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Abstract

The cloud radio access network (Cloud-RAN) provides a revolutionary way to densify ra-
dio access networks, thereby addressing the challenges in the era of mobile data deluge. In
this architecture, all the baseband signal processing is shifted to a single cloud data center,
which enables centralized resource coordination and signal processing for efficient interfer-
ence management and flexible network adaptation. Thus, it can resolve the main challenges
for next-generation wireless networks, including higher energy and spectral efficiency, higher
cost efficiency, lower latency, as well as massive connectivity. However, with multi-entity
collaboration and enlarged network sizes in dense Cloud-RANs, unique issues arise in green
networking and large-scale computing. Fundamental methodologies and algorithms need to
be developed to address these challenges by exploiting the problem structures, e.g., group
sparsity and low-rankness.

In dense Cloud-RANs, due to the multi-entity network collaboration, network power
consumption originated from the radio access network and the fronthaul network becomes
huge. To design a green Cloud-RAN, a holistic approach is required for network power min-
imization. By exploiting the spatial and temporal mobile data traffic variation, we develop a
group sparse beamforming framework to minimize the network power consumption by en-
abling network adaptation. This is achieved by adaptively selecting active remote radio heads
(RRHs) and the corresponding fronthaul links via controlling the group sparsity structure of
the aggregative beamforming vector at all the RRHs, thereby adapting to the spatial and tem-
poral mobile data traffic fluctuations. In particular, the group sparsity structure is induced by
minimizing the mixed `1/`2-norm of the aggregative beamforming vector.

To further demonstrate the power of the group sparse beamforming framework, a more
challenging scenario with multicast transmission and imperfect channel state information
(CSI) is also investigated. In particular, we present the PhaseLift and semidefinite relaxation
techniques to convexify the robust non-convex quadratic quality-of-service (QoS) constraints.
A smoothed `p-minimization approach is further proposed to induce the group-sparsity struc-
ture in the aggregative multicast beamforming vector, which indicates those RRHs that can
be switched off. To solve the resultant non-convex group-sparsity inducing optimization
problem, an iterative reweighted-`2 algorithm is then proposed based on the principle of the
majorization-minimization (MM) algorithm.

As the design problem sizes scale up with the network size in dense Cloud-RANs, we

xiii



demonstrate that it is critical to take the inherent characteristics of wireless channels into
consideration to reduce the CSI acquisition overhead, while new optimization methods will
be needed. We first present a low rank matrix completion approach via Riemannian pursuit to
maximize the achievable degrees of freedom (DoF) only based on the network topology in-
formation without the knowledge of CSI at transmitters. Furthermore, to deal with the uncer-
tainty in the available CSI, a chance-constrained programming based stochastic coordinated
beamforming framework is proposed. In particular, a novel stochastic difference-of-convex
(DC) programming algorithm for the resultant highly intractable chance constrained pro-
gramming problem is developed with optimality guarantee, while all the previous algorithms
can only find feasible but sub-optimal solutions.

The last part of the thesis is devoted to dealing with the computing issues in dense Cloud-
RANs. This is motivated by the fact that the design problems in dense Cloud-RANs are
entering a new era characterized by a high dimension and/or a large number of constraints
as well as complicated structures. It is thus critical to exploit unique structures of the de-
sign problems, while convex optimization will serve as a powerful tool for such purposes. In
particular, to enable scalable network densification and cooperation, we develop a two-stage
framework to solve the general large-scale convex optimization problems. This is achieved
by equivalently transforming the original convex problem into the standard conic optimiza-
tion problem by the matrix stuffing technique. The operator splitting method, namely, the
alternating direction method of multipliers (ADMM), is further adopted to solve the resultant
large-scale self-dual embedding of the transformed cone programming problem. This enables
the capability of parallel computing and infeasibility detection.

In summary, the central theme of this thesis is developing scalable sparse optimization
methodologies and algorithms to address the networking and computing issues for network
densification in Cloud-RANs.

xiv



Chapter 1

Introduction

In this chapter we introduce the network architecture of Cloud-RAN to densify the radio

access networks via radio resource and computation resource coordination, thereby boosting

the network capacity. The main advantages, the design and operating challenges, as well as

the main contributions of this thesis will be presented.

1.1 Motivations

With the dramatic increase of smart mobile devices, and diversified wireless applications pro-

pelled by the advent of mobile social networks and Internet of Things (IoT), we are in an era

of mobile data deluge. In particular, mobile data traffic has recently been doubling every

year, which implies an astounding 1000 times increase for 5G networks by 2020 [1]. Further-

more, new wireless applications bring new service requirements. For instance, intensive data

services will be needed in crowed places as stadiums and in densely populated metropolitan

areas, while IoT applications call for scalable connectivity with diversified quality-of-service

(QoS) requirements. With extremely low latency, accompanied by high availability, reliabil-

ity and security, Tactile Internet [2] will enable numerous new services and allow for new

experiences.

To meet these key requirements, network densification becomes a dominated theme by

deploying more antennas or radio access units. In particular, massive multiple-input and

multiple-output (MIMO) wireless system [3] is regarded as an effective and promising ap-

proach for multi-cell multi-user MIMO implementation by equipping base stations (BSs) with

excessive antennas (up to a few hundred antennas), thereby offering unprecedented spectral
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efficiency and energy efficiency. With the additional antennas, this can be achieved even with

low-complexity beamforming techniques (e.g., zero-forcing beamforming), while inter-cell

interference can be effectively eliminated, assuming that the full channel state information

(CSI) is available at BSs.

However, the performance of massive MIMO is limited by correlated scattering with the

antenna spacing constraints, which also brings high deployment cost to maintain the mini-

mum spacing [4]. Furthermore, the prerequisite of the massive CSI raises the concern about

the training overhead, which is proportional to the BS antenna size in frequency-division du-

plexing (FDD) massive MIMO. In the alternative time-division duplexing (TDD) mode, the

inevitable reuse of the same pilot in neighboring cells causes pilot contamination, which will

seriously degrade the CSI accuracy and has been regarded as a main bottleneck of TDD mas-

sive MIMO [5]. Therefore, the capacity gain of the massive MIMO will be fundamentally

limited. Other approach needs to be further exploited to meet the ever increasing mobile data

traffic demands.

Heterogeneous and small cell networks (HetSNets) are regarded as the other promising

way to address the challenges for mobile data traffic explosion. This is achieved by deploy-

ing more radio access points to exploit the spatial reuse, thereby bringing the radio access

network closer to the mobile users. Meanwhile, as stated in [6], placing radio access points

based on the traffic demand is an effective way for compensating path-loss, resulting in en-

ergy efficient cellular networks. However, efficient interference management is challenging

for dense small-cell networks. Moreover, deploying more and more small-cells will cause

significant cost and operating challenges for operators.

Network cooperation [7] is an enabling technique to manage the interference in the wire-

less networks, thereby fully exploiting the benefits of the network densification. The cooper-

ative gain is achieved by sharing the user data and CSI among multiple BSs to mitigate the

interference efficiently. However, the full cooperation gain is limited by the overhead of the

orthogonal pilot-assisted channel estimation for uplink transmission in large-scale coopera-

tive cellular networks [8]. In particular, Huh et al. [9] quantified the downlink training over-

head for large-scale network MIMO, which is regarded as the system overhead bottleneck

even if the uplink feedback overhead is ignored. Furthermore, with the additional limited

computing capability at BSs, the cooperative gain is fundamentally limited by the overhead

of computing and CSI acquisition in dense networks.
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To address the above limitations of the existing solutions, a paradigm shift is thus needed

in radio access networks to achieve the benefit of dense networks, including the magnified

interference issue, the high capital expenditure (CAPEX) and operating expenditure (OPEX),

and mobility management, etc. In particular, a holistic approach to deploy and manage dense

networks is required, and efficient multi-tier collaboration should be supported.

The cloud radio access network (Cloud-RAN) [10, 11] is a promising centralized radio

access technology to address the key challenges towards network densification by leveraging

recent advances in cloud-computing technology [12]. With the baseband unit (BBU) imple-

mented in the centralized computation resources located at the cloud data center (i.e., BBU

pool), it can significantly reduce the complexity and cost of the radio access units, i.e., the

CAPEX will be reduced. Moreover, this architecture makes it easy to upgrade, as only soft-

ware upgrade at the cloud center is needed. It is also easily scalable, as more low-cost remote

radio heads (RRHs) can be handily deployed to increase the network capacity. Meanwhile,

intra-tier and inter-tier interference can be effectively mitigated by centralized signal process-

ing and coordination at the BBU pool. Furthermore, with elastic network reconfiguration and

adaptation, the operation efficiency of the Cloud-RAN can be significantly improved. For ex-

ample, by adaptively switching on/off RRHs, and adjusting computing resources at the BBU

pool, the network can be well adapted to the spatial and temporal traffic fluctuations.

In summary, network densification and cooperation in Cloud-RANs by deploying more

RRHs and collaboration among RRHs at the radio access network and computation units at

the BBU pool, provide a disruptive way to achieve the higher energy efficiency and spectral

efficiency, higher cost efficiency, and scalable connectivity.

1.2 Network Architecture and Research Challenges

In this section, we will introduce the main entities of Cloud-RAN, including the cloud data

center, the radio access network, and the mobile hauling network, followed by an overview

of new research challenges.

1.2.1 Network Architecture

Cloud-RAN is a disruptive technology that takes advantage of recent advances in cloud-

computing to revolutionize next-generation wireless networks. Its architecture is shown in

3



Fronthaul Links

BBU Pool

Radio Access Unit

Mobile User

Baseband Unit

Figure 1.1: The architecture of Cloud-RAN, in which, all the RRHs are connected to a BBU
pool through high-capacity and low-latency optical fronthaul links.

Fig. 1.1. Specifically, the BBU pool serves as a central cloud infrastructure for the dense

radio access network consisting of large number of RRHs. The key advantage of the Cloud-

RAN lies in the centralized coordination at the BBU pool, supported by the fronthaul network

to transfer the information to and from different RRHs. In the following, we will introduce

the main functionality of each entity in Cloud-RAN, as well as some deployment issues.

1.2.1.1 Cloud Data Center

The cloud data center (i.e., the BBU pool) consists of shared and reconfigurable computa-

tion and storage resources. Thanks to such a shared hardware platform, both the CAPEX

(e.g. via low-cost site construction) and OPEX (e.g. via centralized cooling), as well as the

management effort, can be significantly reduced. Besides performing basic baseband digi-

tal signal processing for transmission and reception, the cloud data center can also provide

cloud-computing functionalities, such as on-demand services via virtualization with multiple

virtual machines and resource pooling, and parallel computing for scalable algorithm imple-

mentation.

The centralized signal processing enabled by the cloud data center is essential for the

performance gains of Cloud-RAN. Specifically, with densely deployed RRHs, by applying

advanced signal processing algorithms in the computationally powerful cloud data center,

4



large-scale cooperation can be achieved, thereby improving both spectral efficiency and en-

ergy efficiency. Moreover, with centralized coordination, effective dynamic resource alloca-

tion can be provided to smooth out spatial and temporal traffic fluctuations.

1.2.1.2 Radio Access Network

In Cloud-RANs, each RRH only consists of a passband signal processor, an amplifier and an

A/D converter to support basic transmission and reception functionality, while the baseband

signal processing is carried in the cloud data center. The data transmitted between the cloud

data center and RRHs are typically oversampled realtime I/Q digitalized baseband streams

in the order of Gbps [10]. For such access nodes, the mobile hauling network that provides

high-capacity and low-latency connection to the cloud data center is usually called the mobile

fronthaul network. The typical requirements of fronthaul links are: link capacity (110 Gb/s),

latency ( 0.1 ms), and distance (110 km) [11].

1.2.1.3 Mobile Fronthaul Network

A key success of Cloud-RANs is to transfer the data traffic between the cloud data center and

the radio access network by the mobile fronthaul network. As the capacity of each fronthaul

link will affect both the network performance and deployment cost, it should be carefully

picked.

Specifically, for the mobile fronthaul network connecting RRHs and the cloud data cen-

ter, there is stringent requirements on latency and synchronization, as well as low jitter and

error tolerance [10]. Both the low-cost wavelength-division multiplexing passive optical net-

work (WDM-PON) and orthogonal frequency-division multiple access passive optical net-

work (OFDMA-PON) are promising candidates to provide high-capacity and low-latency

fronthaul solutions [13]. Furthermore, to alleviate the performance bottleneck due to the

limited fronthaul capacity, a major effort is being made to develop advanced fronthaul com-

pression schemes [14].

1.2.2 Research Challenges

The new architecture of Cloud-RAN will bring new opportunities as well as new design

challenges, mainly due to the enlarged problem size as the design parameters and the required

side information grow substantially. In this thesis, we will provide a holistic viewpoint for
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green Cloud- RAN design via convex optimization. It has been well recognized that convex

optimization provides an indispensable set of tools for designing wireless communication

systems [15–17], e.g. coordinated beamforming [18], power control [19], user admission

control [20], as well as data routing and flow control [21]. The main reason for the success of

convex optimization lies in its capability of flexible formulations, efficient globally optimal

algorithms, e.g. the interior-point method [22], and the ability to leverage convex analysis to

explore the solution structure, e.g. the uplink-downlink duality in the multiuser beamforming

problem [18]. However, in dense Cloud-RANs, with its complex architecture, as well high-

dimensional optimization variables and a large number of parameters, new challenges arise.

In this thesis, we will present new convex optimization methods based on sparse optimiza-

tion to address the main design challenges for dense green Cloud-RAN. We will demonstrate

the strength of convex optimization by developing new methodologies for the key design

problems in green Cloud-RAN, i.e., network power minimization, diversified services, CSI

acquisition and uncertainty, and large-scale convex optimization.

1.2.2.1 Green Cloud-RAN Design

In dense Cloud-RAN with a large number of RRHs, it is critical to select RRHs to adapt to

the temporal and spatial data dynamics, thereby improving the energy efficiency and operat-

ing efficiency. In this way, we can reduce the power consumption of both the radio access

points and fronthaul links, as well as reduce the signaling overhead. However, to enable such

adaptation, the new challenge comes from the composite design variables, which consist of

both discrete and continuous variables for RRH selection and coordinated beamforming de-

sign, respectively. This often yields a mixed integer nonlinear programming problem and is

NP-hard.

To efficiently solve such problems, in Chapter 2, we will develop a group sparse beam-

forming framework to minimize the network power consumption by adaptively selecting ac-

tive RRHs via controlling the group-sparsity structure of the beamforming vectors.

1.2.2.2 Diversified Services

Although network adaption by selecting the active RRHs provides a promising way to min-

imize the network power consumption in green Cloud-RAN design, exploiting the benefits

of integrating diversified unicast and multicast services [23] has been well recognized as a
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promising way to further improve the energy efficiency. Therefore, multicast service should

be incorporated in green Cloud-RAN design. Moreover, in practice, the available CSI may

be imperfect due to channel estimation errors.

To design a green Cloud-RAN with multicast transmission and imperfect CSI, in Chap-

ter 3, we will present a holistic approach to enable network adaptation for network power

minimization.

1.2.2.3 CSI Acquisition and Uncertainty

CSI is essential for various cooperation strategies design in the dense Cloud-RAN, but its

acquisition becomes challenging as a large number of RRHs are involved in cooperation.

To address the channel estimation challenge with limited radio resources, a major effort is

being made to design efficient CSI acquisition strategies by exploiting unique structures of

wireless channels, e.g., partial connectivity in wireless networks [24]. To resolve the CSI

challenge for Cloud-RAN, we propose a novel CSI acquisition method, called compressive

CSI acquisition. This new method can effectively reduce the CSI signaling overhead by

obtaining instantaneous coefficients of only a subset of all the channel links. As a result,

the BBU pool will obtain mixed CSI consisting of instantaneous values of some links and

statistical CSI for the others.

To effectively exploit the available mixed CSI (i.e., partial and imperfect), in Chapter 4,

we shall present a new beamforming approach based on chance-constrained programming to

alleviate the performance degradation due to the CSI uncertainty. We also present a low-rank

matrix completion approach for the topological interference management only based on the

network partial connectivity pattern [25] with the minimal CSI requirements.

1.2.2.4 Network Densification

In dense Cloud-RAN, the cloud data center will typically support hundreds of RRHs [10], and

thus all the optimization algorithms need to scale to large problem sizes. However, solving

convex quadratic programs has cubic complexity using the interior-point method. Moreover,

a sequence of convex feasibility problems need to be solved for lots of design problems, e.g.,

for the RRH selection in the network power minimization problem. However, most existing

custom algorithms, e.g., the ADMM based algorithms [26] and the uplink-downlink dual-

ity approach [27], cannot provide the certificates of infeasibility. Thus, effective feasibility
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detection should be embedded in the developed algorithms.

To resolve these challenges, in Chapter 5, we will present a two-stage approach frame-

work to solve general large-scale convex optimization problems by leveraging the cloud-

computing environment in the cloud data center.

1.3 Thesis Goals and Contributions

This focus of this thesis is to develop algorithmic approaches to deal with networking and

computing issues in dense Cloud-RANs. Using unicast service with perfect CSI as our star-

ing point, we develop a group sparse beamforming framework for green Cloud-RAN design,

thereby minimizing the network power consumption. This is achieved by adaptively select-

ing active RRHs via controlling the group-sparsity structure of the beamforming vectors.

Building on this insight, we develop algorithms based on convex optimization for more gen-

eral scenarios with CSI uncertainty and multicast services, yielding a unified and flexible

sparse optimization framework for green Cloud-RAN design. To address the massive CSI

acquisition challenges in dense Cloud-RANs, we further present a low-rank matrix comple-

tion approach and a chance constrained optimization method to manage the interference only

based on the network topology information and to deal with the CSI uncertainty, respectively.

To enable scalable algorithm design in dense Cloud-RANs, we further propose a two-stage

framework to solve general large-scale convex optimization problems, which is amenable to

parallel implementation in the cloud data center.

In particular, the goals of this thesis are to

• Develop a holistic approach for green Cloud-RAN design by minimizing the network

power consumption.

• Develop efficient CSI acquisition and exploration methods to resolve the massive CSI

challenges in dense Cloud-RANs.

• Develop scalable and parallel optimization algorithms to address the computing issues

in dense Cloud-RANs.

Specifically, the main contributions of this thesis are as follows:

1. We propose a group sparse optimization framework to design a green Cloud-RAN,
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which is formulated as a joint RRH selection and transmit power minimization beam-

forming problem. To efficiently solve the group sparse beamforming problem with

the non-convex combinatorial objective function, a weighted mixed `1/`2-norm mini-

mization algorithm is proposed to induce the group-sparsity of beamformers, thereby

guiding the RRH selection.

2. We propose a smoothed `p-minimization framework to design a green Cloud-RAN by

taking the imperfect CSI and multicast service into consideration. To solve the ro-

bust multicast group sparse beamforming problem with the non-convex combinatorial

objective function and non-convex quadratic QoS constraints, we develop an iterative

reweighted-`2 algorithm based on the majorization-minimization (MM) method.

3. We develop a compressive CSI acquisition method to reduce the CSI signaling over-

head in dense Cloud-RANs, followed by a generic stochastic coordinated beamforming

framework to deal with stochastic CSI uncertainty in the available CSI. To solve the

stochastic coordinated beamforming problem with the non-convex probabilistic QoS

constraints, we propose a novel stochastic DC (difference-of-convex) programming al-

gorithm with optimality guarantee, which can serve as the benchmark for evaluating

heuristic and sub-optimal algorithms. A flexible low-rank matrix completion approach

is presented to investigate the topological interference management problem for any

network topology.

4. We develop a novel two-stage approach to solve general large-scale convex optimiza-

tion problems for dense Cloud-RAN, which can effectively detect infeasibility and en-

joy modeling flexibility. This is achieved by transforming the original convex problem

into a standard cone programming form via matrix stuffing technique and then solv-

ing the homogeneous self-dual embedding of the primal-dual pair of the standard form

using the operator splitting method.

A common theme in all of our developed algorithms is that they exploit the problem

structures (e.g., group sparsity and low-rankness) to address the design challenges in terms

of non-convexity and scalability in dense green Cloud-RAN. Specifically, in the group sparse

beamforming case, this comes from the observation that network power minimization can be

achieved by adaptively selecting active RRHs via controlling the group-sparsity structure of

the beamforming vector. In the robust multicast group sparse beamforming case, this consists
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of observing that the smoothed `p-norm can promote sparsity by introducing quadratic forms

in the beamforming vectors. In the stochastic coordinated beamforming case, this comes

from the key observation that the highly intractable probability constraint can be equivalently

reformulated as a stochastic DC constraint. In the low-rank matrix completion for topolog-

ical interference management case, this comes from the key observation that the achievable

DoF equals the inverse of the rank of the design matrix. In large-scale convex optimization

case, this comes in the salient feature of the Cartesian product of closed convex cones (e.g.,

second-order cone and semidefinite cone) in the transformed standard cone programming

form, which can be exploited to enable parallel and scalable computing.

1.4 Organization and Published Materials

The remainder of this thesis is organized as follows.

Chapter 2 This chapter investigates the network power minimization problem to design

a green Cloud-RAN based on the assumptions of unicast service and perfectly instantaneous

CSI. The material in this chapter has been presented in part in [J7, C5].

Chapter 3 This chapter studies the green Cloud-RAN design problem in multicast trans-

mission setting with imperfect CSI. The material in this chapter has been presented in part in

[J2, J3, C2].

Chapter 4 This chapter deals with the CSI acquisition overhead and the stochastic CSI

uncertainty in dense Cloud-RANs. The material in this chapter has been presented in part in

[J1, J6, C1, C4].

Chapter 5 This chapter presents a unified two-stage approach to solve general large-

scale convex optimization problems in dense Cloud-RANs. The material in this chapter has

been presented in part in [J4, C3].

Chapter 6 This chapter closes this thesis with a brief summary and discussions of future

search directions.

In particular, the underlying idea of scalable sparse optimization in ultra-dense green

Cloud-RAN in this chapter has been presented in part in [J5].
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Chapter 2

Group Sparse Beamforming for Green

Cloud-RAN

In this chapter we present a new framework to design a green Cloud-RAN, which is formu-

lated as a joint RRH and fronthaul link selection and transmit power minimization beamform-

ing problem. To efficiently solve this problem, we first propose a greedy selection algorithm

in Section 2.4, which is shown to provide near-optimal performance. To further reduce the

complexity, in Section 2.5, a novel group sparse beamforming method is proposed by induc-

ing the group-sparsity of beamformers using the weighted `1/`2-norm minimization, where

the group sparsity pattern indicates those RRHs that can be switched off. These results pro-

vide new insights for other network performance optimization problems consist of discrete

and continuous variables. Proofs and preliminaries are relegated to Appendix A. The material

in this chapter has been presented in part in [28, 29].

