optimization problem (12).
A good choice of ρ is 0.01, which is obtained by cross
validation. Fig. 6 demonstrates the average number of admitted
users with different symmetric DoF allocations. Each point
in the simulations is averaged over 50 randomly generated
network topology realizations V . From Fig. 6, we can see that
the proposed three-stage Riemannian trust-region algorithm
achieves significantly outperforms the RCG algorithm and

Fig. 7. The computation time in seconds versus the number of users K with
different algorithms.

the AltMin algorithm, especially in the high DoF allocation
regime.

To further justify the effectiveness of the Riemannian opti-
mization framework, we numerically check that the proposed
RTR algorithm can recover all the optimal user admission
results for the class of deterministic TIM problems in [12].
That is, given a class of network topologies and optimal DoFs
allocation, we verify the accessibility of the admitted users.
Our work is the first work to systematically and numerically
find the maximal number of admitted users to achieve the
feasibility of topological interference alignment for any given
DoF allocation and network topology.

C. Time Results for Different Algorithms

Consider a K -user partially connected interference channel.
The sets of the connected interference links are generated
randomly with connectivity probability p = 0.1. We set
ρ = 0.01, ϵ = 0.001 and r = 8 in the sparse inducing
optimization problem (12). Each point in the simulations
is averaged over 50 randomly generated network topology
realizations V . Fig. 7 shows the average computation time
with different problem sizes for the user admission control
problem with different algorithms. This figure shows that the
RCG algorithm has the lowest computation time algorithm
although it has a relatively slower convergence rate as shown
in Fig. 5. Compared with the AltMin algorithm, the proposed
RTR algorithm has much lower computation time compared
with the AltMin algorithm. Meanwhile, the RTR algorithm
achieves the best performance as shown in Fig. 6 with the
comparable computation time as the RCG algorithm.

D. Differen Values of the Weighting Parameter λ

Consider a 20-user partially connected interference channel.
The sets of the connected interference links are generated ran-
domly with connectivity probability p varying from 0.1 to 0.9.
We set ϵ = 0.001 and r = 4 in the sparse inducing optimiza-
tion problem (12). Fig. 8 shows the average number of admit-
ted users with different values of the weighting parameter ρ in
the regularized smoothed ℓ1-norm in (12). Each point in the
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Fig. 8. Different weighting parameters λ in (12).

simulations is averaged over 50 randomly generated network
topology realizations V . Fig. 8 demonstrates that parameter ρ
has little effect on the induced sparsity pattern in diag(X),
thereby yielding almost the same number of admitted users.
The reason is that the the role of the weighting parameter λ
in (12) only serves to upper bound the objective function.
This figure further indicates that the proposed Riemannian
trust region algorithm outperforms the Riemannian conjugate
gradient algorithm and the alternating minimization algorithm.

VII. CONCLUSIONS AND DISCUSSIONS

This paper presented a sparse and low-rank optimization
framework for user admission control in topological interfer-
ence management. A Riemannian optimization framework was
further developed to solve the non-convex rank-constrained
ℓ0-norm maximization problem, supported by a novel reg-
ularized smoothed ℓ1-norm sparsity inducing minimization
approach. In particular, by exploiting the quotient manifold
of fixed-rank matrices, we presented a Riemannian trust-
region algorithm to find good solutions to the non-convex
sparse and low-rank optimization problem. Simulation results
illustrated the effectiveness and near-optimal performance of
the proposed algorithms.

Several future directions of interest are as follows:
• It is desirable but challenging to theoretically establish

the fundamental tradeoffs between the sparsity and low-
rankness in the sparse and low-rank model P . It is also
interesting to extend the presented approaches in more
generic scenarios, e.g., transmitter cooperation, finite
SNRs and multiple antennas. The main challenge is estab-
lishing the channel independent interference alignment
conditions.

• It is particularly interesting and also important to apply
the sparse and low-rank modeling framework to other
important problems including the index coding prob-
lem [48] (e.g., matrix completion over finite field [49]),
caching networks [50], [51], and distributed computing
systems [52], thereby investigating the fundamental limits
of communication, computation and storage. However,
as optimization on manifolds deeply relies on smooth-
ness, the search space will become discrete in a finite

field. Therefore, the proposed Riemannian algorithm can-
not be extended to the finite field in principle. Other
numerical optimization techniques over finite field need
to be introduced.

• It is also interesting to apply the Riemannian optimiza-
tion technique to other important network optimization
problems, e.g., hybrid precoding in millimeter wave
systems [53].
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