2.1 Introduction

Mobile data traffic has been growing enormously in recent years, and it is expected that cel-

lular networks will have to offer a 1000x increase in capacity in the following decade to

meet this demand [4]. Massive MIMO [3] and heterogeneous and small cell networks (Het-

SNets) [4] are regarded as two most promising approaches to achieve this goal. By deploying

a large number of antennas at each base station (BS), massive MIMO can exploit spatial mul-

tiplexing gain in a large scale and also improve energy efficiency. However, the performance

of massive MIMO is limited by correlated scattering with the antenna spacing constraints,
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which also brings high deployment cost to maintain the minimum spacing [4]. HetSNets

exploit the spatial reuse by deploying more and more access points (APs). Meanwhile, as

stated in [30], placing APs based on the traffic demand is an effective way for compensat-

ing path-loss, resulting in energy efficient cellular networks. However, efficient interference

management is challenging for dense small-cell networks. Moreover, deploying more and

more small-cells will cause significant cost and operating challenges for operators.

Cloud radio access network (Cloud-RAN) has recently been proposed as a promising

network architecture to unify the above two technologies in order to jointly manage the in-

terference (via coordinated multiple-point process (CoMP)), increase network capacity and

energy efficiency (via network densification), and reduce both the network capital expenditure

(CAPEX) and operating expense (OPEX) (by moving baseband processing to the baseband

unit (BBU) pool) [10, 31]. A large-scale distributed cooperative MIMO system will thus be

formed. Cloud-RAN can therefore be regarded as the ultimate solution to the “spectrum

crunch” problem of cellular networks.

There are three key components in a Cloud-RAN: (i) a pool of BBUs in a cloud data

center, supported by the real-time virtualization and high performance processors, where all

the baseband processing is performed; (ii) a high-bandwidth low-latency optical fronthaul

network connecting the BBU pool and the remote radio heads (RRHs); and (iii) distributed

transmission/reception points (i.e., RRHs). The key feature of Cloud-RAN is that RRHs and

BBUs are separated, resulting a centralized BBU pool, which enables efficient cooperation of

the transmission/reception among different RRHs. As a result, significant performance im-

provements through joint scheduling and joint signal processing such as coordinated beam-

forming or multi-cell processing [7] can be achieved. With efficient interference suppression,

a network of RRHs with a very high density can be deployed. This will also reduce the

communication distance to the mobile terminals and can thus significantly reduce the trans-

mission power. Moreover, as baseband signal processing is shifted to the BBU pool, RRHs

only need to support basic transmission/reception functionality, which further reduces their

energy consumption and deployment cost.

The new architecture of Cloud-RAN also indicates a paradigm shift in the network de-

sign, which causes some technical challenges for implementation. For instance, as the data

transmitted between the RRHs and the BBU pool is typically oversampled real-time I/Q digi-

tal data streams in the order of Gbps, high-bandwidth optical fronthaul links with low latency
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will be needed. To support CoMP and enable computing resource sharing among BBUs, new

virtualization technologies need to be developed to distribute or group the BBUs into a cen-

tralized entity [10]. Another important aspect is the energy efficiency consideration, due to

the increased power consumption of a large number of RRHs and also of the fronthaul links.

Conventionally, the fronthaul network (i.e., backhaul links between the core network and

base stations (BSs)) power consumption can be ignored as it is negligible compared to the

power consumption of macro BSs. Therefore, all the previous works investigating the energy

efficiency of cellular networks only consider the BS power consumption [18, 32]. Recently,

the impact of the backhaul power consumption in cellular networks was investigated in [33],

where it was shown through simulations that the backhaul power consumption will affect the

energy efficiency of different cellular network deployment scenarios. Subsequently, Rao et

al. in [34] investigated the spectral efficiency and energy efficiency tradeoff in homogeneous

cellular networks when taking the backhaul power consumption into consideration.

In Cloud-RAN, the fronthaul network power consumption will have a more significant

impact on the network energy efficiency. Hence, allowing the fronthaul links and the cor-

responding RRHs to support the sleep mode will be essential to reduce the network power

consumption for the Cloud-RAN. Moreover, with the spatial and temporal variation of the

mobile traffic, it would be feasible to switch off some RRHs while still maintaining the qual-

ity of service (QoS) requirements. It will be also practical to implement such an idea in the

Cloud-RAN with the help of centralized signal processing at the BBU pool. As energy effi-

ciency is one of the major objectives for future cellular networks [31], in this chapter we will

focus on the design of green Cloud-RAN by jointly considering the power consumption of

the fronthaul network and RRHs.

2.1.1 Contributions

The main objective of this chapter is to minimize the network power consumption of Cloud-

RAN, including the fronthaul network and radio access network power consumption, with a

QoS constraint at each user. Specifically, we formulate the design problem as a joint RRH

selection and power minimization beamforming problem, where the fronthaul network power

consumption is determined by the set of active RRHs, while the transmit power consumption

of the active RRHs is minimized through coordinated beamforming. This is a mixed-integer
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non-linear programming (MINLP) problem, which is NP-hard. We will focus on design-

ing low-complexity algorithms for practical implementation. The major contributions of the

chapter are summarized as follows:

1. We formulate the network power consumption minimization problem for the Cloud-

RAN by enabling both the fronthaul links and RRHs to support the sleep mode. In

particular, we provide a group sparse beamforming (GSBF) formulation of the design

problem, which assists the problem analysis and algorithm design.

2. We first propose a greedy selection (GS) algorithm, which selects one RRH to switch

off at each step. It turns out that the RRH selection rule is critical, and we propose to

switch off the RRH that maximizes the reduction in the network power consumption

at each step. From the simulations, the proposed GS algorithm often yields optimal

or near-optimal solutions, but its complexity may still be prohibitive for a large-sized

network.

3. To further reduce the complexity, we propose a three-stage group sparse beamforming

(GSBF) framework, by adopting the weighted mixed `1/`p-norm to induce the group

sparsity for the beamformers. In contrast to all the previous works applying the mixed

`1/`p-norm to induce group sparsity, we exploit the additional prior information (i.e.,

fronthaul link power consumption, power amplifier efficiency, and instantaneous effec-

tive channel gains) to design the weights for different beamformer coefficient groups,

resulting in a significant performance gain. Two GSBF algorithms with different com-

plexities are proposed: namely, a bi-section GSBF algorithm and an iterative GSBF

algorithm.

4. We shall show that the GS algorithm always provides near-optimal performance. Hence,

it would be a good option if the number of RRHs is relatively small, such as in clus-

tered deployment. With a very low computational complexity, the bi-section GSBF

algorithm is an attractive option for a large-scale Cloud-RAN. The iterative GSBF

algorithm provides a good tradeoff between the complexity and performance, which

makes it a good candidate for a medium-size network.
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2.1.2 Related Works

A main design tool applied in this chapter is optimization with the group sparsity induced

norm. With the recent theoretical breakthrough in compressed sensing [35, 36], the sparsity

patterns in different applications in signal processing and communications have been ex-

ploited for more efficient system design, e.g., for pilot aided sparse channel estimation [37].

The sparsity inducing norms have been widely applied in high-dimensional statistics,

signal processing, and machine learning in the last decade [38]. The `1-norm regularization

has been successfully applied in compressed sensing [35, 36]. More recently, mixed `1/`p-

norms are widely investigated in the case where some variables forming a group will be

selected or removed simultaneously, where the mixed `1/`2-norm [39] and mixed `1/`∞-

norm [40] are two commonly used ones to induce group sparsity for their computational and

analytical convenience.

In Cloud-RAN, one RRH will be switched off only when all the coefficients in its beam-

former are set to zeros. In other words, all the coefficients in the beamformer at one RRH

should be selected or ignored simultaneously, which requires group sparsity rather than indi-

vidual sparsity for the coefficients as commonly used in compressed sensing. In this chapter,

we will adopt the mixed `1/`p-norm to promote group sparsity for the beamformers instead

of `1-norm, which only promotes individual sparsity. Recently, there are some works [41–43]

adopting the mixed `1/`p-norm to induce group-sparsity in a large-scale cooperative wireless

cellular network. Specifically, Hong et al. [41] adopted the mixed `1/`2-norm and Zhao et

al. [42] used the `2-norm to induce the group sparsity of the beamformers, which reduce the

amount of the shared user data among different BSs. The squared mixed `1/`∞-norm was

investigated in [43] for antenna selection.

All of the above works simply adopted the un-weighted mixed `1/`p-norms to induce

group-sparsity, in which, no prior information of the unknown signal is assumed other than

the fact that it is sufficiently sparse. By exploiting the prior information in terms of sys-

tem parameters, the weights for different beamformer coefficient groups can be more rigor-

ously designed and performance can be enhanced. We demonstrate through simulations that

the proposed three-stage GSBF framework, which is based on the weighted mixed `1/`p-

norm minimization, outperforms the conventional unweighted mixed `1/`p-norm minimiza-

tion based algorithms substantially.
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2.1.3 Organization

The remainder of the chapter is organized as follows. Section 2.2 presents the system and

power model. In section 2.3, the network power consumption minimization problem is for-

mulated, followed by some analysis. Section 2.4 presents the GS algorithm, which yields

near-optimal solutions. The three-stage GSBF framework is presented in Section 2.5. Sim-

ulation results will be presented in Section 2.6. Finally, conclusions and discussions are

presented in Section 2.7.

Notations: ‖ · ‖`p is the `p-norm. Boldface lower case and upper case letters represent

vectors and matrices, respectively. (·)T , (·)†, (·)H and Tr(·) denote the transpose, conjugate,

Hermitian and trace operators, respectively. R(·) denotes the real part.

2.2 System and Power Model

2.2.1 System Model

We consider a Cloud-RAN withL remote radio heads (RRHs), where the l-th RRH is equipped

with Nl antennas, and K single-antenna mobile users (MUs), as shown in Fig. 1.1. In this

network architecture, all the base band units (BBUs) are moved into a single BBU pool, cre-

ating a set of shared processing resources, and enabling efficient interference management

and mobility management. With the baseband signal processing functionality migrated to

the BBU pool, the RRHs can be deployed in a large scale with low-cost. The BBU pool is

connected to the RRHs using the common public radio interface (CPRI) fronthaul technology

via a high-bandwidth, low-latency optical fronthaul network, i.e., fronthaul network [10]. In

order to enable full cooperation among RRHs, it is assumed that all the user data are routed to

the BBU pool from the core network through the backhaul links [10], i.e., all users can access

all the RRHs. The digitized baseband complex inphase (I) and quadrature (Q) samples of the

radio signals are transported over the fronthaul links between the BBUs and RRHs. The key

technical and economic issue of the Cloud-RAN is that this architecture requires significant

fronthaul network resources. As the focus of this chapter is on network power consumption,

we will assume all the fronthaul links have sufficiently high capacity and negligible latency1.

Due to the high density of RRHs and the joint transmission among them, the energy used

1The impact of limited-capacity fronthaul links on compression in Cloud-RAN was recently investigated
in [44, 45], and its impact in our setting is left to future work.
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for signal transmission will be reduced significantly. However, the power consumption of the

fronthaul network becomes enormous and cannot be ignored. Therefore, it is highly desirable

to switch off some fronthaul links and the corresponding RRHs to reduce the network power

consumption based on the data traffic requirements, which forms the main theme of this work.

Let L = {1, ..., L} denote the set of RRH indices, A ⊆ L denote the active RRH set, Z

denote the inactive RRH set with A ∪ Z = L, and S = {1, ..., K} denote the index set of

scheduled users. In a beamforming design framework, the baseband transmit signals are of

the form:

xl =
K∑
k=1

wlksk,∀l ∈ A, (2.2.1)

where sk is a complex scalar denoting the data symbol for user k and wlk ∈ CNl is the beam-

forming vector at RRH l for user k. Without loss of generality, we assume that E[|sk|2] = 1

and sk’s are independent with each other. The baseband signals xl’s will be transmitted to

the corresponding RRHs, but not the data information sk’s [10, 45]. The baseband received

signal at user k is given by

yk =
∑
l∈A

hH
klwlksk +

∑
i 6=k

∑
l∈A

hH
klwlisi + zk, k ∈ S, (2.2.2)

where hkl ∈ CNl is the channel vector from RRH l to user k, and zk ∼ CN (0, σ2
k) is the

additive Gaussian noise.

We assume that all the users are employing single user detection (i.e., treating interfer-

ence as noise), so that they can use the receivers with a low-complexity and energy-efficient

structure. Moreover, in the low interference region, treating interference as noise can be op-

timal [46]. The corresponding signal-to-interference-plus-noise ratio (SINR) for user k is

hence given by

SINRk =
|
∑

l∈A hH
klwlk|2∑

i 6=k |
∑

l∈A hH
klwli|2 + σ2

k

, ∀k ∈ S. (2.2.3)

Each RRH has its own transmit power constraint

K∑
k=1

‖wlk‖2
`2
≤ Pl,∀l ∈ A. (2.2.4)
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2.2.2 Power Model

The network power model is critical for the investigation of the energy efficiency of Cloud-

RAN, which is described as follows.

2.2.2.1 RRH Power Consumption Model

We will adopt the following empirical linear model [47] for the power consumption of an

RRH:

P rrh
l =

 P rrh
a,l + 1

ηl
P out
l , if P out

l > 0,

P rrh
s,l , if P out

l = 0.
(2.2.5)

where P rrh
a,l is the active power consumption, which depends on the number of antennas Nl,

P rrh
s,l is the power consumption in the sleep mode, P out

l is the transmit power, and ηl is the

drain efficiency of the radio frequency (RF) power amplifier. For the Pico-BS, the typical

values are P rrh
a,l = 6.8W , P rrh

s,l = 4.3W , and ηl = 1/4 [47]. Based on this power consumption

model, we conclude that it is essential to put the RRHs into sleep whenever possible.

2.2.2.2 Fronthaul Network Power Consumption Model

Although there is no superior solution to meet the low-cost, high-bandwidth, low-latency

requirement of fronthaul networks for the Cloud-RAN, the future passive optical network

(PON) can provide cost-effective connections between the RRHs and the BBU pool [48].

PON comprises an optical line terminal (OLT) that connects a set of associated optical net-

work units (ONUs) through a single fiber. Implementing a sleep mode in the optical net-

work unit (ONU) has been considered as the most cost-effective and promising power-saving

method [49] for the PON, but the OLT cannot go into the sleep mode and its power con-

sumption is fixed [49]. Hence, the total power consumption of the fronthaul network is given

by [49]

P tn = Polt +
L∑
l=1

P tl
l , (2.2.6)

where Polt is the OLT power consumption, P tl
l = P tl

a,l and P tl
l = P tl

s,l denote the power con-

sumed by the ONU l (or the fronthaul link l) in the active mode and sleep mode, respectively.
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The typical values are Polt = 20W , P tl
a,l = 3.85W and P tl

s,l = 0.75W [49]. Thus, we conclude

that putting some fronthaul links into the sleep mode is a promising way to reduce the power

consumption of Cloud-RAN.

2.2.2.3 Network Power Consumption

Based on the above discussion, we define P a
l , P rrh

a,l + P tl
a,l (P s

l , P rrh
s,l + P tl

s,l) as the active

(sleep) power consumption when both the RRH and the corresponding fronthaul link are

switched on (off). Therefore, the network power consumption of the Cloud-RAN is given by

p̂(A) =
∑
l∈A

1

ηl
P out
l +

∑
l∈A

P a
l +

∑
l∈Z

P s
l + Polt

=
∑
l∈A

1

ηl
P out
l +

∑
l∈A

(P a
l − P s

l ) +
∑
l∈L

P s
l + Polt

=
∑
l∈A

K∑
k=1

1

ηl
‖wlk‖2

`2
+
∑
l∈A

P c
l +

∑
l∈L

P s
l + Polt, (2.2.7)

where P out
l =

∑K
k=1 ‖wlk‖2

`2
and P c

l = P a
l −P s

l , and the second equality in (2.2.7) is based on

the fact
∑

l∈Z P
s
l =

∑
l∈L P

s
l −
∑

l∈A P
s
l . Given a Cloud-RAN with the RRH set L, the term

(
∑

l∈L P
s
l +Polt) in (2.2.7) is a constant. Therefore, minimizing the total network power con-

sumption p̂(A) (2.2.7) is equivalent to minimizing the following re-defined network power

consumption by omitting the constant term (
∑

l∈L P
s
l + Polt):

p(A,w) =
∑
l∈A

K∑
k=1

1

ηl
‖wlk‖2

`2
+
∑
l∈A

P c
l , (2.2.8)

where w = [wT
11, . . . ,w

T
1K , . . . ,w

T
L1, . . . ,w

T
LK ]T . The advantage of introducing the term

P c
l is that we can rewrite the network power consumption model (2.2.7) in a more compact

form as in (2.2.8) and extract the relevant parameters for our system design. In the following

discussion, we refer to P c
l as the relative fronthaul link power consumption for simplification.

Therefore, the first part of (2.2.8) is the total transmit power consumption and the second part

is the total relative fronthaul link power consumption.

Note 1. The re-defined network power consumption model (2.2.8) reveals two key design

parameters: the transmit power consumption ( 1
ηl

∑K
k=1 ‖wlk‖2

`2
) and the relative fronthaul

link power consumption P c
l . With the typical values provided in Section 2.2.2.1 and Section
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2.2.2.2, the maximum transmit power consumption, i.e., 1
ηl
P out
l = 4W , is comparable with

the relative fronthaul link power consumption, i.e., P c
l = P a

l −P s
l = (P rrh

a,l +P tl
a,l)− (P rrh

s,l +

P tl
s,l) = 5.6W . This implies that a joint RRH selection (and the corresponding fronthaul link

selection) and power minimization beamforming is required to minimize the network power

consumption.

2.3 Problem Formulation and Analysis

Based on the power consumption model, we will formulate the network power consumption

minimization problem in this section.

2.3.1 Power Saving Strategies and Problem Formulation

The network power consumption model (2.2.8) indicates the following two strategies to re-

duce the network power consumption:

• Reduce the transmission power consumption;

• Reduce the number of active RRHs and the corresponding fronthaul links.

However, the two strategies conflict with each other. Specifically, in order to reduce the trans-

mission power consumption, more RRHs are required to be active to exploit a higher beam-

forming gain. On the other hand, allowing more RRHs to be active will increase the power

consumption of fronthaul links. As a result, the network power consumption minimization

problem requires a joint design of RRH (and the corresponding fronthaul link) selection and

coordinated transmit beamforming.

In this work, we assume perfect channel state information (CSI) available at the BBU

pool. With target SINRs γ = (γ1, . . . , γK), the network power consumption minimization

problem can be formulated as

P : minimize
{wlk},A

p(A,w)

subject to
|
∑

l∈A hH
klwlk|2∑

i 6=k |
∑

l∈A hH
klwli|2 + σ2

k

≥ γk,∑K

k=1
‖wlk‖2

`2
≤ Pl, l ∈ A. (2.3.1)
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Problem P is a joint RRH set selection and transmit beamforming problem, which is difficult

to solve in general. In the following, we will analyze and reformulate it.

2.3.2 Problem Analysis

We first consider the case with a given active RRH setA for problem P , resulting a network

power minimization problem P(A). Let wk = [wT
lk]
T ∈ C

∑
l∈ANl indexed by l ∈ A, and

hk = [hTlk]
T ∈ C

∑
l∈ANl indexed by l ∈ A, such that hH

kwk =
∑

l∈A hH
klwlk. Since the

phases of wk will not change the objective function and constraints of P(A) [50], the SINR

constraints are equivalent to the following second order cone (SOC) constraints:

C1(A) :

√∑
i 6=k
|hH
kwi|2 + σ2

k ≤
1
√
γk

R(hH
kwk), k ∈ S. (2.3.2)

The per-RRH power constraints (2.2.4) can be rewritten as

C2(A) :

√∑K

k=1
‖Alkwk‖2

`2
≤
√
Pl, l ∈ A, (2.3.3)

where Alk ∈ C
∑

l∈ANl×
∑

l∈ANl is a block diagonal matrix with the identity matrix INl
as the

l-th main diagonal block square matrix and zeros elsewhere. Therefore, given the active RRH

set A, the network power minimization problem is given by

P(A) : minimize
w1,...,wK

∑
l∈A

(
K∑
k=1

1

ηl
‖Alkwk‖2

`2
+ P c

l

)
subject to C1(A), C2(A), (2.3.4)

with the optimal value denoted as p?(A). This is a second-order cone programming (SOCP)

problem, and can be solved efficiently, e.g., via interior point methods [22].

Based on the solution of P(A), the network power minimization problem P can be

solved by searching over all the possible RRH sets, i.e.,

p? = minimize
Q∈{J,...,L}

p?(Q), (2.3.5)

where J ≥ 1 is the minimum number of RRHs that makes the network support the QoS
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requirements, and p?(Q) is determined by

p?(Q) = minimize
A⊆L,|A|=Q

p?(A), (2.3.6)

where p?(A) is the optimal value of the problem P(A) in (2.3.4) and |A| is the cardinality

of set A. The number of subsets A of size m is
(
L
m

)
, which can be very large. Thus, in

general, the overall procedure will be exponential in the number of RRHs L and thus cannot

be applied in practice. Therefore, we will reformulate this problem to develop more efficient

algorithms to solve it.

2.3.3 Group Sparse Beamforming Formulation

One way to solve problem P is to reformulate it as a MINLP problem [28], and the generic

algorithms for solving MINLP can be applied. Unfortunately, due to the high complexity,

such an approach can only provide a performance benchmark for a simple network setting.

In the following, we will pursue a different approach, and try to exploit the problem structure.

We will exploit the group sparsity of the optimal aggregative beamforming vector w,

which can be written as a partition:

w = [wT
11, . . . ,w

T
1K︸ ︷︷ ︸

w̃T
1

, . . . ,wT
L1, . . . ,w

T
LK︸ ︷︷ ︸

w̃T
L

]T , (2.3.7)

where all the coefficients in a given vector w̃l = [wT
l1, . . . ,w

T
lK ]T ∈ CKNl form a group.

When the RRH l is switched off, the corresponding coefficients in the vector w̃l will be set

to zeros simultaneously. Overall there may be multiple RRHs being switched off and the

corresponding beamforming vectors will be set to zeros. That is, w has a group sparsity

structure, with the priori knowledge that the blocks of variables in w̃l’s should be selected

(the corresponding RRH will be switched on) or ignored (the corresponding RRH will be

switched off) simultaneously.

Define N = K
∑L

l=1 Nl and an index set V = {1, 2, . . . , N} with its power set as 2V =

{I, I ⊆ V}. Furthermore, define the sets Gl = {K
∑l−1

i=1Ni + 1, . . . , K
∑l

i=1Ni}, l =

1, . . . , L, as a partition of V , such that w̃l = [wi] is indexed by i ∈ Gl. Define the support of
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beamformer w as

T (w) = {i|wi 6= 0}, (2.3.8)

where w = [wi] is indexed by i ∈ V . Hence, the total relative fronthaul link power consump-

tion can be written as

F (T (w)) =
L∑
l=1

P c
l I(T (w) ∩ Gl 6= ∅), (2.3.9)

where I(T ∩Gl 6= ∅) is an indicator function that takes value 1 if T ∩Gl 6= ∅ and 0 otherwise.

Therefore, the network power minimization problem P is equivalent to the following group

sparse beamforming (GSBF) formulation

Psparse : minimize
w

T (w) + F (T (w))

subject to C1(L), C2(L), (2.3.10)

where T (w) =
∑L

l=1

∑K
k=1

1
ηl
‖wlk‖2

`2
represents the total transmit power consumption. The

equivalence means that if w? is a solution to Psparse, then ({w?
lk},A?) with A? = {l :

T (w?) ∩ Gl 6= ∅} is a solution to P , and vice versa.

Note that the group sparsity of w is fundamentally different from the conventional sparsity

measured by the `0-norm of w, which is often used in compressed sensing [35, 36]. The

reason is that although the `0-norm of w will result in a sparse solution for w, the zero

entries of w will not necessarily align to a same group w̃l to lead to switch off one RRH.

As a result, the conventional `1-norm relaxation [35, 36] to the `0-norm will not work for our

problem. Therefore, we will adopt the mixed `1/`p-norm [38] to induce group sparsity for

w. The details will be presented in Section V. Note that the “group” in this work refers to the

collection of beamforming coefficients associated with each RRH, but not a subset of RRHs.

Since obtaining the global optimization solutions to problem P is computationally diffi-

cult, in the following sections, we will propose two low-complexity algorithms to solve it. We

will first propose a greedy algorithm in Section IV, which can be viewed as an approximation

to the iteration procedure of (2.3.5). In order to further reduce the complexity, based on the

GSBF formulation Psparse, a three-stage GSBF framework will then be developed based on

the group-sparsity inducing norm minimization in Section V.
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2.4 Greedy Selection Algorithm

In this section, we develop a heuristic algorithm to solve P based on the backward greedy

selection, which was successfully applied in spare filter design [51] and has been shown

to often yield optimal or near-optimal solutions. The backward greedy selection algorithm

iteratively selects one RRH to switch off at each step, while re-optimizing the coordinated

transmit beamforming for the remaining active RRH set. The key design element for this

algorithm is the selection rule of the RRHs to determine which one should be switched off at

each step.

2.4.1 Greedy Selection Procedure

Denote the iteration number as i = 0, 1, 2, . . . . At the ith iteration, A[i] ⊆ L shall denote the

set of active RRHs, and Z [i] denotes the inactive RRH set with Z [i] ∪A[i] = L. At iteration i,

an additional RRH r[i] ∈ A[i] will be added to Z [i], resulting in a new set Z [i+1] = Z [i]∪{r[i]}

after this iteration. We initialize by setting Z [0] = ∅. In our algorithm, once an RRH is

added to the set Z , it cannot be removed. This procedure is a simplification of the exact

search method described in Section III-B. At iteration i, we need to solve the network power

minimization problem P(A[i]) in (2.3.4) with the given active RRH set A[i].

2.4.1.1 RRH Selection Rule

How to select r[i] at the ith iteration is critical for the performance of the greedy selection

algorithm. Based on our objective, we propose to select r[i] to maximize the decrease in

the network power consumption. Specifically, at iteration i, we obtain the network power

consumption p?(A[i]
m) with A[i]

m ∪ {m} = A[i] by removing any m ∈ A[i] from the active

RRH set A[i]. Thereafter, r[i] is chosen to yield the smallest network power consumption

after switching off the corresponding RRH, i.e.,

r[i] = arg min
m∈A[i]

p?(A[i]
m). (2.4.1)

We assume that p?(A[i]
m) = +∞ if problem P(A[i]

m) is infeasible. The impact of switching

off one RRH is reducing the fronthaul network power consumption while increasing the total

transmit power consumption. Thus, the proposed selection rule actually aims at minimizing
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the impact of turning off one RRH at each iteration.

Denote J as the set of candidate RRHs that can be turned off, the greedy selection algo-

rithm is described as follows:

Algorithm 1: The Greedy Selection Algorithm
Step 0: Initialize Z [0] = ∅, A[0] = {1, . . . , L} and i = 0;
Step 1: Solve the optimization problem P(A[i]) (2.3.4);

1. If (2.3.4) is feasible, obtain p?(A[i]);

• If ∀m ∈ A[i], problem P(A[i]
m) is infeasible, obtain J = {0, . . . , i}, go to Step

2;

• If ∃m ∈ A[i] makes problem P(A[i]
m) feasible, find the r[i] according to (2.4.1)

and update the set Z [i+1] = Z [i] ∪ {r[i]} and the iteration number i← i+ 1, go
to Step 1;

2. If (2.3.4) is infeasible, when i = 0, p? =∞, go to End; when i > 0, obtain
J = {0, 1, . . . , i− 1},
go to Step 2;

Step 2: Obtain the optimal active RRH set A[j?] with j? = arg minj∈J p
?(A[j]) and the

transmit beamformers minimizing P(A[j?]);
End

2.4.2 Complexity Analysis

At the i-th iteration, we need to solve |A[i]| SCOP problems P(A[i]
m) by removing the

RRH m from the set A[i] to determine which RRH should be selected. For each of the

SOCP problem P(A), using the interior-point method, the computational complexity is

O((K
∑

l∈ANl)
3.5) [22]. The total number of iterations is bounded byL. As a result, the total

number of SOCP problems required to be solved grows quadratically with L. Although this

reduces the computational complexity significantly compared with the mixed-integer conic

programming based algorithms in [52] and [53], the complexity is still prohibitive for large-

scale networks. Therefore, in the next section we will propose a group sparse beamforming

framework to further reduce the complexity.
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2.5 Group Sparse Beamforming Framework

In this section, we will develop two low-complexity algorithms based on the GSBF formu-

lation Psparse, namely a bi-section GSBF algorithm and an iterative GSBF algorithm, for

which, the overall number of SOCP problems to solve grows logarithmically and linearly

with L, respectively. The main motivation is to induce group sparsity in the beamformer,

which corresponds to switching off RRHs.

In the bi-section GSBF algorithm, we will minimize the weighted mixed `1/`2-norm to in-

duce group-sparsity for the beamformer. By exploiting the additional prior information (i.e.,

power amplifier efficiency, relative fronthaul link power consumption, and channel power

gain) available in our setting, the proposed bi-section GSBF algorithm will be demonstrated

through rigorous analysis and simulations to outperform the conventional unweighted mixed

`1/`p-norm minimization substantially [41–43]. By minimizing the re-weighted mixed `1/`2-

norm iteratively to enhance the group sparsity for the beamformer, the proposed iterative

GSBF algorithm will further improve the performance.

The proposed GSBF framework is a three-stage approach, as shown in Fig. 2.1. Specif-

ically, in the first stage, we minimize a weighted (or re-weighted) group-sparsity inducing

norm to induce the group-sparsity in the beamformer. In the second stage, we propose an

ordering rule to determine the priority for the RRHs that should be switched off, based on

not only the (approximately) sparse beamformer obtained in the first stage, but also some

key system parameters. Following the ordering rule, a selection procedure is performed to

determine the optimal active RRH set, followed by the coordinated beamforming. The details

will be presented in the following subsections.

Minimize the weighted (or 

re-weighted) group-sparsity 

inducing norm

Order RRHs
Fix the active RRH set and 

obtain transmit beamformers

Stage I Stage II Stage III

Figure 2.1: A three-stage GSBF framework.

2.5.1 Preliminaries on Group-Sparsity Inducing Norms

The mixed `1/`p-norm has recently received lots of attention and is shown to be effective to

induce group sparsity [38], which is defined as follows:
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Definition 1. Consider the vector w = [wlk] indexed by l ∈ L and k ∈ S as define in (3.3.1).

Its mixed `1/`p-norm is defined as follows:

R(w) =
L∑
l=1

βl‖w̃l‖`p , p > 1, (2.5.1)

where β1, β2, . . . , βL are positive weights.

Define the vector r = [‖w̃1‖`p , . . . , ‖w̃L‖`p ]T , then the mixed `1/`p-norm behaves as

the `1-norm on the vector r, and therefore, inducing group sparsity (i.e., each vector w̃l is

encouraged to be set to zero) for w. Note that, within the group w̃l, the `p-norm does not

promote sparsity as p > 1. By setting p = 1, the mixed `1/`p-norm becomes a weighted

`1-norm, which will not promote group sparsity. The mixed `1/`2-norm and `1/`∞-norm are

two commonly used norms for inducing group sparsity. For instance, the mixed `1/`2-norm is

used with the name group least-absolute selection and shrinkage operator (or Group-Lasso)

in machine learning [39]. In high dimensional statistics, the mixed `1/`∞-norm is adopted as

a regularizer in the linear regression problems with sparsity constraints for its computational

convenience [40].

2.5.2 Bi-Section GSBF Algorithm

In this section, we propose a binary search based GSBF algorithm, in which, the overall

number of SOCP problems required to be solved grows logarithmically with L, instead of

quadratically for the GS algorithm.

2.5.2.1 Group-Sparsity Inducing Norm Minimization

With the combinatorial function F (·) in the objective function p(w) = T (w) + F (T (w)),

the problem Psparse becomes computationally intractable. Therefore, we first construct an

appropriate convex relaxation for the objective function p(w) as a surrogate objective func-

tion, resulting a weighted mixed `1/`2-norm minimization problem to induce group sparsity

for the beamformer. Specifically, we first derive its tightest positively homogeneous lower

bound ph(w), which has the property ph(λw) = λph(w), 0 < λ < ∞. Since ph(w) is still

not convex, we further calculate its Fenchel-Legendre biconjugate p∗∗h (w) to provide a tight-

est convex lower bound for ph(w). We call p∗∗h (w) as the convex positively homogeneous

lower bound (the details can be found in [54]) of function p(w), which is provided in the
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following proposition:

Proposition 1. The tightest convex positively homogeneous lower bound of the objective

function in Psparse, denoted as p(w), is given by

Ω(w) = 2
L∑
l=1

√
P c
l

ηl
‖w̃l‖`2 . (2.5.2)

Proof. Please refer to Appendix A.

This proposition indicates that the group-sparsity inducing norm (i.e., the weighted mixed

`1/`2-norm) can provide a convex relaxation for the objective function p(w). Furthermore, it

encapsulates the additional prior information in terms of system parameters into the weights

for the groups. Intuitively, the weights indicate that the RRHs with a higher fronthaul link

power consumption and lower power amplifier efficiency will have a higher chance being

forced to be switched off. Using the weighted mixed `1/`2-norm as a surrogate for the objec-

tive function, we minimize the weighted mixed `1/`2-norm Ω(w) to induce the group-sparsity

for the beamformer w:

PGSBF : minimize
w

Ω(w)

subject to C1(L), C2(L), (2.5.3)

which is an SOCP problem and can be solved efficiently.

2.5.2.2 RRH Ordering

After obtaining the (approximately) sparse beamformer ŵ via solving the weighted group-

sparsity inducing norm minimization problem PGSBF, the next question is how to determine

the active RRH set. We will first give priorities to different RRHs, so that an RRH with a

higher priority should be switched off before the one with a lower priority. Most previous

works [41–43] applying the idea of group-sparsity inducing norm minimization directly to

map the sparsity to their application, e.g., in [43], the transmit antennas corresponding to the

smaller coefficients in the group (measured by the `∞-norm) will have a higher priority to

be switched off. In our setting, one might be tempted to give a higher priority for an RRH l

with a smaller coefficient rl = (
∑K

k=1 ‖ŵlk‖2
`2

)1/2, as it may provide a lower beamforming
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gain and should be encouraged to be turned off. It turns out that such an ordering rule is not

a good option and will bring performance degradation.

To get a better performance, the priority of the RRHs should be determined by not only

the beamforming gain but also other key system parameters that indicate the impact of the

RRHs on the network performance. In particular, the channel power gain κl =
∑K

k=1 ‖hkl‖2
`2

should be taken into consideration. Specifically, by the broadcast channel (BC)-multiple-

access channel (MAC) duality [55], we have the sum capacity of the Cloud-RAN as:

Csum = log det(IN + snr
K∑
k=1

hkh
H
k ), (2.5.4)

where we assume equal power allocation to simplify the analysis, i.e., snr = P/σ2,∀k =

1, . . . , K. One way to upper-bound Csum is through upper-bounding the capacity by the total

receive SNR, i.e., using the following relation

log det(IN + snr
K∑
k=1

hkh
H
k ) ≤ Tr(snr

K∑
k=1

hkh
H
k ) = snr

L∑
l=1

κl, (2.5.5)

which relies on the inequality log(1 + x) ≤ x. Therefore, from the capacity perspective,

the RRH with a higher channel power gain κl contributes more to the sum capacity, i.e., it

provides a higher power gain and should not be encouraged to be switched off.

Therefore, different from the previous democratic assumptions (e.g., [41–43]) on the map-

ping between the sparsity and their applications directly, we exploit the prior information in

terms of system parameters to refine the mapping on the group-sparsity. Specifically, consid-

ering the key system parameters, we propose the following ordering criterion to determine

which RRHs should be switched off, i.e.,

θl :=

√
κlηl
P c
l

(
K∑
k=1

‖ŵlk‖`2

)1/2

,∀l = 1, . . . , L, (2.5.6)

where the RRH with a smaller θl will have a higher priority to be switched off. This ordering

rule indicates that the RRH with a lower beamforming gain, lower channel power gain, lower

power amplifier efficiency, and higher relative fronthaul link power consumption should have

a higher priority to be switched off. The proposed ordering rule will be demonstrated to

significantly improve the performance of the GSBF algorithm through simulations.
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2.5.2.3 Binary Search Procedure

Based on the ordering rule (3.4.22), we sort the coefficients in the ascending order: θπ1 ≤

θπ2 ≤ · · · ≤ θπL to fix the final active RRH set. We set the first J smallest coefficients to

zero, as a result, the corresponding RRHs will be turned. Denote J0 as the maximum number

of RRHs that can be turned off, i.e., the problem P(A[i]) is infeasible if i > J0, where

A[i] ∪ Z [i] = L with Z [i] = {π0, π1, . . . , πi} and π0 = ∅. A binary search procedure can be

adopted to determine J0, which only needs to solve no more than (1 + dlog(1 + L)e) SOCP

problems. In this algorithm, we regard A[J0] as the final active RRH set and the solution of

P(A[J0]) is the final transmit beamformer.

Therefore, the bi-section GSBF algorithm is presented as follows:

Algorithm 2: The Bi-Section GSBF Algorithm
Step 0: Solve the weighted group-sparsity inducing norm minimization problem
PGSBF;

1. If it is infeasible, set p? =∞, go to End;

2. If it is feasible, obtain the solution ŵ, calculate ordering criterion (3.4.22), and sort
them in the
ascending order: θπ1 ≤ · · · ≤ θπL , go to Step 1;

Step 1: Initialize Jlow = 0, Jup = L, i = 0;
Step 2: Repeat

1. Set i← bJlow+Jup

2
c;

2. Solve the optimization problem P(A[i]) (2.3.4): if it is infeasible, set Jlow = i;
otherwise, set Jup = i;

Step 3: Until Jup − Jlow = 1, obtain J0 = Jlow and obtain the optimal active RRH set
A? with A? ∪ J = L and J = {π1, . . . , πJ0};
Step 4: Solve the problem P(A?), obtain the minimum network power consumption
and the corresponding transmit beamformers;
End

2.5.3 Iterative GSBF Algorithm

Under the GSBF framework, the main task of the first two stages is to order the RRHs ac-

cording to the criterion (3.4.22), which depends on the sparse solution to PGSBF, i.e., {ŵlk}.

However, when the minimum of rl = (
∑K

k=1 ‖ŵlk‖2
`2

)1/2 > 0 is not close to zero, it will

introduce large bias in estimating which RRHs can be switched off. To resolve this issue, we
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will apply the idea from the majorization-minimization (MM) algorithm [56] (please refer to

appendix B for details on this algorithm), to enhance group-sparsity for the beamformer to

better estimate which RRHs can be switched off.

The MM algorithms have been successfully applied in the re-weighted `1-norm (or mixed

`1/`2-norm) minimization problem to enhance sparsity [42, 43, 57]. However, these algo-

rithms failed to exploit the additional system prior information to improve the performance.

Specifically, they used the un-weighted `1-norm (or mixed `1/`p-norm) minimization as the

start point of the iterative algorithms and re-weighted the `1-norm (or mixed `1/`p-norm) only

using the estimate of the coefficients obtained in the last minimization step. Different from

the above conventional re-weighted algorithms, we exploit the additional system prior infor-

mation at each step (including the start step) to improve the estimation on the group sparsity

of the beamformer.

2.5.3.1 Re-weighted Group-Sparsity Inducing Norm Minimization

One way to enhance the group-sparsity compared with using the weighted mixed `1/`2 norm

Ω(w) in (3.4.1) is to minimize the following combinatorial function directly:

R(w) = 2
L∑
l=1

√
P c
l

ηl
I(‖w̃l‖`2 > 0), (2.5.7)

for which the convex function Ω(w) in (3.4.1) can be regarded as an `1-norm relaxation.

Unfortunately, minimizing R(w) will lead to a non-convex optimization problem. In this

subsection, we will provide a sub-optimal algorithm to solve (25) by adopting the idea from

the MM algorithm to enhance sparsity.

Based on the following fact in [58]

lim
ε→0

log(1 + xε−1)

log(1 + ε−1)
=

 0 if x = 0,

1 if x > 0,
(2.5.8)

we rewrite the indicator function in (2.5.7) as

I(‖w̃l‖`2 > 0) = lim
ε→0

log(1 + ‖w̃l‖`2ε−1)

log(1 + ε−1)
, ∀l ∈ L. (2.5.9)
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The surrogate objective functionR(w) can then be approximated as

f(w) = λε

L∑
l=1

√
P c
l

ηl
log(1 + ‖w̃l‖`2ε−1), (2.5.10)

by neglecting the limit in (2.5.9) and choosing an appropriate ε > 0, where λε = 2
log(1+ε−1)

.

Compared with Ω(w) in (3.4.1), the log-sum penalty function f(w) has the potential to be

much more sparsity-encouraging. The detailed explanations can be found in [57].

Since log(1 + x), x ≥ 0, is a concave function, we can construct a majorization function

for f by the first-order approximation of log(1 + ‖w̃l‖`2ε−1), i.e.,

f(w) ≤ λε

L∑
l=1

√
P c
l

ηl

 ‖w̃l‖`2
‖w̃[m]

l ‖`2 + ε
+ c(w[m])︸ ︷︷ ︸

g(w|w[m])

 , (2.5.11)

where w[m] is the minimizer at the (m − 1)-th iteration, and c(w[m]) = log(1+‖w̃[m]
l ‖`2)−

‖w̃[m]
l ‖`2/(‖w̃

[m]
l ‖`2 +ε) is a constant provided that w[m] is already known at the current m-th

iteration.

By omitting the constant part of g(w|w[m]) at the m-th iteration, which will not affect the

solution, we propose a re-weighted GSBF framework to enhance the group-sparsity:

P [m]
iGSBF : {w̃[m+1]

l }Ll=1 =arg min
L∑
l=1

β
[m]
l ‖w̃l‖`2

subject to C1(L), C2(L), (2.5.12)

where

β
[m]
l =

√
P c
l

ηl

1

(‖w̃[m]
l ‖`2 + ε)

,∀l = 1, . . . , L, (2.5.13)

are the weights for the groups at the m-th iteration. At each step, the mixed `1/`2-norm

optimization is re-weighted using the estimate of the beamformer obtained in the last mini-

mization step.

As this iterative algorithm cannot guarantee the global minimum, it is important to choose

a suitable starting point to obtain a good local optimum. As suggested in [42, 43, 57], this
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algorithm can be initiated with the solution of the unweighted `1-norm minimization, i.e.,

β
[0]
l = 1,∀l = 1, . . . , L. In our setting, however, the prior information on the system pa-

rameters can help us generate a high quality stating point for the iterative GSBF framework.

Specifically, with the available channel state information, we choose the `2-norm of the ini-

tial beamformer at the l-th RRH ‖w̃[0]
l ‖`2 to be proportional to its corresponding channel

power gain κl, arguing that the RRH with a low channel power gain should be encouraged

to be switched off as justified in section V-B. Therefore, from (2.5.13), we set the following

weights as the initiation weights for P [0]
iGSBF:

β
[0]
l =

√
P c
l

ηlκl
,∀l = 1, . . . , L. (2.5.14)

The weights indicate that the RRHs with a higher relative fronthaul link consumption, lower

power amplifier efficiency and lower channel power gain should be penalized more heavily.

As observed in the simulations, this algorithm converges very fast (typically within 20

iterations). We set the maximum number of iterations as mmax = L in our simulations.

2.5.3.2 Iterative Search Procedure

After obtaining the (approximately) sparse beamformers using the above re-weighted GSBF

framework, we still adopt the same ordering criterion (3.4.22) to fix the final active RRH set.

Different from the aggressive strategy in the bi-section GSBF algorithm, which assumes

that the RRH should be switched off as many as possible and thus results a minimum fron-

thaul network power consumption, we adopt a conservative strategy to determine the final

active RRH set by realizing that the minimum network power consumption may not be at-

tained when the fronthaul network power consumption is minimized.

Specifically, denote J0 as the maximum number of RRHs that can be switched off, the

corresponding inactive RRH set isJ = {π0, π1, . . . , πJ0}. The minimum network power con-

sumption should be searched over all the values of P∗(A[i]), whereA[i] = L\{π0, π1, . . . , πi}

and 0 ≤ i ≤ J0. This can be accomplished using an iterative search procedure that requires

to solve no more than L SOCP problems.

Therefore, the overall iterative GSBF algorithm is presented as Algorithm 3.
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Algorithm 3: The Iterative GSBF Algorithm

Step 0: Initialize the weights β[0]
l , l = 1, . . . , L as in (2.5.14) and the iteration counter

as m = 0;
Step 1: Solve the weighted GSBF problem P [m]

iGSBF (2.5.12): if it is infeasible, set
p? =∞ and go to End; otherwise, set m = m+ 1, go to Step 2;
Step 2: Update the weights using (2.5.13);
Step 3: If converge or m = mmax, obtain the solution ŵ and calculate the selection
criterion (3.4.22), and sort them in the ascending order: θπ1 ≤ · · · ≤ θπL , go to Step 4;
otherwise, go to Step 1;
Step 4: Initialize Z [0] = ∅, A[0] = {1, . . . , L}, and i = 0;
Step 5: Solve the optimization problem P(A[i]) (2.3.4);

1. If (2.3.4) is feasible, obtain p∗(A[i]), update the set Z [i+1] = Z [i] ∪ {πi+1} and
i = i+ 1, go to Step 5;

2. If (2.3.4) is infeasible, obtain J = {0, 1, . . . , i− 1}, go to Step 6;

Step 6: Obtain optimal RRH set A[j?] and beamformers minimizing P(A[j?]) with
j? = arg minj∈J p

∗(A[j]);
End

2.5.4 Complexity Analysis and Optimality Discussion

We have demonstrated that the maximum number of iterations is linear and logarithmical to

L for the “Iterative GSBF Algorithm” and the “Bi-Section GSBF Algorithm”, respectively.

Therefore, the convergence speed of the proposed GSBF algorithms scales well for large-

scale Cloud-RAN (e.g., with L = 100). However, the main computational complexity of the

proposed algorithms is related to solving an SOCP problem at each iteration. In particular,

with a large number of RRHs, the computational complexity of solving an SOCP problem

using the interior-point method is proportional to O(L3.5). Therefore, in order to solve a

large-sized SOCP problem, other approaches need to be explored (e.g., the alternating direc-

tion method of multipliers (ADMM) method [59]). This is an on-going research topic, and

we will leave it as our future research direction.

Furthermore, the proposed group sparse beamforming algorithm is a convex relaxation to

the original combinatorial optimization problem using the group-sparsity inducing norm, i.e.,

the mixed `1/`2-norm. It is very challenging to quantify the performance gap due to the con-

vex relaxation, for which normally specific prior information is needed, e.g., in compressive

sensing, the sparse signal is assumed to obey a power law (see Eq.(1.8) in [36]). However,

we do not have any prior information about the optimal solution. This is the fundamental

difference between our problem and the existing ones in the field of sparse signal processing.

36



Table 2.1: Simulation Parameters
Parameter Value
Path-loss at distance dkl (km) 148.1+37.6 log2(dkl) dB
Standard deviation of log-norm shadowing σs 8 dB
Small-scale fading distribution gkl CN (0, I)
Noise power σ2

k [4] (10 MHz bandwidth) -102 dBm
Maximum transmit power of RRH Pl [4] 1 W
Power amplifier efficiency ηl [47] 25%
Transmit antenna power gain 9 dBi

The optimality analysis of the group sparse beamforming algorithms will be left to our future

work.

2.6 Simulation Results

In this section, we simulate the performance of the proposed algorithms. We consider the

following channel model

hkl = 10−L(dkl)/20√ϕklsklgkl, (2.6.1)

where L(dkl) is the path-loss at distance dkl, , as given in Table 2.1, skl is the shadowing

coefficient, ϕkl is the antenna gain and gkl is the small scale fading coefficient. We use the

standard cellular network parameters as showed in Table 2.1. Each point of the simulation

results is averaged over 50 randomly generated network realizations. The network power

consumption is given in (2.2.7). We set P rrh
s,l = 4.3W and P tl

s,l = 0.7W , ∀l, and Polt = 20W .

The proposed algorithms are compared to the following algorithms:

• Coordinated beamforming (CB) algorithm: In this algorithm, all the RRHs are active

and only the total transmit power consumption is minimized [18].

• Mixed-integer nonlinear programming (MINLP) algorithm: This algorithm [52,

53] can obtain the global optimum. Since the complexity of the algorithm grows expo-

nentially with the number of RRHs L, we only run it in a small-size network.

• Conventional sparsity pattern (SP) based algorithm: In this algorithm, the un-

weighted mixed `1/`p-norm is adopted to induce group sparsity as in [41] and [43].

The ordering of RRHs is determined only by the group-sparsity of the beamformer,
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Figure 2.2: Average network power consumption versus target SINR.

i.e., θl = (
∑K

k=1 ‖ŵlk‖`2)1/2,∀l = 1, . . . , L, instead of (3.4.22). The complexity of the

algorithm grows logarithmically with L.

• Relaxed mixed-integer nonlinear programming (RMINLP) based algorithm: In

this algorithm, a deflation procedure is performed to switch off RRHs one-by-one based

on the solutions obtained via solving the relaxed MINLP by relaxing the integers to the

unit intervals [53]. The complexity of the algorithm grows linearly with L.

2.6.1 Network Power Consumption versus Target SINR

Consider a network with L = 10 2-antenna RRHs and K = 15 single-antenna MUs uni-

formly and independently distributed in the square region [−1000 1000] × [−1000 1000]

meters. We set all the relative fronthaul link power consumption to be P c
l = (5 + l)W, l =

1, . . . , L, which is to indicate the inhomogeneous power consumption on different fronthaul

links and RRHs. Fig. 2.2 demonstrates the average network power consumption with differ-

ent target SINRs.

This figure shows that the proposed GS algorithm can always achieve global optimum

(i.e., the optimal value from the MINLP algorithm), which confirms the effectiveness of the

proposed RRH selection rule for the greedy search procedure. With only logarithmic com-

plexity, the proposed bi-section GSBF algorithm achieves almost the same performance as
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the RMINLP algorithm, which has a linear complexity. Moreover, with the same complex-

ity, the gap between the conventional SP based algorithm and the proposed bi-section GSBF

algorithm is large. Furthermore, the proposed iterative GSBF algorithm always outperforms

the RMINLP algorithm, while both of them have the same computational complexity. These

confirm the effectiveness of the proposed GSBF framework to minimize the network power

consumption. Overall, this figure shows that our proposed schemes have the potential to re-

duce the power consumption by 40% in the low QoS regime, and by 20% in the high QoS

regime.

This figure also demonstrates that, when the target SINR increases2, the performance gap

between the CB algorithm and the other algorithms becomes smaller. In particular, when the

target SINR is relatively high (e.g., 8 dB), all the other algorithms achieve almost the same

network power consumption as the CB algorithm. This implies that almost all the RRHs need

to be switched on when the QoS requirements are extremely high. In the extreme case with

all the RRHs active, all the algorithms will yield the same network power consumption, as

all of them will perform coordinated beamforming with all the RRHs active, resulting in the

same total transmit power consumption.

2.6.1.1 Impact of Different Components of Network Power Consumption

Consider the same network setting as in Fig. 2.2. The corresponding average total transmit

power consumption p1(A) =
∑

l∈A
1
ηl

∑K
k=1 ‖wlk‖2

`2
is demonstrated in Fig. 2.3, and the

corresponding average total relative fronthaul link power consumption p2(A) =
∑

l∈A P
c
l

is shown in Fig. 2.4. Table 2.2 shows the average numbers of RRHs that are switched off

with different algorithms. From Fig. 2.3 and Fig. 2.4, we see that the CB algorithm, which

intends to minimize the total transmit power consumption, achieves the lowest total transmit

power consumption due to the highest beamforming gain with all the RRH active, but it has

the highest total relative fronthaul link power consumption. This implies that a joint RRH

selection and power minimization beamforming is required to minimize the network power

consumption.

From Table 2.2, we see that the proposed GS algorithm can switch off almost the same

number of RRHs as the MINLP algorithm. Furthermore, the proposed GSBF algorithms can

2We will show, in Table 2.2 and Fig. 2.3, both the number of active RRHs and the total transmit power
consumption will increase simultaneously to meet the QoS requirements.
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Figure 2.3: Average total transmit power consumption versus target SINR.

Table 2.2: The Average Number of Inactive RRHs with Different Algorithms
Target SINR [dB] 0 2 4 6 8
Proposed GS Algorithm 5.00 4.00 3.02 2.35 1.40
Proposed Bi-Section GSBF Algorithm 4.92 3.98 2.96 2.04 1.13
Proposed Iterative GSBF Algorithm 4.94 4.00 2.94 2.15 1.25
RMINLP Based Algorithm 4.88 3.90 2.79 1.85 1.00
Conventional SP Based Algorithm 4.88 3.90 2.81 1.94 1.10
CB Algorithm 0.00 0.00 0.00 0.00 0.00
MINLP Algorithm 5.00 4.00 3.08 2.42 1.44

switch off more RRHs than the RMINLP based algorithm and the conventional SP based al-

gorithm on average. Overall, the proposed algorithms achieve a lower total relative fronthaul

link power consumption, as shown in Fig. 2.4. In particular, the proposed iterative GSBF

algorithm can achieve a higher beamforming gain to minimize the total transmit power con-

sumption, as shown in Fig. 2.3. Therefore, the results in Fig. 2.3, Fig. 2.4, and Table 2.2

demonstrate the effectiveness of our proposed RRH selection rule and RRH ordering rule for

the GS algorithm and the GSBF algorithms, respectively. Furthermore, the results in Table

2.2 verify the group sparsity assumption in the GSBF algorithms.
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Figure 2.4: Average total relative fronthaul link power consumption versus target SINR.

2.6.2 Network Power Consumption versus Fronthaul Links Power Con-

sumption

Consider a network involving3L = 20 2-antenna RRHs and K = 15 single-antenna MUs

uniformly and independently distributed in the square region [−2000 2000] × [−2000 2000]

meters. We set all the relative fronthaul link power consumption to be the same, i.e., Pc =

P c
l ,∀l = 1, . . . , L and set the target SINR as 4 dB. Fig. 2.5 presents average network power

consumption with different relative fronthaul link power consumption.

This figure shows that both the GS algorithm and the iterative GSBF algorithm signifi-

cantly outperform other algorithms, especially in the high fronthaul link power consumption

regime. Moreover, the proposed bi-section GSBF algorithm provides better performance than

the conventional SP based algorithm and is close to the RMINLP based algorithm, while with

a lower complexity. This result clearly indicates the importance of considering the key system

parameters when applying the group sparsity beamforming framework.

Furthermore, this figure shows that all the algorithms achieve almost the same network

power consumption when the relative fronthaul link power consumption is relatively low

(e.g., 2W ). This implies that almost all the RRHs need to be switched on to get a high beam-

forming gain to minimize the total transmit power consumption when the relative fronthaul

3In [10, Section 6.1], some field trials were demonstrated to verify the feasibility of Cloud-RAN, in which,
a BBU pool can typically support 18 RRHs.
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Figure 2.5: Average network power consumption versus relative fronthaul links power con-
sumption.

link power consumption can be ignored, compared to the RRH transmit power consumption.

2.6.3 Network Power Consumption versus the Number of Mobile Users

Consider a network with L = 20 2-antenna RRHs uniformly and independently distributed in

the square region [−2000 2000]× [−2000 2000] meters. We set all the relative fronthaul link

power consumption to be the same, i.e., P c
l = 20W,∀l = 1, . . . , L and set the target SINR

as 4 dB. Fig. 2.6 presents the average network power consumption with different numbers of

MUs, which are uniformly and independently distributed in the same region.

Overall, this figure further confirms the following conclusions:

1. With the O(L2) computational complexity, the proposed GS algorithm has the best

performance among all the low-complexity algorithms.

2. With the O(L) computational complexity, the proposed iterative GSBF algorithm out-

performs the RMINLP algorithm, which has the same complexity.

3. With O(log(L)) computational complexity, the proposed bi-section GSBF algorithm

has almost the same performance with the RMINLP algorithm and outperforms the

conventional SP based algorithm, which has the same complexity. Therefore, the bi-

section GSBF algorithm is very attractive for practical implementation in large-scale
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Figure 2.6: Average network power consumption versus the number of mobile users.

Cloud-RAN.

2.7 Discussions

We proposed a group sparse beamforming framework to improve the energy efficiency of cel-

lular networks with the new architecture of Cloud-RAN. It was shown that the fronthaul net-

work power consumption can not be ignored when designing a green Cloud-RAN. By jointly

selecting the active RRHs and minimizing the transmit power consumption through coordi-

nated beamforming, the overall network power consumption can be significantly reduced,

especially in the low QoS regime. The proposed group sparse formulation Psparse serves as

a powerful design tool for developing low complexity GSBF algorithms. Through rigorous

analysis and careful simulations, the proposed GSBF framework was demonstrated to be very

effective to provide near-optimal solutions. Especially, for the large-scale Cloud-RAN, the

proposed bi-section GSBF algorithm will be a prior option due to its low complexity, while

the iterative GSBF algorithm can be applied to provide better performance in a medium-size

network. Simulation also showed that the proposed GS algorithm can always achieve nearly

optimal performance, which makes it very attractive in the small-size clustered deployment

of Cloud-RAN.
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This initial investigation demonstrated the advantage of Cloud-RAN in terms of the net-

work energy efficiency. More works will be needed to exploit the full benefits and overcome

the main challenges of Cloud-RAN. Future research directions include theoretical analysis of

the optimality of the proposed group sparse beamforming algorithms, more efficient beam-

forming algorithms for very large-scale Cloud-RAN deployment, joint beamforming and

compression when considering the limited-capacity fronthaul links, joint user scheduling,

and effective CSI acquisition methods.

44



Chapter 3

Smoothed Lp-Minimization for Multicast

Green Cloud-RAN with Imperfect CSI

In this chapter we propose a holistic sparse optimization framework to design a green Cloud-

RAN by taking into consideration the power consumption of the fronthaul links, multicast

services, and imperfect CSI. Specifically, we first identify the group sparsity structures in the

solutions of the network power minimization problem, which calls for adaptive remote radio

head (RRH) selection. However, finding the optimal sparsity structures turns out to be NP-

hard with the coupled challenges of the `0-norm based combinatorial objective function and

the nonconvex quadratic QoS constraints due to multicast beamforming and imperfect CSI. In

contrast to the previous works on convex but non-smooth group sparsity inducing approaches,

e.g., the mixed `1/`2-norm relaxation, we adopt the nonconvex but smoothed `p-minimization

(0 < p ≤ 1) approach to promote group sparsity in the multicast setting, thereby enabling ef-

ficient algorithm design based on the principle of the majorization-minimization (MM) algo-

rithm and the semidefinite relaxation (SDR) technique. In particular, an iterative reweighted-

`2 algorithm is developed, which will converge to a Karush-Kuhn-Tucker (KKT) point of

the resulting smoothed `p-minimization problems. Proofs and preliminaries are relegated to

Appendix B. The material in this chapter has been presented in part in [60–62].

3.1 Introduction

The great success of wireless industry is driving the proposal of new services and innovative

applications, such as Internet of Things (IoT) and mobile Cyber-Physical applications, which
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yield an exponential growth of wireless traffic with billions of connected devices [11]. To

handle orders of magnitude mobile data traffic, network densification and heterogeneity sup-

ported by various radio access technologies (e.g., massive MIMO [3] and millimeter-wave

communications [63]) have become an irreversible trend in 5G wireless networks [1]. How-

ever, this will have a profound impact and bring formidable challenges to the design of 5G

wireless communication systems in terms of energy efficiency, capital expenditure (CAPEX),

operating expenditure (OPEX), and interference management [11]. In particular, the energy

consumption will become prohibitively high in such dense wireless networks in the era of

mobile data deluge. Therefore, to accommodate the upcoming diversified and high-volume

data services in a cost-effective and energy-efficient way, a paradigm shift is required in the

design of 5G wireless networks.

By leveraging the cloud computing technology [12], the cloud radio access network

(Cloud-RAN) [10, 64] becomes a disruptive technology to address the key challenges of en-

ergy efficiency in 5G wireless networks. Specifically, by moving the baseband units (BBUs)

into a single BBU pool (i.e., a cloud data center) with shared computation resources, scalable

and parallel signal processing, coordinated resource allocation and cooperative interference

management algorithms [7, 65] can be enabled among a large number of radio access points,

thereby significantly improving the energy efficiency [29, 66] and spectral efficiency [67]. As

the conventional compact base stations are replaced by low-cost and low-power remote radio

heads (RRHs), which are connected to the BBU pool through high-capacity and low-latency

fronthaul links, Cloud-RAN provides a cost-effective and energy-efficient way to densify the

radio access networks [11].

While Cloud-RAN has a great potential to reduce the energy consumption of each RRH,

with additional fronthaul link components and dense deployment of RRHs, new challenges

arise for designing green Cloud-RAN. In particular, instead of only minimizing the total

transmit power consumption via coordinated beamforming [18], the network power con-

sumption consisting of the fronthaul link power consumption and the RRH power consump-

tion should be adopted as the performance metric for designing green Cloud-RAN [29, 66].

To minimize the network power consumption, a group sparse beamforming framework was

proposed in [29] to adaptively select the active RRHs and the corresponding fronthaul links

via controlling the group sparsity structures of the beamforming vectors. Such an idea of ex-

ploiting sparsity structures in the solutions has also demonstrated its effectiveness in solving
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other mixed combinatorial optimization problems in Cloud-RAN, e.g., the data assignment

problem [68] and the joint uplink and downlink network power minimization problem [66].

The effectiveness of group sparse beamforming has been demonstrated in [5], but with

certain limitations in the network model, e.g., perfect CSI is assumed at the BBU pool, and

only unicast services are considered. In practice, inevitably there will be uncertainty in the

available CSI, originating from various sources, e.g., limited feedback [69], channel estima-

tion errors [70], partial CSI acquisition [71, 72] and delay in the obtained CSI [73, 74]. In

terms of transmission services from the RRHs, it has been well recognized that the physical

layer integration technique [23] can effectively improve the network performance. In partic-

ular, the RRHs should not only transmit data to individual users [75] (i.e., broadcast/unicast

services) but also integrate additional multicast services [76], where the RRHs transmit a

common message in such a way that all the MUs in the same group can decode it. Such

multigroup multicast transmission is promising to provide high capacity services and content-

aware applications in next generation wireless networks. For instance, with physical layer

caching for wireless video delivery [77], it is common that multiple users are interested in the

same video stream, which creates multicast groups.

In this chapter, we will thus focus on the design of green Cloud-RAN by jointly mini-

mizing the RRH power consumption and fronthaul link power consumption, considering the

practical scenarios with imperfect CSI and multigroup multicast services. We adopt the ro-

bust optimization approach to address the CSI uncertainty, such that the QoS requirements

are satisfied for any realization of the uncertainty in a predefined set [78]. The unique chal-

lenges of the network power minimization problem arise from both the infinite number of the

non-convex quadratic QoS constraints (due to the robust design criteria and multicast trans-

mission) and the combinatorial composite objective function (due to the consideration of both

the relative fronthaul link power consumption and the RRH transmit power consumption).

3.1.1 Related Works

3.1.1.1 Robust Multicast Beamforming

Although the integration of multicast, individual services and cooperative transmission can

significantly improve the capacity of wireless networks [23], it will bring significant chal-

lenges from both the information theoretic [79] and signal processing perspectives [76, 80].
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In particular, the physical-layer multicast beamforming problem is in general NP-hard due

to the non-convex quadratic QoS constraints [76]. Furthermore, to address the CSI uncer-

tainty, one may either adopt the stochastic optimization formulation [81] or the robust op-

timization formulation [82]. However, the stochastic optimization formulations often yield

highly intractable problems, e.g., the stochastic coordinated beamforming problem based on

the chance constrained programming [72]. The worst-case based robust optimization, on the

other hand, has the advantage of computational tractability [78]. Although the original ro-

bust and/or multicast beamforming design problems may be non-convex due to the infinite

number of non-convex quadratic QoS constraints [83], the convex optimization based SDR

technique [84] with S-lemma [22] has recently been applied to provide a principled way to

develop polynomial time complexity algorithms to find an approximate solution [85].

However, we cannot directly apply such SDR technique to solve the network power min-

imization problem due to the non-convex combinatorial composite objective function, which

represents the network power consumption.

3.1.1.2 Group Sparse Beamforming

The convex sparsity-inducing penalty approach [38] has recently been widely used to develop

polynomial time complexity algorithms for the mixed combinatorial optimization problems

in wireless networks, e.g., joint base station clustering and transmit beamforming [41], joint

antenna [43] or RRH [29] selection and transmit beamforming. The main idea of this ap-

proach is that the sparsity pattern of the beamforming vector, which can be induced by min-

imizing a sparsity penalty function (e.g., the mixed `1/`2-norm minimization can induce the

group-sparsity), can provide guidelines for, e.g., antenna selection [43], where the antennas

with smaller beamforming coefficients (measured by the `∞-norm) have a higher priority to

be switched off. However, most works only consider the ideal scenario (e.g., perfect CSI

and broadcast services [29]), which usually yield convex constraints (e.g., second-order cone

constraints [29]).

Unfortunately, we cannot directly adopt the non-smooth weighted mixed `1/`2-norm de-

veloped in [29] to induce the group-sparsity for the robust multicast beamforming vector.

This is because the resultant group-sparsity inducing optimization problem will be highly in-

tractable, due to the non-smooth sparsity-inducing objective function and the infinite number

of non-convex quadratic QoS constraints.
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Based on above discussion and in contrast to the previous work [29] on group sparse

beamforming with a non-convex combinatorial composite objective function but convex QoS

constraints in the unicast Cloud-RAN, we need to address the following coupled challenges

in order to solve the network power minimization problem for multicast green Cloud-RAN

with imperfect CSI:

• An infinite number of non-convex quadratic QoS constraints;

• The combinatorial composite objective function.

Thus, to apply the computationally efficient group sparse beamforming approach [29] to more

practical scenarios, unique challenges arise. We need to redesign the group-sparsity inducing

norm, and then deal with the non-convex group-sparsity inducing optimization problem with

an infinite number of non-convex quadratic QoS constraints. We should also develop efficient

algorithms for non-convex feasibility problems for the adaptive RRH selection, and for non-

convex robust multicast beamforming design after determining the active RRHs.

3.1.2 Contributions

In this chapter, we provide a convex relaxation based robust group sparse beamforming

framework for network power minimization in multicast Cloud-RAN with imperfect CSI.

The major contributions are summarized as follows:

1. A group sparse beamforming formulation is proposed to minimize the network power

consumption for Cloud-RAN. It will simultaneously control the group-sparsity struc-

ture and the magnitude of the beamforming coefficients, thereby minimizing the rel-

ative fronthaul link power consumption and the transmit power consumption, respec-

tively. The group sparse beamforming modeling framework lays the foundation for

developing the three-stage robust group sparse beamforming algorithm based on the

convex relaxation.

2. In the first stage, a smoothed `p-minimization approach is adopted to induce the group-

sparsity structure for the robust multicast beamforming vector, thereby guiding the

RRH selection. The main motivation for smoothed `p-minimization formulation is to

make the group-sparsity inducing penalty function compatible with the quadratic QoS
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constraints. Based on the principle of the MM algorithm and the SDR technique, an it-

erative reweighted-`2 algorithm is proposed to solve the resulting nonconvex smoothed

`p-minimization problem. This algorithm is proven to converge to a KKT point of the

convexified smoothed `p-minimization problem.

3. In the second stage, a PhaseLift approach based algorithm is proposed to solve the non-

convex feasibility problems, based on which the active RRHs can be determined with

a binary search. Finally, the SDR technique is adopted to solve the non-convex robust

multicast beamforming optimization problem to determine the transmit beamformers

for the active RRHs.

4. Simulation results will demonstrate the effectiveness of the proposed robust group

sparse beamforming algorithm to minimize the network power consumption.

3.1.3 Organization

The remainder of the chapter is organized as follows. Section 3.2 presents the system model

and problem formulation, followed by the problem analysis. In Section 3.3, the group sparse

beamforming modeling framework is proposed to formulate the the network power min-

imization problem. The smoothed `p-minimization and semidefinite programming (SDP)

based robust group sparse beamforming algorithm is developed in Section 3.4. Simulation

results will be illustrated in Section 3.5. Finally, conclusions and discussions are presented

in Section 3.6.

3.2 System Model and Problem Formulation

3.2.1 System Model

Consider a multicast Cloud-RAN with L RRHs and K single-antenna mobile users (MUs),

where the l-th RRH is equipped withNl antennas, as shown in Fig. 1.1. The centralized signal

processing is performed at the baseband unit (BBU) pool [10, 29]. Define S = {1, . . . , K}

as the set of all the MUs and L = {1, . . . , L} as the set of all the RRHs. We focus on the

downlink transmission, for which the signal processing is more challenging. Assume that

there are M (1 ≤ M ≤ K) multicast groups, i.e., {G1, . . . ,GM}, where Gm is the set of
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MUs in the multicast group m with 1 ≤ m ≤ M . LetM = {1, . . . ,M} be the set of the

multicast groups. Each MU only belongs to a single multicast group, i.e., Gi ∩ Gj = ∅ such

that ∪iGi = S and
∑

i |Gi| = K. Let vlm ∈ CNl be the transmit beamforming vector from

the l-th RRH to the k-th MU in group Gm. The encoded transmission information symbol of

the multicast group m is denoted as sm ∈ C with E[|sm|2] = 1. The channel propagation

between MU k and RRH l is denoted as hkl ∈ CNl . Therefore, the received signal yk,m ∈ C

at MU k in the multicast group m is given by

yk,m =
L∑
l=1

hH
klvlmsm +

∑
i 6=m

L∑
l=1

hH
klvlisi + nk,∀k ∈ Gm, (3.2.1)

where nk ∼ CN (0, σ2
k) is the additive Gaussian noise at MU k. We assume that sm’s and

nk’s are mutually independent and all the MUs apply single user detection. The signal-to-

interference-plus-noise ratio (SINR) for MU k ∈ Gm is given by

Γk,m =
|hH
kvm|2∑

i 6=m |hH
kvi|2 + σ2

k

,∀k ∈ Gm, (3.2.2)

where hk , [hTk1, . . . ,h
T
kL]T ∈ CN with N =

∑L
l=1 Nl, and vm , [vT1m,v

T
2m, . . . ,v

T
Lm]T ∈

CN is the aggregative beamforming vector for the multicast group m from all the RRHs. The

transmit signal at RRH l is given by

xl =
M∑
m=1

vlmsm,∀l. (3.2.3)

Each RRH has its own transmit power constraint, i.e.,

M∑
m=1

‖vlm‖2
2 ≤ Pl, ∀l, (3.2.4)

where Pl > 0 is the maximum transmit power of RRH l.

3.2.2 Problem Formulation

3.2.2.1 Imperfect CSI

In practice, the CSI at the BBU pool will be imperfect, which may originate from a variety

of sources. For instance, in frequency-division duplex (FDD) systems, the CSI imperfection
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may originate from downlink training based channel estimation [70] and uplink limited feed-

back [69]. It could also be due to the hardware deficiencies, partial CSI acquisition [71, 72]

and delays in CSI acquisition [73, 74]. In this chapter, we adopt the following additive error

model [83, 86, 87] to model the channel imperfection from all the RRHs to MU k, i.e.,

hk = ĥk + ek,∀k, (3.2.5)

where ĥk is the estimated channel vector and ek is the estimation error vector. There are

mainly two ways to model the CSI uncertainty: one is the stochastic modeling based on the

probabilistic description, and the other is the deterministic and set-based modeling. How-

ever, the stochastic CSI uncertainty modeling will yield probabilistic QoS constraints. The

resulting chance constrained programming problems are highly intractable in general [72].

Therefore, to seek a computationally tractable formulation, we further assume that the error

vectors satisfy the following elliptic model [83, 86, 87]:

eH
kΘkek ≤ 1,∀k, (3.2.6)

where Θk ∈ HN×N with Θk � 0 is the shape of the ellipsoid. This model is motivated by

viewing the channel estimation as the main source of CSI uncertainty [87, Section 4.1].

3.2.2.2 Network Power Consumption

In Cloud-RAN, it is vital to minimize the network power consumption, consisting of RRH

transmit power and relative fronthaul network power [29], in order to design a green wireless

network. RRH selection will be adopted for this purpose. Specifically, let A be the set of

active RRHs, the network power consumption is given by

p(A) =
∑
l∈A

P c
l +

∑
l∈A

M∑
m=1

1

ηl
‖vlm‖2

2, (3.2.7)

where P c
l ≥ 0 is the relative fronthaul link power consumption [29] (i.e., the static power

saving when both the fronthaul link and the corresponding RRH are switched off) and ηl > 0

is the drain inefficiency coefficient of the radio frequency power amplifier. The typical values

are P c
l = 5.6W and ηl = 25% [29], respectively.

Given the QoS thresholds γ = (γ1, . . . , γK), in this chapter, we aim at minimizing the
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network power consumption while guaranteeing the worst-case QoS requirements in the pres-

ence of CSI uncertainty and the per-RRH power constraints, i.e., we will consider the follow-

ing non-convex mixed combinatorial robust multicast beamforming optimization problem,

P : minimize
v,A,Z

∑
l∈A

P c
l +

∑
l∈A

M∑
m=1

1

ηl
‖vlm‖2

2 (3.2.8)

subject to
M∑
m=1

‖vlm‖2
2 ≤ Pl,∀l ∈ A (3.2.9)

M∑
m=1

‖vlm‖2
2 = 0,∀l ∈ Z (3.2.10)

|(ĥk + ek)
Hvm|2∑

i 6=m |(ĥk + ek)Hvi|2 + σ2
k

≥ γk (3.2.11)

eH
kΘkek ≤ 1,∀k ∈ Gm,m ∈M, (3.2.12)

where Z is the set of inactive RRHs such that A ∪ Z = L and v = [vlm] is the aggre-

gated beamforming vector from all the RRHs to all the MUs. The constraints in (3.2.10)

indicate that the transmit powers of the inactive RRHs are enforced to be zero. That is, the

beamforming coefficients at the inactive RRHs are set to be zero simultaneously. Constraints

(3.2.11) and (3.2.12) indicate that all the QoS requirements in (3.2.11) should be satisfied for

all realizations of the errors ek’s within the feasible set formed by the constraint (3.2.12).

The network power minimization problem P imposes the following challenges:

1. For a given set of CSI error vectors ek’s, the corresponding network power minimiza-

tion problem is highly intractable, due to the combinatorial composite objective func-

tion (3.2.8) and the non-convex quadratic constraints (3.2.10) and (3.2.11).

2. There are an infinite number of non-convex quadratic QoS constraints due to the worst-

case design criterion.

To efficiently address the above unique challenges in a unified fashion, in this chapter,

we will propose a systematic convex relaxation approach based on SDP optimization to solve

problem P . In particular, the combinatorial challenge will be addressed by the sparsity-

inducing penalty approach in Section 3.4.1, based on the smoothed `p-minimization. The

convex optimization technique based on PhaseLift, SDR and S-lemma will be adopted to

cope with the infinite number of non-convex quadratic constraints in Sections 3.4.2 and 3.4.3.
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In the next subsection, we will provide a detailed analysis of problem P . In particular,

the connections with the formulations in existing literatures will be discussed, which will

reveal the generality of the formulation P for practical design problems in Cloud-RAN.

3.2.3 Problem Analysis

While problem P incorporates most of the practical elements in Cloud-RAN, i.e., imperfect

CSI and multigroup multicast transmission, it raises unique challenges compared with the

existing works. Following is a list of key aspects of the difficulty of problem P , accompanied

with potential solutions.

• Robust Beamforming Design: Suppose that all the RRHs are active, i.e., A = L, with

broadcast/unicast transmission, i.e., |Gm| = 1, ∀m and M = K. Then problem P

reduces to the conventional worst-case non-convex robust beamforming design prob-

lems [83, 86]. For this special case, the SDR technique [84] combined with the S-

lemma [22] is proven to be powerful to find good approximation solutions to such

problems.

• Multicast Beamforming Design: Physical-layer multicast beamforming design prob-

lems [76] prove to be non-convex quadratically constrained problems (QCQP) [22],

even with perfect CSI and all the RRHs active. Again, the SDR technique can relax

this problem to a convex one, yielding efficient approximation solutions.

• Quadratically Constrained Feasibility Problem: Suppose that the inactive RRH set

Z with |Z| > 0 is fixed, then we have the quadratic equation constraints (3.2.10) in

problem P . PhaseLift [88] is a convex programming technique to relax the non-convex

feasibility problem with such quadratic equation constraints to a convex one by lifting

the problem to higher dimensions and relaxing the rank-one constraints by the convex

surrogates, i.e., the trace norms or nuclear norms.

• Non-convex Mixed-integer Nonlinear Programming Optimization Problem: Problem

P can be easily reformulated as a mixed-integer non-linear programming (MINLP)

problem as shown in [29]. However, the MINLP problem has exponential complexity

[52]. Therefore, such a reformulation cannot bring algorithmic design advantages.

One thus has to resort to some global optimization techniques [28, 53] (e.g, branch-

and-bound method) or greedy algorithms [29]. Instead, the group-sparsity inducing
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penalty approach has recently received enormous attention to seek effective convex

relaxation for the MINLP problems, e.g., for jointly designing transmit beamformers

and selecting bases stations [41], transmit antennas [43], or RRHs [29]. However,

with multicast transmission and imperfect CSI, we cannot directly adopt the group-

sparsity inducing penalty developed in [29] with the weighted mixed `1/`2-norm, as

we have seen that we need to lift the problem P to higher dimensions to cope with the

non-convexity of the robust multicast beamforming problem. This requires to develop

a new group-sparsity inducing penalty function, which needs to be compatible with

quadratic forms, as the beamforming coefficients will be lifted to higher dimensions.

The above discussions show that problem P cannot be directly solved by existing meth-

ods. Thus, we will propose a new robust group sparse beamforming algorithm in this chapter,

to solve the highly intractable problem P . Specifically, in Section 3.3, we will propose a

group sparse beamforming modeling framework to reformulate the original problem P . The

algorithmic advantages of working with the group sparse beamforming formulation will be

revealed in Section 3.4, where an iterative reweighted-`2 algorithm will be developed.

3.3 A Group Sparse Beamforming modeling framework

In this section, we propose a group sparse beamforming modeling framework to reformulate

the network power minimization problem P by controlling the group-sparsity structure and

the magnitude of the beamforming coefficients simultaneously. The main advantage of such

a modeling framework is the capability of enabling polynomial time complexity algorithm

design via convex relaxation.

3.3.1 Network Power Consumption Modeling

We observe that the network power consumption (3.2.7) can be modeled by a composite

function parameterized by the aggregative beamforming coefficients v ∈ CNM , which can

be written as a partition

v = [vT11, . . . ,v
T
1M︸ ︷︷ ︸

ṽT
1

, . . . ,vTL1, . . . ,v
T
LM︸ ︷︷ ︸

ṽT
L

]T , (3.3.1)
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where all the coefficients in a given vector ṽl = [vTl1, . . . ,v
T
lM ]T ∈ CMNl form a beam-

forming coefficient group. Specifically, observe that the optimal aggregative beamforming

vector v in problem P should have the group-sparsity structure. That is, when the RRH l

is switched off, the corresponding coefficients in the beamforming vector ṽl will be set to

zero simultaneously. Overall there may be multiple RRHs being switched off and the corre-

sponding beamforming vectors will be set to zero, yielding a group-sparsity structure in the

beamforming vector v.

Define the support of the beamforming vector v as

T (v) = {i|vi 6= 0}, (3.3.2)

where v = [vi] is indexed by i ∈ V with V = {1, . . . ,MN}. Furthermore, define the

sets Vl = {M
∑l−1

i=1 Ni + 1, . . . ,M
∑l

i=1Ni}, l = 1, . . . , L, as a partition of V , such that

ṽl = [vi] is indexed by i ∈ Vl. The network power consumption in the first term of (3.2.7)

thus can be defined by the following combinatorial function with respect to the support of the

beamforming vector, i.e.,

F (T (v)) =
L∑
l=1

P c
l I(T (v) ∩ Vl 6= ∅), (3.3.3)

where I(T ∩Vl 6= ∅) is an indicator function that takes value 1 if T ∩Vl 6= ∅ and 0 otherwise.

Therefore, the total relative fronthaul link power consumption can be reduced by encouraging

the group-sparsity structure of the beamforming vector v.

Furthermore, the total transmit power consumption in the second term of (3.2.7) can be

defined by the continuous function with respect to the `2-norms of the beamforming vector,

i.e.,

T (v) =
L∑
l=1

M∑
m=1

1

ηl
‖vlm‖2

2, (3.3.4)

which implicates that the transmit powers of the inactive RRHs are zero, i.e., the correspond-

ing beamforming coefficients are zero. Therefore, the transmit power consumption can be

minimized by controlling the magnitude of the beamforming coefficients. As a result, the
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network power consumption in (3.2.7) can be rewritten as the following combinatorial com-

posite function parameterized by the beamforming vector coefficients v, i.e.,

P (v) = F (T (v)) + T (v). (3.3.5)

Thus, it requires to simultaneously control both the combinatorial function F and the con-

tinuous function T to minimize the network power consumption. Such a composite function

in (3.3.5) captures the unique property of the network power consumption that involves two

parts (i.e., relative fronthaul network power consumption and transmit power consumption)

only through the beamforming coefficients v.

3.3.2 Group Sparse Beamforming Modeling

Based on (3.3.5), problem P can be reformulated as the following robust group sparse beam-

forming problem

Psparse : minimize
v

F (T (v)) + T (v)

subject to
M∑
m=1

‖vlm‖2
2 ≤ Pl,∀l ∈ L

|(ĥk + ek)
Hvm|2∑

i 6=m |(ĥk + ek)Hvi|2 + σ2
k

≥ γk

eH
kΘkek ≤ 1,∀k ∈ Gm,m ∈M, (3.3.6)

via optimizing the beamforming coefficients v. We will show that the special structure of the

objective function in Psparse yields computationally efficient algorithm design. In particular,

the weighted mixed `1/`2-norm will be derived as a convex surrogate to control both parts in

(3.3.5) by inducing the group-sparsity structure for the robust multicast beamforming vector

v, thereby providing guidelines for RRH selection.
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Figure 3.1: The proposed three-stage robust group sparse beamforming frame- work.

3.4 A Smoothed `p-Minimization Framework for Network

Power Minimization

In this section, we will present the semidefinite programming technique for the robust group

sparse beamforming problem Psparse by lifting the problem to higher dimensions. The gen-

eral idea is to relax the combinatorial composite objective function by the smoothed `p-norm

to induce the group-sparsity structure for the beamforming vector v. Unfortunately, the re-

sultant group sparse inducing optimization problem is still non-convex. We thus propose

an iterative reweighted-`2 algorithm to find a stationary point to the convexified smoothed

`p-minimization problem, thereby providing the information on determining the priority for

the RRHs that should be switched off. Based on the ordering result, a selection procedure is

then performed to determine active RRH sets, followed by the robust multicast coordinated

beamforming for the active RRHs in the final stage. The proposed three-stage robust group

sparse beamforming framework is presented in Fig. 3.1.

3.4.1 Stage One: Smoothed `p-Minimization for Group Sparsity Induc-

ing

In this section, we describe a systematic way to address the combinatorial challenge in prob-

lem Psparse by deriving a convex surrogate to approximate the composite objective function

in problem Psparse. Specifically, we first derive the tightest convex positively homogeneous

lower bound for the network power consumption function (3.3.5) in the following proposi-

tion.

Proposition 2. The tightest convex positively homogeneous lower bound of the objective

function in problem Psparse is given by

Ω(v) = 2
L∑
l=1

√
P c
l

ηl
‖ṽl‖2, (3.4.1)
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which is a group-sparsity inducing norm for the aggregative robust multicast beamformer

vector v.

Proof. Please refer to [29, Appendix A] for the proof.

Based on proposition 2, one way is to minimize the weighted mixed `1/`2-norm to induce

the group-sparsity structure for the aggregative robust multicast beamforming vector v:

PGSBF : minimize
v

Ω(v)

subject to
M∑
m=1

‖vlm‖2
2 ≤ Pl,∀l ∈ L

|(ĥk + ek)
Hvm|2∑

i 6=m |(ĥk + ek)Hvi|2 + σ2
k

≥ γk (3.4.2)

eH
kΘkek ≤ 1, ∀k ∈ Gm,m ∈M. (3.4.3)

This is, however, a non-convex optimization problem due to the non-convex worst-case QoS

constraints (3.4.2) and (3.4.3).

To seek computationally efficient algorithms to solve the non-convex problem PGSBF,

we first propose to lift the problem to higher dimensions with optimization variables as

Qm = vmvH
m ∈ CN×N ,∀m. To further enhance sparsity in problem PGSBF and extract the

variables Qm’s, in Section 3.4.1.1, a smoothed-`p formulation is proposed to turn the non-

smooth group-sparsity inducing norm Ω(v) into a smooth one with quadratic forms. We then

“linearize” the non-convex worst-case QoS constraints with the S-lemma in Section 3.4.1.2.

In Section 3.4.1.3, an iterative reweighted-`2 algorithm is proposed based on the principle of

MM algorithm.

3.4.1.1 Smoothed `p-Minimization

To promote sparse solutions, instead of applying the `1-norm based convex approximation

approach, we adopt a nonconvex approach based on the `p-norm (0 < p ≤ 1) to seek a tighter

approximation of the `0-norm in the objective functions in problem (3.3.5) [89]. The `p-norm

is defined as ‖z‖p = (
∑n

i=1 |zi|p)
1/p with z ∈ Cm. Furthermore, to enable efficient algorithm

design as well as induce the quadratic forms in the resulting approximation problems, we
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instead adopt the following smoothed version of the `p-norm to induce sparsity:

fp(z; ε) :=
m∑
i=1

(z2
i + ε2)p/2, (3.4.4)

for z ∈ Rm and some small fixed regularizing parameter ε > 0.

3.4.1.2 Linearize the Non-convex Worst-case QoS Constraints

Define Gm = (Qm − γk
∑

i 6=m Qi), and then the worst-case QoS constraints (3.4.2) and

(3.4.3) can be rewritten as

min
eH
kΘkek≤1

(ĥk + ek)
HGm(ĥk + ek) ≥ γkσ

2
k,∀k ∈ Gm. (3.4.5)

As the number of choices of ek’s in the worst-case QoS constraint (3.4.5) is infinite, there are

an infinite number of such “linearized” QoS constraints. Fortunately, using the S-lemma [22,

Appendix B.2], the worst-case QoS constraints (3.4.5) can be equivalently written as the

following finite number of convex constraints:

C1 :

 Gm Gmĥk

ĥH
kGm ĥH

kGmĥk − γkσ2
k

+ λk

Θk 0

0H −1

 � 0, (3.4.6)

where λk ≥ 0 and k ∈ Gm with m ∈M.

Based on the above discussions and utilizing the principle of SDR technique [84] by

dropping the rank-one constraints for Qk’s, we propose to solve the following smoothed `p-

minimization problem to induce the group-sparsity structure for the beamforming vector v:

PGS(ε) : minimize
Q,λ

L∑
l=1

ρl

(
M∑
m=1

Tr(ClmQm) + ε2

)p/2

subject to C1, C2(L), λk ≥ 0,Qm � 0

∀k ∈ Gm,m ∈M, (3.4.7)

where ρl = P c
l /ηl, λ = [λk] and C2(A) is the set of linearized per-RRH transmit power
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constraints,

C2(A) :
M∑
m=1

Tr(ClmQm) ≤ Pl, l ∈ A. (3.4.8)

Although problems PGS is still nonconvex due to the nonconvex objective function, the

resulting smoothed `p-minimization problem preserve the algorithmic advantages, as will be

presented in the next subsection.

3.4.1.3 Iterative Reweighted-`2 Algorithm

Consider the following smoothed `p-minimization problem,

Psm(ε) : minimize
z∈C

fp(z; ε) :=
m∑
i=1

(z2
i + ε2)p/2, (3.4.9)

where C is an arbitrary convex set, z ∈ Rm and ε > 0 is some fixed regularizing parameter.

In the following, we first prove that the optimal solution of the smoothed `p-minimization

problem Psm(ε) is also optimal for the original non-smooth `p-minimization problem (i.e.,

Psm(0)) when ε is small. We then demonstrate the algorithmic advantages of the smoothness

in the procedure of developing the iterative reweighted-`2 algorithm.

3.4.1.4 Optimality of Smoothing the `p-Norm

The set of KKT paris of problem Psm(ε) is given as

Ω(ε) = {z ∈ C : 0 ∈ ∇zfp(z; ε) +NC(z)}, (3.4.10)

whereNC(z) is the normal cone of a convex set C at point z consisting of the outward normals

to all hyperplanes that support C at z, i.e.,

NC(z) := {s : 〈s,x− z〉 ≤ 0,∀x ∈ C}. (3.4.11)

Define the deviation of a given set Z1 from another set Z2 as [81],

D(Z1,Z2) = sup
z1∈Z1

(
inf
z2∈Z2

‖z1 − z2‖
)
. (3.4.12)
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We then have the following theorem on the relationship between the smoothed `p-minimization

problem Psm(ε) and the original non-smooth `p-minimization problem Psm(0).

Theorem 1. Let Ωε be the set of KKT points of problem Psm(ε). Then, we have

lim
ε↘0

D(Ω(ε),Ω(0)) = 0. (3.4.13)

Proof. Please refer to Appendix B.1 for details.

This theorem indicates that any limit of the sequence of KKT paris of problem Psm(ε) is a

KKT pair of problem Psm(0) when ε is small enough. That is, at least a local optimal solution

can be achieved. In the sequel, we will focus on finding a KKT point of problem Psm(ε) with

a small ε, yielding good approximations to the KKT points of the `p-minimization problem

Psm(0) to induce sparsity in the solutions.

3.4.1.5 The MM Algorithm for the Smoothed `p-Minimization

With the established asymptotic optimality, we then leverage the principle of the MM al-

gorithm to solve problem (3.4.9). Basically, this algorithm generates the iterates {zn}∞n=1

by successively minimizing upper bounds Q(z; z[n]) of the objective function fp(z; ε). The

quality of the upper bounds will control the convergence (rate) and optimality of the resulting

algorithms. Inspired by the results in the expectation-maximization (EM) algorithm [90, 91],

we adopt the upper bounds in the following proposition to approximate the smoothed `p-

norm.

Proposition 3. Given the iterate z[n] at the n-th iteration, an upper bound for the objective

function of the smoothed `p-norm fp(z; ε) can be constructed as follows,

Q(z;ω[n]) :=
m∑
i=1

ω
[n]
i z

2
i , (3.4.14)

where

ω
[n]
i =

p

2

[(
z

[n]
i

)2

+ ε2
] p

2
−1

,∀i = 1, . . . ,m. (3.4.15)

From the weights given in (3.4.15), it is clear that, by adding the regularizer parameter ε > 0,

we can avoid yielding infinite values when some zi’s become zeros in the iterations.
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Proof. Define the approximation error as

fp(z; ε)−Q(z;ω[n]) =
m∑
i=1

[κ(z2
i )− κ′((z

[n]
i )2)z2

i ], (3.4.16)

where κ(s) = (s + ε2)p/2 with s ≥ 0. The sound property of the Q-function (3.4.14) is that

the approximation error (3.4.16) attains its maximum at z = z[n]. In particular, we only need

to prove that the function g(s) = κ(s)−κ′(s[n])s with s ≥ 0 attains the maximum at s = s[n].

This is true based on the facts that g′(s[n]) = 0 and κ(s) is strictly concave.

Let z[n+1] be the minimizer of the upper bound function Q(z;ω[n]) at the n-th iteration,

i.e.,

z[n+1] := arg min
z∈C

Q(z;ω[n]). (3.4.17)

Based on Proposition 3 and (3.4.17), we have

fp(z
[n+1]; ε) =Q(z[n+1];ω[n]) + fp(z

[n+1]; ε)−Q(z[n+1];ω[n])

≤Q(z[n+1];ω[n]) + fp(z
[n]; ε)−Q(z[n];ω[n])

≤Q(z[n];ω[n]) + fp(z
[n]; ε)−Q(z[n];ω[n])

= fp(z
[n]; ε), (3.4.18)

where the first inequality is based on the fact that function (fp(z; ε) − Q(z;ω[n])) attains its

maximum at z = z[n], and the second inequality follows from (3.4.17). Therefore, mini-

mizing the upper bound, i.e., the Q-function in (3.4.14), can reduce the objective function

fp(z; ε) successively.

Remark 1. In the context of the EM algorithm [92] for computing the maximum likelihood

estimator of latent variable models, the functions−fp(z; ε) and−Q(z;ω[n]) can be regarded

as the log-likelihood and comparison functions (i.e., the lower bound of the log-likelihood),

respectively [90].

The MM algorithm for the smoothed `p-minimization problem is presented in Algorithm

4.

The convergence of the iterates {z[n]}∞n=1 (3.4.19) is presented in the following theorem.
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Algorithm 4: Iterative Reweighted-`2 Algorithm
input: Initialize ω[0] = (1, . . . , 1); I (the maximum number of iterations)
Repeat
1) Solve problem

z[n+1] := arg min
z∈C

m∑
i=1

ω
[n]
i z

2
i . (3.4.19)

If it is feasible, go to 2); otherwise, stop and return output 2.
2) Update the weights as

ω
[n+1]
i =

p

2

[(
z

[n+1]
i

)2

+ ε2
] p

2
−1

,∀i = 1, . . . ,m. (3.4.20)

Until convergence or attain the maximum iterations and return output 1.
output 1: z?; output 2: Infeasible.

Theorem 2. Let {z[n]}∞n=1 be the sequence generated by the iterative reweighted-`2 algorithm

(3.4.19). Then, every limit point z̄ of {z[n]}∞n=1 has the following properties

1. z̄ is a KKT point of problem P(ε);

2. fp(z[n]; ε) converges monotonically to fp(z?; ε) for some KKT point z?.

Proof. Please refer to Appendix B.2 for details.

Remark 2. The algorithm consisting of the iterate (3.4.19) accompanied with weights (3.4.20)

is known as the iterative reweighted least squares [92–94] in the fields of statistics, machine

learning and compressive sensing. In particular, with a simple constraint C, the iterates

often yield closed-forms with better computational efficiency. For instance, for the noiseless

compressive sensing problem [93], the iterates have closed-form solutions [93, (1.9)]. There-

fore, this method has better performance in terms of computational efficiency and also better

signal recovery capability compared with the conventional `1-minimization approach.

In contrast to the existing works on the iterative reweighted least squares methods, we pro-

vide a new perspective to develop the iterative reweighted-`2 algorithm to solve the smoothed

`p-minimization problem with convergence guarantees based on the principle of the MM

algorithm. Furthermore, the main motivation and advantages for developing the iterates

(3.4.19) is to induce the quadratic forms in the objective function in problem PGSBF to make

it compliant with the SDR technique, thereby inducing the group sparsity structure in the
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multicast beamforming vectors via convex programming. Applying algorithm 4 to problem

PGS(ε) is straightforward.

3.4.2 Stage Two: RRH Selection

Given the solution Q? to the group sparse inducing optimization problem PGS(ε), the group-

sparsity structure information for the beamformer v can be extracted from the following

relation:

‖ṽl‖`2 =

(
M∑
m=1

Tr(ClmQm)

)1/2

, ∀l. (3.4.21)

Based on the (approximated) group-sparsity information in (3.4.21), the following ordering

criterion [29] incorporating the key system parameters is adopted to determine which RRHs

should be switched off, i.e.,

θl =

√
κlηl
P c
l

(
M∑
m=1

Tr(ClmQ?
m

)1/2

,∀l ∈ L, (3.4.22)

where κl =
∑K

k=1 ‖ĥkl‖2
2 is the channel gain for the estimated channel coefficients between

RRH l and all the MUs. Therefore, the RRH with a smaller parameter θl will have a higher

priority to be switched off. Note that most previous works applying the idea of sparsity in-

ducing norm minimization approach directly map the sparsity pattern to their applications.

For instance, in [43], the transmit antenna with smaller coefficients in the beamforming co-

efficient group (measured by the `∞-norm) will have a higher priority to be switched off.

In [29], however, we show that the ordering rule (3.4.22), which incorporates the key system

parameters, yields much better performance than the pure sparsity pattern based selection

rule in terms of network power minimization.

In this chapter, we adopt a simple RRH selection procedure, i.e., binary search, due to its

low-complexity. Specifically, based on the ordering rule (3.4.22), we sort the coefficients in

the ascending order: θπ1 ≤ θπ2 ≤ · · · ≤ θπL to determine the active RRH set. Denote J0 as

the maximum number of RRHs that can be switched off. That is, problem F (A[i]) is feasible
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for any i ≤ J0,

F (A[i]) : find v

subject to (3.2.9), (3.2.10), (3.2.11), (3.2.12), (3.4.23)

where A[i] ∪ Z [i] = L with Z [i] = {π0, π1, . . . , πi} and π0 = ∅. Likewise, problem F (A[i])

with A[i] = {πi+1, . . . , πL} is infeasible for any i > J0. A binary search procedure can be

adopted to determine J0, which only needs to solve no more than (1+dlog(1+L)e) feasibility

problems (3.4.23) as will be presented in Algorithm 5. Denote A[J0] as the final active RRH

set, we thus need to solve the following transmit power minimization problem

P(A) : minimize
v

∑
l∈A

(
1

ηl

M∑
m=1

‖vlm‖2
2 + P c

l

)
subject to (3.2.9), (3.2.10), (3.2.11), (3.2.12), (3.4.24)

with the fixed active RRH set A = A[J0] to determine the transmit beamformer coefficients

for the active RRHs. Unfortunately, both problems F (A) and P(A) are non-convex and

intractable. Thus, in the chapter, we resort to the computationally efficient semidefinite pro-

gramming technique to find approximate solutions to feasibility problem F (A) and opti-

mization problem P(A).

Notice that, with perfect CSI assumptions as in [29, 43], given the active RRH set A, the

size of the corresponding optimization problem P(A) (e.g., [29, (12)] and [43, (13)]) will

be reduced. The key observation is that we only need to consider the channel links from the

active RRHs. However, with imperfect CSI, we still need to consider the channel links from

all the RRHs due to the lack of the knowledge of the exact values of the CSI errors ek’s. As

a result, the sizes of corresponding optimization problems P(A[i])’s cannot be reduced with

imperfect CSI.
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3.4.2.1 PhaseLift to the Non-convex Feasibility Problem

In this subsection, we use the PhaseLift technique [88] to find approximate solutions to the

non-convex feasibility problem F (A). Specifically, we first lift the problem to higher di-

mensions such that the feasibility problem F (A) can be reformulated as

find Q1, . . . ,QM

subject to C1, C2(A), C3(Z), λk ≥ 0,Qm � 0

rank(Qm) = 1,∀k ∈ Gm,m ∈M, (3.4.25)

where

C3(Z) :
M∑
m=1

Tr(ClmQm) = 0, ∀l ∈ Z. (3.4.26)

The main idea of the PhaseLift technique is to approximate the non-convex rank functions

in problem (3.4.25) using the convex surrogates, yielding the following convex feasibility

problem

PPL(A) : find Q1, . . . ,QM

subject to C1, C2(A), C3(Z), λk ≥ 0,Qm � 0

∀k ∈ Gm,m ∈M, (3.4.27)

which is an SDP problem and can be solved using the interior-point method [22] efficiently.

Furthermore, the Gaussian randomization procedure [84] can be applied to obtain a rank-one

approximate solution from the solution of PPL(A).

Remark 3. The PhaseLift technique, serving as one promising application of the SDR method,

was proposed in [88] to solve the phase retrieval problem [95], which is mathematically

a feasibility problem with multiple quadratic equation constraints. Various conditions are

presented in [88, 95] for the phase retrieval problem, under which the corresponding solu-

tion of the PhaseLift relaxation problem yields a rank-one solution with a high probability.

However, for our problem PPL with additional complicated constraints, it is challenging to

perform such rank-one solution analysis. Thus, in this chapter, we only focus on developing

computationally efficient approximation algorithms based on the SDR technique.
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3.4.3 Stage Three: SDR to the Robust Multicast Beamforming Problem

Once we have selected active RRHs, i.e., fix the set A, we need to finalize the beamform-

ing vector by solving problem P(A). We lift the non-convex optimization problem P(A)

to higher dimensions and adopt the SDR technique by dropping the rank-one constraints,

yielding the following convex relaxation problem

PSDR(A) : minimize
Q,λ

∑
l∈A

(
1

ηl

M∑
m=1

Tr(ClmQm) + P c
l

)
subject to C1, C2(A), C3(Z), λk ≥ 0,Qm � 0

∀k ∈ Gm,m ∈M, (3.4.28)

which is an SDP problem and can be solved using the interior-point method [22]. It is impor-

tant to investigate whether the solution to the problem PSDR(A) yields a rank-one solution.

This is, however, an on-going research topic [85]. In this chapter, if the rank-one solution is

failed to be obtained, the Gaussian randomization method [84] will be employed to obtain a

rank-one approximation solution to PSDR(A).

Finally, we arrive at the robust group sparse beamforming algorithm as shown in Algo-

rithm 5.

Algorithm 5: Robust Group Sparse Beamforming Algorithm
Step 0: Solve the group-sparsity inducing optimization problem PGS (3.4.7) using
Algorithm 1.

1. If it is infeasible, go to End.

2. If it is feasible, obtain the solutions Q?
m’s, calculate the ordering criterion (3.4.22),

and sort them in the ascending order: θπ1 ≤ · · · ≤ θπL , go to Step 1.

Step 1: Initialize Jlow = 0, Jup = L, i = 0.
Step 2: Repeat

1. Set i← bJlow+Jup

2
c.

2. Solve problem PPL(A[i]) (3.4.27): if it is infeasible, set Jup = i; otherwise, set
Jlow = i.

Step 3: Until Jup − Jlow = 1, obtain J0 = Jlow and obtain the optimal active RRH set
A? with A? ∪ J = L and J = {π1, . . . , πJ0}.
Step 4: Solve problem PSDR(A?) (3.4.28), obtain the robust multicast beamforming
coefficients for the active RRHs.
End
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Remark 4. The proposed robust group sparse beamforming algorithm consists of three

stages. In the first stage, we observe that the iterative reweighted-`2 algorithm converges

in 20 iterations on average in all the simulated settings in this chapter, while it is interesting

to analyze the convergence rate for this algorithm. In the second stage, to find the set of active

RRHs, we only need to solve no more than (1 + dlog(1 + L)e) convex feasibility problems

(3.4.27) using the bi-section method. Finally, we need to solve problem (3.4.28) to determine

the transmit beamforming coefficients for the fixed active RRHs.

3.5 Simulation Results

In this section, we analyze the performance of the proposed robust group sparse beamforming

algorithm. For illustration purposes, all the estimated channels ĥk’s are modeled as spatially

uncorrelated Rayleigh fading and the CSI errors are modeled as the elliptic model (3.2.6)

with Qk = ε−2
k IN ,∀k. We assume that each multicast group has the same number of MUs,

i.e., |Ω1| = |Ω2| = · · · = |ΩM |. The power amplifier efficiency coefficients are set to

be ηl = 25%,∀l. The perturbed parameter ε in the iterative reweighted-`2 algorithm is set

to be 10−3 and the algorithm will stop if either the difference between the objective values

of consecutive iterations is less than 10−3 or it exceeds the predefined maximum iterations

20. Each point of the simulation results is averaged over 50 randomly generated channel

realizations, except for Fig. 3.2, where we only report one typical channel realization.

3.5.1 Convergence of the Iterative Reweighted-`2 Algorithm

Consider a network with L = 10 2-antennas RRHs and 3 multicast groups with 2 single-

antenna MUs in each group, i.e., |Ωm| = 2,∀m. All error radii εk’s are set to be 0.05. The

convergence of the iterative reweighted-`2 algorithm is demonstrated in Fig. 3.2 for a typical

channel realization. This figure shows that the iterative reweighted-`2 algorithm converges

very fast (less 20 iterations) in the simulated network size.

69



0 10 20 30 40

580

600

620

640

660

680

Iteration

O
bj

ec
tiv

e
V

al
ue

Figure 3.2: Convergence of the iterative reweighted-`2 algorithm.

Table 3.1: The Average Number of Active RRHs with Different Algorithms for Scenario One
Target SINR [dB] 0 2 4 6 8
Coordinated Beamforming 5.00 5.00 5.00 5.00 5.00
`1/`∞-Norm Algorithm 2.00 2.33 2.73 3.30 4.10
Proposed Algorithm 2.00 2.13 2.63 3.13 4.00
Exhaustive Search 2.00 2.07 2.60 3.10 4.00

3.5.2 Network Power Minimization

3.5.2.1 Scenario One

We first consider a network with L = 5 2-antenna RRHs and M = 2 multicast groups each

has 2 single-antenna MUs, i.e., |Ωm| = 2,∀m. The relative fronthaul links power consump-

tion are set to be P c
l = 5.6W,∀l. All error radii εk’s are set to be 0.01. Fig. 3.3 demonstrates

the average network power consumption with different target SINRs. The corresponding av-

erage number of active RRHs and average total transmit power consumption are showed in

Table 3.1 and Table 3.2, respectively.

Specifically, Fig. 3.3 shows that the proposed robust group sparse beamforming algo-

rithm achieves near-optimal values of network power consumption compared with the ones

obtained by the exhaustive search algorithm via solving a sequence of problems (3.4.28). Fur-

thermore, it is observed that the proposed algorithm outperforms the square of `1/`∞-norm
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Figure 3.3: Average network power consumption versus target SINR for scenario one.

Table 3.2: The Average Total Transmit Power Consumption with Different Algorithms for
Scenario One

Target SINR [dB] 0 2 4 6 8
Coordinated Beamforming 1.56 2.55 4.15 6.72 10.89
`1/`∞-Norm Algorithm 3.88 5.13 7.10 9.63 12.76
Proposed Algorithm 3.28 5.12 6.67 9.32 12.61
Exhaustive Search 3.20 5.18 6.71 9.43 12.54

based algorithm with sparsity pattern ordering rule in [43] in terms of network power min-

imization. Specifically, the objective function of the group-sparsity inducing optimization

problem (3.4.7) will be replaced by R =
∑L

l1=1

∑L
l2=1 maxm maxnl1

maxnl2
|Qm(nl1 , nl2)|

with Qm(i, j) being the entry indexed by (i, j) in Qm. Then the RRH with smaller beam-

forming coefficients measured by the `∞-norm will have a higher priority to be switched off.

In particular, Table 3.1 shows that the proposed algorithm can switch off more RRHs than the

`1/`∞-norm based algorithm, which is almost the same as the exhaustive search algorithm.

Besides, this table also verifies the group-sparsity assumption for the aggregative transmit

beamformer v, i.e., the beamforming coefficients of the switched off RRHs are set to be ze-

ros simultaneously. Meanwhile, Table 3.2 shows that the proposed algorithm can achieve

higher transmit beamforming gains, yielding lower total transmit power consumption com-

pared with the `1/`∞-norm based algorithm. The coordinated beamforming algorithm [18],

which aims at only minimizing the total transmit power consumption with all the RRHs
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Figure 3.4: Average network power consumption versus target SINR for scenario two.

Table 3.3: The Average Relative Fronthaul Links Power Consumption with Different Algo-
rithms for Scenario Two

Target SINR [dB] 0 2 4 6 8
Coordinated Beamforming 72.80 72.80 72.80 72.80 72.80
`1/`∞-Norm Algorithm 36.08 43.76 52.36 60.16 69.56
Proposed Algorithm 30.40 38.08 45.56 56.76 70.48

active, achieves the highest beamforming gain but with the highest relative fronthaul links

power consumption.

Overall, Fig. 3.3, Table 3.1 and Table 3.2 show the effectiveness of the proposed robust

group sparse beamforming algorithm to minimize the network power consumption.

3.5.2.2 Scenario Two

We then consider a larger-sized network with L = 8 2-antenna RRHs and M = 5 multicast

groups each has 2 single-antenna MUs, i.e., |Ωm| = 2,∀m. The relative fronthaul links

power consumption are set to be P c
l = [5.6 + (l − 1)]W,∀l. All error radii εk’s are set

to be 0.05. Due to the high computational cost of the exhaustive search algorithm, we only

simulate the `1/`∞-norm based algorithm and the proposed robust group sparse beamforming

algorithm. Fig. 3.4, Table 3.3 and Table 3.4 show the average network power consumption,

the average relative fronthaul link power consumption and the average total transmit power
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Table 3.4: The Average Total Transmit Power Consumption with Different Algorithms for
Scenario Two

Target SINR [dB] 0 2 4 6 8
Coordinated Beamforming 3.02 5.16 8.84 15.05 25.41
`1/`∞-Norm Algorithm 8.54 10.96 14.43 19.87 27.42
Proposed Algorithm 8.03 11.25 16.32 20.03 26.28

consumption versus SINRs with different algorithms, respectively. From Fig. 3.4, we see

that the proposed robust beamforming algorithm achieves lower network power consumption

compared with the `1/`∞-norm algorithm and the coordinated beamforming algorithm. In

particular, Table 3.3 shows that proposed algorithm achieves much lower relative fronthaul

links power consumption, thought with a little higher transmit power consumption at the

moderate target SINR regimes. Compared with the `1/`∞-norm algorithm, the performance

gain of the proposed algorithm is more prominent with low target SINRs.

Overall, all the simulation results illustrate the effectiveness of the proposed robust group

sparse beamforming algorithm to control both the relative fronthaul power consumption and

the RRH transmit power consumption with different network configurations.

3.6 Discussions

This chapter described a systematic way to develop computationally efficient algorithms

based on the group-sparsity inducing penalty approach for the highly intractable network

power minimization problem for multicast Cloud-RAN with imperfect CSI. A novel smoothed

`p-minimization approach was proposed to induce the group-sparsity structure for the robust

multicast beamformer, thereby guiding the RRH selection. The iterative reweighted-`2 min-

imization, PhaseLift method, and SDR technique based algorithms were developed to solve

the group-sparsity inducing optimization problem, the feasibility problems in RRH selection

procedure and the transmit beamformer design problem in the final stage, respectively. Sim-

ulation results illustrated the effectiveness of the proposed robust group sparse beamforming

algorithm to minimize the network power consumption.

Several future directions of interest are listed as follows:

• Although the proposed SDP based robust group sparse beamforming algorithm has a

polynomial time complexity, the computational cost of the interior-point method will

the prohibitive when the dimensions of the SDP problems are large, such as in dense
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wireless networks. One may use the first-order method, e.g., the alternating direction

method of multipliers (ADMM) [59, 96, 97] to seek modest accuracy solutions within

reasonable time for the large-scale SDP problems [60].

• It is desirable to lay the theoretical foundations for the tightness of the group-sparsity

inducing penalty approach for finding approximate solutions to the network power min-

imization problem as a mixed-integer non-linear optimization problem, and also for the

tightness of PhaseLift method and SDR technique.

• It is interesting to apply the sparsity modeling framework to more mixed-integer non-

linear optimization problems, i.e., the joint user scheduling or admission and beam-

forming problems, which are essentially required to control the sparsity structure and

the magnitude of the beamforming coefficients.
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Chapter 4

Chance Constrained Programming for

Dense Cloud-RAN with CSI Uncertainty

In this chapter we first propose a novel CSI acquisition method, called compressive CSI

acquisition, to resolve the CSI challenge for Cloud-RAN. This new method can effectively

reduce the CSI signaling overhead by obtaining instantaneous coefficients of only a subset of

all the channel links. As a result, the BBU pool will obtain mixed CSI consisting of (imper-

fect) instantaneous values of some links and statistical CSI for the others. We then establish a

generic stochastic coordinated beamforming (SCB) framework to deal with CSI uncertainty

in the available mixed CSI. It provides flexibility in the channel uncertainty modeling (e.g.,

general stochastic model), while guaranteeing optimality in the transmission strategies. The

SCB problem turns out to be a joint chance constrained program (JCCP) and is known to be

highly intractable. In contrast to all of the previous algorithms for JCCP that can only find

feasible but sub-optimal solutions, we propose a novel stochastic DC (difference-of-convex)

programming algorithm based on successive convex approximation with optimality guaran-

tee, which can serve as the benchmark for evaluating heuristic and sub-optimal algorithms as

well as help investigate the effectiveness of the proposed CSI acquisition strategy. To further

reduce the CSI acquisition overhead, a low rank matrix completion approach via Riemannian

optimization is presented for topological interference management in the partially connected

wireless networks. Proofs are deferred in Appendix C. The material in this chapter has been

presented in part in [25, 71, 72].
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4.1 Introduction

Network cooperation is a promising way to improve both the energy efficiency and spectral

efficiency of wireless networks by sharing control information and/or user data [7]. Among

all the cooperation strategies, jointly processing the user data can achieve the best perfor-

mance by exploiting the benefits of a large-scale virtual MIMO system [65, 98]. This inspires

a recent proposal of a new network architecture, i.e., cloud radio access network (Cloud-

RAN) [10, 29], which will enable fully cooperative transmission/reception by moving all the

baseband signal processing to a cloud data center. In order to fully exploit the benefits of

cooperative networks and develop efficient transmission strategies (i.e., coordinated beam-

forming), channel state information (CSI) is often required. However, as the BBU pool can

typically support hundreds of RRHs, obtaining full CSI in Cloud- RAN will deplete the radio

resources, which can be regarded as the curse of dimensionality of Cloud-RAN. In particular,

Lozano et al. [8] showed that the full cooperation gain is limited by the overhead of the or-

thogonal pilot-assisted channel estimation for uplink transmission in large-scale cooperative

cellular networks. Huh et al. [9] quantified the downlink training overhead for large-scale

network MIMO, which is regarded as the system overhead bottleneck even if the uplink feed-

back overhead is ignored. Therefore, the development of novel and effective CSI acquisition

methods is critical for the practical implementation of the fully cooperative Cloud-RAN. We

thus propose a novel CSI acquisition method, called compressive CSI acquisition, which

can systematically reduce both the pilot training overhead and uplink feedback overhead.

Specifically, it is achieved by exploiting the sparsity of the large-scale fading coefficients and

determining, before the training phase, the channel coefficients needed to obtain their instan-

taneous values. As a result, the BBU pool will obtain the mixed CSI, including a subset of

instantaneous CSI and statistical CSI for the other channel coefficients.

However, the channel knowledge uncertainty in the mixed CSI due to the partial and

imperfect CSI brings technical challenges in system performance optimization. To address

such challenges brought by the channel knowledge uncertainty, one may either adopt a robust

optimization formulation [82] or stochastic optimization formulation [81]. Specifically, for

the robust formulation, the channel knowledge uncertainty model is deterministic and set-

based [86]. Thus, the corresponding transmission strategies aim at guaranteeing the worst-

case performance over the entire uncertainty set. The primary advantage of robust formu-

lation is the computational tractability [78]. However, the worst-case formulation might be
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over-conservative [78], as the probability of the worst case could be very small [17]. Mean-

while, how to model the uncertainty set is also challenging [87]. On the other hand, in the

stochastic optimization formulation, the channel knowledge is modeled by a probabilistic

description. Thus, the corresponding transmission strategies seek to immunize a solution

against the stochastic uncertainty in a probabilistic sense [99–103]. The freedom of the prob-

abilistic robustness can provide improved system performance [102] and provide a tradeoff

between the conservativeness and probability guarantee [78].

Motivated by the fact that most wireless systems can tolerate occasional outages in the

quality-of-service (QoS) requirements [99–101], in this chapter, we propose a stochastic co-

ordinated beamforming (SCB) framework to minimize the total transmit power while guar-

anteeing the system probabilistic QoS requirements. In this framework, we only assume

that the distribution information of the channel uncertainty is available, but without any fur-

ther structural modeling assumptions (e.g., adopting the ellipsoidal error model for robust

design [86] or assuming complex Gaussian random distribution for the channel errors [101–

103] for stochastic design). In spite of the distinct advantages, including the design flexibility

and the insights obtained by applying the SCB framework to handle the CSI uncertainty, it

falls into a joint chance constrained program (JCCP) [81], which is known to be highly in-

tractable [104]. All the available algorithms (e.g., the scenario approach [71, 100, 105] and

the Bernstein approximation method [99, 101]) can only find feasible but suboptimal solu-

tions without any optimality guarantee.

In contrast, in this chapter, we propose a novel stochastic DC programming algorithm,

which can find the globally optimal solution if the original SCB problem is convex and find

a locally optimal solution if the problem is non-convex. The main idea of the algorithm is to

reformulate the system probabilistic QoS constraint as a DC constraint, producing an equiv-

alent stochastic DC program. Although the DC programming problem is still non-convex, it

has the algorithmic advantage and can be efficiently solved by the successive convex approx-

imation algorithm [104, 106].

The main computational complexity of the proposed algorithm comes from solving a

large-sized sample problem with the Monte Carlo approach at each iteration. This makes such

an approach inapplicable in large-size networks. However, the proposed stochastic DC pro-

gramming algorithm gives a first attempt to solve a highly-intractable and highly-complicated

problem with optimality guarantee, while existing algorithms fail to possess the optimality
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feature. Therefore, it can serve as a performance benchmark for evaluating other suboptimal

and heuristic algorithms.

4.1.1 Related Works

The chance constrained programming has recently received emerging interests in designing

efficient resource allocation strategies in communication networks by leveraging the distri-

bution information of uncertain channel knowledge [71, 99–103, 107]. However, due to the

high intractability of the underlying chance or probabilistic constraints (e.g., it is difficult

to justify the convexity or provide analytical expressions), even finding a feasible solution

is challenging. Therefore, it is common to approximate the probability constraint to yield

computationally tractable and deterministic formulations. One way is to approximate the

chance constraints using analytical functions, which, however, often requires further assump-

tions on the distribution of the uncertain channel knowledge (e.g., complex Gaussian distri-

butions for Bernstein-type inequality approximation [101, 103] or the affine constraint func-

tions in perturbations for Bernstein approximation [99, 102, 108]). The other way is to use the

Monte Carlo simulation approach to approximate the chance constraints (e.g., the scenario

approach [71, 100, 105] and the conditional-value-at-risk (CVaR) [109]). However, all the

above approaches only seek conservative approximations to the original problem. Thus, it is

difficult to prove the optimality and quantify the conservativeness of the obtained solutions.

Hong et. al [104] recently made a breakthrough on providing optimality of the highly

intractable joint chance constrained programming problems for the first time. However, the

convexity of the functions in the chance constraint is required. Our proposed stochastic DC

programming algorithm is inspired by the ideas in [104]. Unfortunately, the functions in

the chance constraint in our problem are non-convex, and thus, we cannot directly apply

the algorithm in [104]. Instead, by exploiting the special structure of the functions in the

chance constraint, we equivalently reformulate the chance constraint into a DC constraint.

The resulting DC program is further supported by efficient algorithms. Thus, we extend the

work [104] by removing the convexity assumption on the functions in the chance constraint.

Furthermore, to improve the convergence rate, instead of fixing the approximation parameter

as in [104], a joint approximation method is proposed.
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4.1.2 Contributions

In this chapter, we provide a general framework to design optimal transmission strategies with

CSI uncertainty for wireless cooperative networks. The major contributions are summarized

as follows:

1. We propose a novel compressive CSI acquisition method that can effectively reduce

both the pilot training overhead and uplink feedback overhead by exploiting the sparsity

of the large-scale fading coefficients.

2. We establish a general SCB framework to cope with the uncertainty in the available

channel knowledge, which intends to minimize the total transmit power with a system

probabilistic QoS guarantee. This framework only requires the distribution information

of the uncertain channel coefficients. Thus, it enjoys the flexibility in modeling channel

knowledge uncertainty without any further structural assumptions. The SCB problem

is then formulated as a JCCP problem.

3. We develop a novel stochastic DC programming algorithm to solve the SCB problem,

which will converge to the globally optimal solution if the SCB problem is convex or

a locally optimal solution if it is non-convex. The proposed stochastic DC program-

ming algorithm can be regarded as the first attempt to guarantee the optimality for

the solutions of JCCP without the convexity assumption on functions in the chance

constraint [104], while the available algorithms (i.e., the scenario approach and the

Bernstein approximation method) for JCCP can only find a feasible solution without

any optimality guarantee.

4. The proposed SCB framework is simulated in Section 4.4. In particular, the conver-

gence, conservativeness, stability and performance gains of the proposed algorithm are

illustrated.

4.1.3 Organization

The remainder of the chapter is organized as follows. Section 4.2 presents the system model

and problem formulation, followed by the problem analysis. In Section 4.3, the stochastic

DC programming algorithm is developed. Simulation results will be presented in Section
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4.4. Finally, conclusions and discussions are presented in Section 4.5. To keep the main text

clean and free of technical details, we divert most of the proofs to the appendix.

4.2 System Model and Problem Formulation

We consider a fully cooperative Cloud-RAN1 with L remote radio heads (RRHs), where the

l-th RRH is equipped with Nl antennas, and there are K single-antenna mobile users (MUs).

The centralized signal processing is performed at a central processor, e.g., at the baseband

unit (BBU) pool in Cloud-RAN [29]. The propagation channel from the l-th RRH to the

k-th MU is denoted as hkl ∈ CNl , 1 ≤ k ≤ K, 1 ≤ l ≤ L. We focus on the downlink

transmission, for which the joint signal processing is more challenging. The received signal

yk ∈ C at MU k is given by

yk =
L∑
l=1

hH
klvlksk +

∑
i 6=k

L∑
l=1

hH
klvlisi + nk,∀k, (4.2.1)

where sk is the encoded information symbol for MU k with E[|sk|2] = 1, vlk ∈ CNl is the

transmit beamforming vector from the l-th RRH to the k-th MU, and nk ∼ CN (0, σ2
k) is the

additive Gaussian noise at MU k. We assume that sk’s and nk’s are mutually independent and

all the users apply single user detection. The corresponding signal-to-interference-plus-noise

ratio (SINR) for MU k is given by

Γk(v,hk) =
|hH
kvk|2∑

i 6=k |hH
kvi|2 + σ2

k

,∀k, (4.2.2)

where hk , [hTk1,h
T
k2, . . . ,h

T
kL]T = [hkn]1≤n≤N ∈ CN withN =

∑L
l=1Nl, vk , [vT1k,v

T
2k, . . . ,v

T
Lk]

T ∈

CN and v , [vk]
K
k=1 ∈ CNK . The beamforming vectors vlk’s are designed to minimize the

total transmit power while satisfying the QoS requirements for all the MUs. The beamformer

design problem can be formulated as

PFull : minimize
v∈V

L∑
l=1

K∑
k=1

‖vlk‖2

subject to Γk(v,hk) ≥ γk, ∀k, (4.2.3)

1The proposed framework can be easily extended to more general cooperation scenarios as shown in [86].
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where γk is the target SINR for MU k, and the convex set V is the feasible set of vlk’s that

satisfy the per-RRH power constraints:

V ,

{
vlk ∈ CNl :

K∑
k=1

‖vlk‖2 ≤ Pl,∀l, k

}
, (4.2.4)

with Pl as the maximum transmit power of the RRH l.

The problem PFull can be reformulated as a second-order conic programming (SOCP)

problem, which is convex and can be solved efficiently (e.g., via the interior-point method).

Please refer to [29] for details. Such coordinated beamforming can significantly improve

the network energy efficiency. However, solving problem PFull requires full and perfect

CSI available at the central processor. In practice, inevitably there will be uncertainty in

the available channel knowledge. Such uncertainty may originate from various sources, e.g.,

training based channel estimation [70], limited feedback [69], delays [73, 74], hardware defi-

ciencies [86] and partial CSI acquisition [71, 107]. In the next subsection, we will provide a

generic stochastic model for the CSI uncertainty.

4.2.1 Compressive CSI Acquisition

In this subsection, we will present the proposed compressive CSI acquisition method. The

main idea is to determine the most “relevant” channel links that are critical for performance

before the training phase, and then only the coefficients of these links will be obtained during

CSI training.

4.2.1.1 CSI Overhead Reduction

We will first quantify the CSI overhead for both training and feedback phases. The dis-

cussion will be general, as we do not make any assumption on the duplexing mode. With

compressive CSI acquisition, only part of the channel coefficients will be obtained. For user

k, define a set Ωk of size Dk (0 ≤ Dk ≤ N ) such that the channel coefficients hkn will be

obtained during CSI training if and only if (k, n) ∈ Ωk. Given Ωk,∀k ∈ K, and assuming

that orthogonal pilot symbols are used for downlink training, then the training overhead is

proportional to max1≤k≤K Dk. This is justified by modeling the orthogonal pilot allocation

problem as a graph coloring problem on an unweighted bipartite graphG = (N ,K, E), where

N , {1, 2, . . . , N} is the set of transmit antennas, K is the set of MUs. In this case, an edge

81



e ∈ E exists if (n, k) ∈ Ω where Ω , Ω1 ∪ · · · ∪ ΩK , n ∈ N and k ∈ K. By the Vizing’s

theorem [110], the minimum number of colors assigned to the edges of a bipartite graph so

that no two adjacent edges have the same color (corresponding to no mutual interference for

pilot training) is its maximum degree. Therefore, the required number of orthogonal pilots

is max1≤k≤K Dk, which quantifies the training overhead. For the uplink feedback overhead,

which is needed for the FDD system, given Ωk,∀k ∈ K, in order to guarantee a constant

CSI distortion d, the total CSI feedback bits should scale as O(
∑K

k=1Dk log(1/d)) [111].

Therefore,
∑K

k=1Dk is a good indicator for the feedback overhead.

From the above discussion, the CSI overhead is controlled by the sizes of Ωk’s. We

propose to determine the sets Ωk’s before the pilot training phase, so that the CSI overhead can

be effectively controlled, especially compared to the channel coherence time. This approach

is fundamentally different from the conventional limited feedback wireless systems, which

require knowledge of all the channel coefficients before the feedback. We will refer to this

method as compressive CSI acquisition, as it is similar to “compressive sensing” [35], where

useful information can be extracted with much fewer samples than obtaining complete data.

This “compression” idea will be critical for the design of large-scale wireless cooperative

networks, as there is no way to collect all the side information before actual processing. We

should rather try to directly extract the relevant information so that efficient communication

can be achieved.

4.2.1.2 CSI Selection Rule

Given the size constraints for the sets Ωk’s (i.e, |Ωk| = Dk,∀k ∈ K), how to determine the

indices of each set is a combinatorial optimization problem, which is intractable in general. In

this chapter, we propose a practical CSI selection rule by exploiting the sparsity of the large-

scaling fading coefficients. Denote the support of the channel vector hk = [hkn]1≤n≤N ∈ CN

as ‖hk‖`0(λ) , |{n ∈ ZN : |hkn| ≥ λ}|, where λ > 0 is a pre-chosen threshold. Due to

path loss and large-scale fading, the size of the support of each channel vector can be much

smaller thanN , which is the number of coefficients if full CSI is to be obtained. This property

was exploited in [24] to measure the partial connectivity of the channel links for topological

interference management, where the receivers will compare powers of the estimated channel

links with a pre-chosen threshold to determine which channel links are strong. However, the

approach in [24] requires that each receiver obtains all the instantaneous channel coefficients
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to measure the channel sparsity, which cannot reduce the downlink training overhead.

By Chebyshev’s inequality, Pr{|hkn| ≥ λ} ≤ θ2kn
λ2

with θkn =
√
E[|hkn|2] representing

the large-scale fading coefficient of the channel link hkn, the following support of the large-

scaling fading coefficient vector θk = [θkn]1≤n≤N can be regarded as a good estimate of the

sparsity of the channel coefficients,

‖θk‖`0(λ̄) , |{n ∈ ZN : |θkn| ≥ λ̄}|, (4.2.5)

where λ̄ is a pre-chosen parameter. A similar idea on exploiting the sparsity of the large-

scaling fading coefficients was presented in [112] under a linear equal-spaced transmit an-

tenna topology model.

Based on the above discussion, we propose in this chapter, the following sparsity based

CSI selection rule to determine the sets Ωk’s.

Sparsity Based CSI Selection Rule Given the CSI overhead constraints |Ωk| = Dk, ∀k ∈

K, rearranging the entries of the vector θk = [θkn]1≤n≤N with decreased magnitudes |θk(1)| ≥

|θk(2)| ≥ · · · ≥ |θk(N)|, then the set Ωk is determined by including the indices of the Dk
largest entries of the vector θk.

Remark 5. The proposed sparsity based CSI selection rule is easy to implement. It is possible

to improve performance by developing more sophisticated selection rules. For example, a

different selection rule based on statistical CSI was proposed in [71], which, however, does

not have any performance guarantee and is with higher implementation complexity. A full

investigation on this aspect will be left to our future work, while, in this chapter, we focus on

stochastic coordinated beamforming to handle mixed CSI.

4.2.2 Stochastic Coordinated Beamforming with Probability QoS Guar-

antee

With compressive CSI acquisition, the BBU pool will obtain mixed CSI, i.e., with (imperfect)

instantaneous channel coefficients for links indexed in the set Ω and statistical CSI for the

other channel links. The uncertainty in the available CSI brings a new technical challenge

for the system design. To guarantee performance, we impose a probabilistic QoS constraint,
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specified as follows

Pr {Γk(v,hk) ≥ γk,∀k} ≥ 1− ε, (4.2.6)

where the distribution information of hk’s is known, 0 < ε < 1 indicates that the system

should guarantee the QoS requirements for all the MUs simultaneously with probability of at

least 1 − ε. The probability is calculated over all the random vectors hk’s. The SCB is thus

formulated to minimize the total transmit power while satisfying the system probabilistic QoS

constraint (4.2.6):

PSCB : minimize
v∈V

L∑
l=1

K∑
k=1

‖vlk‖2

subject to Pr {Γk(v,hk) ≥ γk,∀k} ≥ 1− ε, (4.2.7)

which is a joint chance constrained program (JCCP) [81, 104] and is known to be intractable

in general.

4.2.2.1 Problem Analysis

There are two major challenges in solving PSCB. Firstly, the chance (or probabilistic) con-

straint (4.2.6) has no closed-form expression in general and thus is difficult to evaluate. Sec-

ondly, the convexity of the feasible set formed by the probabilistic constraint is difficult to

verify. The general idea to handle such a constraint is to seek a safe and tractable approxi-

mation. “Safe” means that the feasible set formed by the approximated constraint is a subset

of the original feasible set, while “tractable” means that the optimization problem over the

approximated feasible set should be computationally efficient (e.g., relaxed to a convex pro-

gram).

A natural way to form a computationally tractable approximation is the scenario approach

[105]. Specifically, the chance constraint (4.2.6) will be approximated by the following KJ

sampling constraints:

Γk(v,h
j
k) ≥ γk, 1 ≤ j ≤ J,∀k, (4.2.8)

where hjk ∈ CN is the j-th realization of the random vector hk ∈ CN . Let hj = [hjk]1≤k≤K ,

then h1,h2, . . . ,hJ are J independent realizations of the random vector h ∈ CNK . The
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SCB problem PSCB thus can be approximated by a convex program based on the constraints

(4.2.8). This approach can find a feasible solution with a high probability, for which more

details can be found in [71]. An alternative way is to derive an analytical upper bound for

the chance constraint based on the Bernstein-type inequality [101, 103, 108], resulting in a

deterministic convex optimization problem. The Bernstein approximation based approach

thus can find a feasible but suboptimal solution.

Although the above methods have the advantage of computational efficiency due to the

convex approximation, the common drawback of all these algorithms is the conservativeness

due to the “safe” approximation. Furthermore, it is also difficult to quantify the qualities of

the solutions generated by the algorithms. This motivates us to seek a novel approach to find

a more reliable solution to the problem PSCB. In this chapter, we will propose a stochastic

DC programming algorithm to find the globally optimal solution to PSCB if the problem is

convex and a locally optimal solution if it is non-convex, which can be regarded as the first

attempt to guarantee the optimality for the solutions of the JCCP (4.2.7).

4.3 Stochastic DC Programming Algorithm

In this section, we propose a stochastic DC programming algorithm to solve the problem

PSCB. We will first propose a DC programming reformulation for the problem PSCB, which

will then be solved by stochastic successive convex optimization.

4.3.1 DC Programming Reformulation for the SCB Problem

The main challenge of the SCB problem PSCB is the intractable chance constraint. In order

to overcome the difficulty, we will propose a DC programming reformulation that is different

from all the previous conservative approximation methods. We first propose a DC approxi-

mation to the chance constraint (4.2.6). Specifically, the QoS constraints Γk(v,hk) ≥ γk can

be rewritten as the following DC constraints [113]

dk(v,hk) , ck,1(v−k,hk)− ck,2(vk,hk) ≤ 0,∀k, (4.3.1)

where v−k , [vi]i 6=k, and both ck,1(v−k,hk) ,
∑

i 6=k vH
i hkh

H
kvi + σ2

k and ck,2(vk,hk) ,

1
γk

vH
k hkh

H
kvk are convex quadratic functions in v. Therefore, dk(v,hk)’s are DC functions
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in v. Then, the chance constraint (4.2.6) can be rewritten as f(v) ≤ ε, with f(v) given by

f(v) = 1− Pr {Γk(v,hk) ≥ γk,∀k} = Pr

{(
max

1≤k≤K
dk(v,hk)

)
> 0

}
=E

[
1(0,+∞)

(
max

1≤k≤K
dk(v,hk)

)]
, (4.3.2)

where 1A(z) is an indicator of set A. That is, 1A(z) = 1 if z ∈ A and 1A(z) = 0, otherwise.

The indicator function makes f(v) non-convex in general.

The conventional approach to deal with the non-convex indicator function is to approx-

imate it by a convex function, yielding a conservative convex approximation. For exam-

ple, using exp(z) ≥ 1(0,+∞)(z) will yield the Bernstein approximation [108]. Applying

[ν + z]+/ν ≥ 1(0,+∞)(z), ν > 0 will obtain a conditional-value-at-risk (CVaR) type approx-

imation [108]. Although these approximations might enjoy the advantage of being convex,

all of them are conservative and will lose optimality for the solution of the original prob-

lem. More specifically, only the feasibility of the solutions can be guaranteed with these

approximations.

To find a better approximation to f(v) in (4.3.2), in this chapter, we propose to use the

following non-convex function [104, Fig. 2] to approximate the indicator function 1(0,+∞)(z)

in (4.3.2):

ψ(z, ν) =
1

ν
[(ν + z)+ − z+], ν > 0, (4.3.3)

which is a DC function [113] in z. Although the DC function is not convex, it does have many

advantages. In particular, Hong et al. [104] proposed to use this DC function to approximate

the chance constraint assuming that the functions in the chance constraint are convex, result-

ing in a DC program reformulation. However, we cannot directly extend their results for our

problem, since the functions dk(v,hk)’s in (4.3.1) are non-convex. Fortunately, we can still

adopt the DC function ψ(z, ν) in (4.3.3) to approximate the chance constraint based on the

following lemma.

Lemma 1 (DC Approximation for the Chance Constraint). The non-convex function f(v) in

(4.3.2) has the following conservative DC approximation for any ν > 0,

f̂(v, ν) =E
[
ψ

(
max

1≤k≤K
dk(v,hk), ν

)]
=

1

ν
[u(v, ν)− u(v, 0)], ν > 0, (4.3.4)
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where

u(v, ν) = E
[

max
1≤k≤K+1

sk(v,h, ν)

]
, (4.3.5)

is a convex function and the convex quadratic functions sk(v,h, ν)’s are given by

sk(v,h, ν) , ν + ck,1(v−k,hk) +
∑
i 6=k

ci,2(vi,hi),∀k, (4.3.6)

and sK+1(v,h, ν) ,
∑K

i=1 ci,2(vi,hi) is a convex quadratic function too.

Proof. Please refer to Appendix C.1 for details.

Based on the DC approximation function f̂(v, ν), we propose to solve the following

problem to approximate the original SCB problem PSCB:

PDC : minimize
v∈V

L∑
l=1

K∑
k=1

‖vlk‖2

subject to inf
ν>0

f̂(v, ν) ≤ ε, (4.3.7)

where infν>0 f̂(v, ν) is the most accurate approximation function to f(v). Program PDC is

a DC program with the convex set V , the convex objective function, and the DC constraint

function [113]. One major advantage of the DC approximation PDC is the equivalence to the

original problem PSCB. That is, the DC approximation will not lose any optimality of the

solution of the SCB problem PSCB, as stated in the following theorem.

Theorem 3 (DC Programming Reformulation). The DC programming problem PDC in (4.3.7)

is equivalent to the original SCB problem PSCB.

Proof. Please refer to Appendix C.2 for details.

Based on this theorem, in the sequel, we focus on how to solve the problem PDC.

4.3.2 Optimality of Joint Optimization over v and κ

As the constraint in PDC itself is an optimization problem, it is difficult to be solved directly.

To circumvent this difficulty, by observing that f̂(v, ν) is nondecreasing in ν for ν > 0, as

87



indicated in (C.2.6), one way is to solve the following κ-approximation problem [104]

minimize
v∈V

L∑
l=1

K∑
k=1

‖vlk‖2

subject to u(v, κ)− u(v, 0) ≤ κε, (4.3.8)

for any fixed small enough parameter κ > 0 to approximate the original problem PDC.

However, an extremely small κ might cause numerical stability issues and might require

more time to solve the subproblems that will be developed later [104].

We notice that, by regarding κ as an optimization variable, problem (4.3.8) is still a DC

program, as the function µ(v, κ) is jointly convex in (v, κ). Therefore, we propose to solve

the following joint approximation optimization problem by treating κ as an optimization

variable

P̃DC : minimize
v∈V,κ>0

L∑
l=1

K∑
k=1

‖vlk‖2

subject to [u(v, κ)− κε]− u(v, 0) ≤ 0. (4.3.9)

The following proposition implies that the joint approximation problem P̃DC can enhance

the performance of problem (4.3.8).

Proposition 4 (Effectiveness of Joint Approximation). Denote the optimal value of the prob-

lem (4.3.8) with a fixed κ = κ̂ and that of the problem P̃DC as V ?(κ̂) and Ṽ ?, respectively,

then we have Ṽ ? ≤ V ?(κ̂).

Proof. Define the feasible region of problem P̃DC as

D , {v ∈ V , κ > 0 : [u(v, κ)− κε]− u(v, 0) ≤ 0}. (4.3.10)

The projection of D on the set V is given by

D̄ = {v ∈ D : ∃κ > 0, s.t.(v, κ) ∈ D}. (4.3.11)

Therefore, by fixing κ = κ̂, any feasible solution in problem (4.3.8) belongs to the set D.

Hence, the feasible set of the optimization problem (4.3.8) is a subset of D̄. As a result,

solving P̃DC can achieve a smaller minimum value with a larger feasible region.
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Define the deviation of a given set A1 from another set A2 as [81]

D(A1,A2) = sup
x1∈A1

(
inf

x2∈A2

‖x1 − x2‖
)
, (4.3.12)

then we have the following theorem indicating the optimality of the joint approximation pro-

gram P̃DC.

Theorem 4 (Optimality of Joint Approximation). Denote the set of the optimal solutions

and optimal values of problems P̃DC, PSCB and the problem (4.3.8) with a fixed κ = κ̂ as

(P̃?, Ṽ ?),(P?, V ?) and (P?(κ̂), V ?(κ̂)), respectively, then

lim
κ̂↘0

(V ?(κ̂)− Ṽ ?) = lim
κ̂↘0

(V ?(κ̂)− V ?) = 0, (4.3.13)

and

lim
κ̂↘0

D(P?(κ̂), P̃?) = lim
κ̂↘0

D(P?(κ̂),P?) = 0. (4.3.14)

Proof. Based on Proposition 4, the proof follows [104, Theorem 2].

Based on Theorem 4, we can thus focus on solving program P̃DC. Although P̃DC is still

a non-convex DC program, it has an algorithmic advantage, as will be presented in the next

subsection.

4.3.3 Successive Convex Approximation Algorithm

In this subsection, we will present a successive convex approximation algorithm [104, 106] to

solve the non-convex joint approximation program P̃DC. We will prove in Theorem 5 that this

algorithm still preserves the optimality properties, i.e., achieving the Karush-Kuhn-Tucker

(KKT) pair of the non-convex program P̃DC. The main idea is to upper bound the non-

convex DC constraint function in P̃DC by a convex function at each iteration. Specifically, at

the j-th iteration, given the vector (v[j], κ[j]) ∈ D, for the convex function u(v, 0), we have

u(v, 0) ≥ u(v[j], 0) + 2〈∇v∗u(v[j], 0),v − v[j]〉, (4.3.15)

where 〈a,b〉 , R(aHb) for any a,b ∈ C and the gradient of function u(v, 0) is given as

follows.
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Lemma 2. The complex gradient of u(v, 0) with respect to v∗ (the complex conjugate of v)

is given by

∇v∗u(v, 0) = E[∇v∗sk?(v,h, 0)], (4.3.16)

where k? = arg max
1≤k≤K+1

sk(v,h, 0), and ∇v∗sk(v,h, 0) = [νk,i]1≤i≤K(1 ≤ k ≤ K) with

νk,i ∈ CN given by

νk,i =


(
hkh

H
k + 1

γi
hih

H
i

)
vi, if i 6= k, 1 ≤ k ≤ K,

0, otherwise,

and ∇v∗sK+1(v,h, κ) = [νK+1,i]1≤i≤K with νK+1,i = 1
γi

hih
H
i vi,∀i. Furthermore, the gra-

dient of u(v, 0) with respect to κ is zero, as κ = 0 is a constant in the function u(v, 0).

Proof. Please refer to Appendix C.3 for details.

Therefore, at the j-th iteration, the non-convex DC constraint function [u(v, κ) − κε] −

u(v, 0) in P̃DC can be upper bounded by the convex function l(v, κ; v[j], κ[j])− κε with

l(v, κ; v[j], κ[j]) = u(v, κ)− u(v[j], 0)− 2〈∇v∗u(v[j], 0),v − v[j]〉. (4.3.17)

Based on the convex approximation (4.3.17) to the DC constraint in P̃DC, we will then solve

the following stochastic convex programming problem at the j-th iteration:

P̃DC(v[j], κ[j]) : minimize
v∈V,κ>0

L∑
l=1

K∑
k=1

‖vlk‖2

subject to l(v, κ; v[j], κ[j])− κε ≤ 0. (4.3.18)

The proposed stochastic DC programming algorithm to the SCB problem PSCB is thus

presented in Algorithm 1.

Algorithm 6: Stochastic DC Programming Algorithm
Step 0: Find the initial solution (v[0], κ[0]) ∈ D and set the iteration counter j = 0;
Step 1: If (v[j], κ[j]) satisfies the termination criterion, go to End;
Step 2: Solve problem P̃DC(v[j], κ[j]) and obtain the optimal solution (v[j+1], κ[j+1]);
Step 3: Set j = j + 1 and go to Step 1;
End.
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Based on Theorem 4 on the optimality of the joint approximation, the convergence of the

stochastic DC programming algorithm is presented in the following theorem, which reveals

the main advantage compared with all the previous algorithms for the JCCP problem, i.e., it

guarantees optimality.

Theorem 5 (Convergence of Stochastic DC Programming). Denote {v[j], κ[j]} as the se-

quence generated by the stochastic DC programming algorithm. Suppose that the limit of the

sequence exists, i.e., limj→+∞(v[j], κ[j]) = (v?, κ?), which satisfies the Slater’s condition2,

then v? is the globally optimal solution of the SCB problem PSCB if it is convex. Otherwise,

v? is a locally optimal solution. Furthermore, κ converges to zero for most scenarios, except

that

Pr

{
max

1≤k≤K
dk(v

?,h) ∈ (−κ?, 0]

}
= 0, (4.3.19)

if κ? 6= 0.

Proof. Please refer to Appendix C.4 for details.

Based on Theorem 5, in the sequel, we focus on how to efficiently implement the stochas-

tic DC programming algorithm.

4.3.4 Sample Average Approximation Method for the Stochastic DC

Programming Algorithm

In order to implement the stochastic DC programming algorithm, we need to address the

problem on how to solve the stochastic convex program P̃DC(v[j], κ[j]) (4.3.18) efficiently at

each iteration.

We propose to use the sample average approximation (SAA) based algorithm [81] to

solve the stochastic convex problem P̃DC(v[j], κ[j]) at the j-th iteration. Specifically, the

SAA estimate of u(v, κ) is given by

ū(v, κ) =
1

M

M∑
m=1

max
1≤k≤K+1

sk(v,h
m, κ), (4.3.20)

2Slater’s condition is a commonly used constraint qualification to ensure the existence of KKT pairs in
convex optimization [22].
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where h1,h2, . . . ,hM are M independent realizations of the random vector h ∈ CNK . Simi-

larly, the SAA estimate of the gradient∇v∗u(v, 0) is given by

∇̄v∗u(v, 0) =
1

M

M∑
m=1

∇v∗sk?m(v,hm, 0), (4.3.21)

where k?m = arg max
1≤k≤K+1

sk(v,h
m, 0). Therefore, the SAA estimate of the convex function

l(v, κ; v[j], κ[j]) (4.3.17) is given by

l̄(v, κ; v[j], κ[j]) = ū(v, κ)− ū(v[j], 0)− 2〈∇̄v∗u(v[j], 0),v − v[j]〉, (4.3.22)

which is jointly convex in v and κ. We will thus solve the following SAA based convex

optimization problem

P̄DC(v[j], κ[j];M) : minimize
v∈V,κ>0

L∑
l=1

K∑
k=1

‖vlk‖2

subject to l̄(v, κ; v[j], κ[j])− κε ≤ 0, (4.3.23)

to approximate the stochastic convex optimization problem P̃DC(v[j], κ[j]), which can be

reformulated as the following convex quadratically constraint quadratic program (QCQP)

[22]:

P [j]
QCQP : minimize

v∈V,κ>0,x

L∑
l=1

K∑
k=1

‖vlk‖2

subject to
1

M

M∑
m=1

xm − ū(v[j], 0)− 2〈∇̄v∗u(v[j], 0),v − v[j]〉 ≤ κε

sk(v,h
m, κ) ≤ xm, xm ≥ 0,∀k,m, (4.3.24)

which can then be solved efficiently using the interior-point method [22], where x = [xm]1≤m≤M ∈

RM is the collection of the slack variables.

The following theorem indicates that the SAA based program P̄DC(v[j], κ[j];M) for the

stochastic convex optimization P̃DC(v[j], κ[j]) will not lose any optimality in the asymptotic

regime.

Theorem 6. Denote the set of the optimal solutions and optimal values of problems P̃DC(v[j], κ[j])
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and P̄DC(v[j], κ[j];M) as (P?(v[j], κ[j]), V ?(v[j], κ[j])) and (P?M(v[j], κ[j]), V ?
M(v[j], κ[j])), re-

spectively, then we have

D(P?M(v[j], κ[j]),P?(v[j], κ[j]))→ 0, (4.3.25)

and

V ?
M(v[j], κ[j])→ V ?(v[j], κ[j]), (4.3.26)

with probability one, as the sample size increases, i.e., as M → +∞.

Proof. Please refer to Appendix C.5 for details.

Based on Theorems 1-4, we conclude that the proposed stochastic DC programming al-

gorithm converges to the globally optimal solution of the SCB problem if it is convex and

to a locally optimal solution if the problem is non-convex, in the asymptotic regime, i.e.,

M → +∞.

Remark 6. Although the scenario approach based on constraints (4.2.8) is also a Monte

Carlo algorithm, its performance can not be improved by generating more samples of the

channel vector h [104], which is in contrast to our proposed stochastic DC programming

algorithm. The reason is that increasing the sample size will make the resultant optimization

problem more conservative, as more constraints need to be satisfied. This might result in

worse solutions, i.e., beamformers with a higher transmit power.

4.3.5 Complexity Analysis and Discussions

To implement the stochastic DC programming algorithm, at each iteration, we need to solve

the convex QCQP program P [j]
QCQP with m = (L + KM + 1) (M is the number of inde-

pendent realizations of the random vector h) constraints and n = (NK + M + 1) opti-

mization variables. The convex QCQP problem can be solved with a worst-case complexity

of O((mn2 + n3)m1/2 log(1/ε)) given a solution accuracy ε > 0 using the interior-point

method [114]. As the Monte Carlo sample size M could be very large in order to reduce

the approximation bias [104], the computational complexity of the stochastic DC program-

ming algorithm could be higher than other deterministic approximation methods, e.g., the

Bernstein approximation method.
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In order to further improve the computational efficiency of the stochastic DC program-

ming algorithm, other approaches can be explored (e.g., the alternating direction method of

multipliers (ADMM) method [59]) to solve the large-scale conic program P [j]
QCQP in (4.3.24)

at each iteration. This is an on-going research topic, and we will leave it as our future work.

Furthermore, as the stochastic DC programming algorithm only requires distribution in-

formation of the random vector h to generate the Monte Carlo samples, this approach can be

widely applied for any channel uncertainty model. As the proposed stochastic DC program-

ming algorithm provides optimality guarantee, it can serve as the performance benchmark in

various beamforming design problems with CSI uncertainty and probabilistic QoS guaran-

tees, and thus it will find wide applications in future wireless networks.

4.4 Simulation Results

In this section, we simulate the proposed stochastic DC algorithm for coordinated beamform-

ing design. We consider the following channel model for the link between the k-th user and

the l-th RRH [18, 115]:

hkl = 10−L(dkl)/20√ϕklskl︸ ︷︷ ︸
Dkl

(√
1− τ 2

klĉkl + τklekl

)

=
√

1− τ 2
klDklĉkl + τklDklekl,∀k, l, (4.4.1)

where L(dkl) is the path-loss at distance dkl, as given in [29, Table I], skl is the shadowing co-

efficient, ϕkl is the antenna gain, ĉkl ∈ CN (0, INl
) is the estimated imperfect small-scale fad-

ing coefficient and ekl is the CSI error. We assume that the BBU pool can accurately track the

large-scale fading coefficients Dkl’s [107]. The error vector is modeled as ekl ∈ CN (0, INl
).

The parameters τkl’s depend on the CSI acquisition schemes, e.g., channel estimation errors

using MMSE. We use the standard cellular network parameters as shown in [29, Table I].

The maximum outage probability that the system can tolerate is set as ε = 0.1. The proposed

stochastic DC programming algorithm will stop if the difference between the objective values

of P̃DC(v[j], κ[j]) (4.3.18) of two consecutive iterations is less than 10−4.

The proposed stochastic DC programming algorithm is compared to the following two

algorithms:
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• The scenario approach: The main idea of this algorithm is to approximate the prob-

abilistic QoS constraint by multiple “sampling” QoS constraints [100, 105]. This al-

gorithm can only find a feasible solution for problem PSCB with a high probability.

Please refer to [71] for more details.

• The Bernstein approximation method: The main idea of this algorithm is to use the

Bernstein-type inequality to find a closed-form approximation for the chance constraint

(4.2.6) [101, 103]. The original stochastic optimization problem PSCB can be conserva-

tively approximated by a deterministic optimization problem. Therefore, the computa-

tional complexity of the deterministic approximation method is normally much lower

than the Monte Carlo approaches, e.g., the scenario approach and the stochastic DC

programming algorithm. Nevertheless, the Bernstein approximation method can also

only find a feasible but suboptimal solution, and the conservativeness of this method

is difficult to quantify. Moreover, to derive closed-form expressions, the Bernstein ap-

proximation method restricts the distribution of the random vector h to be complex

Gaussian distribution. Therefore, this method is not robust against the distribution of

the random vector h.

Due to the computational complexity of solving large-size sample problems for both the

stochastic DC programming algorithm and the scenario approach, we only consider a simple

and particular network realization to demonstrate the performance benchmarking capability

of the proposed stochastic DC programming algorithm. Specifically, consider a network with

L = 5 single-antenna RRHs and K = 3 single-antenna MUs uniformly and independently

distributed in the square region [−400, 400] × [−400, 400] meters. In this scenario, we con-

sider a mixed CSI uncertainty model [71, 107], i.e., partial and imperfect CSI. Specifically,

for MU k, we set τkn = 0.01,∀n ∈ Ωk (i.e., the obtained channel coefficients are imperfect)

and τkn = 1,∀ 6= Ωk, where Ωk includes the indices of the 2 largest entries of the vector con-

sisting of all the large-scale fading coefficients for MU k. That is, only 40% of the channel

coefficients are obtained in this scenario. The QoS requirements are set as γk = 3dB,∀k.

The sample size for the scenario approach is 308 [105], which yields a solution that satisfies

the probability constraint (4.2.7) (i.e., a feasible solution to problem PSCB) with probabil-

ity at least 99%. The sample size for the stochastic DC programming algorithm is set to be

1000. The simulated channel data is given in (4.4.2), where Ĥ = [Dklĉkl] and D = [Dkl]. In

the following, we will illustrate the convergence, conservativeness, stability and performance
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Ĥ =


−2.24 + 0.96i −1.03 + 2.03i 3.66 + 11.33i
−0.57− 0.16i 8.47 + 19.50i −0.01− 1.38i
28.90− 13.22i 4.35− 10.15i 1.65− 4.81i
−1.68 + 1.26i −2.67− 2.01i 42.98− 5.68i
3.46− 2.08i 4.13 + 1.87i −2.31 + 1.34i

,D =


2.80 4.46 26.89
2.48 9.56 1.92
29.97 24.34 13.83
2.11 4.09 38.80
2.87 3.92 3.59

. (4.4.2)
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Figure 4.1: Optimal value versus different Monte Carlo replications.

gains of the stochastic DC programming algorithm.

4.4.1 Stability of the Algorithms

As both the stochastic DC programming and scenario approach use Monte Carlo samples to

obtain the solutions, the corresponding solutions should depend on the particular samples.

Therefore, it is essential to investigate the stability of solutions obtained by the stochastic

algorithms. We thus run the algorithms 50 replications with different Monte Carlo samples

for each replication to illustrate the stability of the algorithms.

From Fig. 4.1 and Fig. 4.2, we can see that the solutions and the estimated probability

constraints obtained from the stochastic DC programming algorithm are very stable, as they

converge to a similar solution. In particular, the average total transmit power is 10.5228 dBm,

with the lowest being 10.4614 dBm and the highest being 10.5804 dBm. The corresponding

average probability constraint is 0.9010, with the range of 0.8933 to 0.9067.
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Figure 4.2: Probability constraint versus different Monte Carlo replications.

However, the solutions and the estimated probability constraints obtained from the sce-

nario approach drastically differ from replication to replication due to the randomness in the

Monte Carlo samples. In particular, the average total transmit power is 11.1004 dBm, with the

lowest being 10.6260 dBm and the highest being 11.5826 dBm. The corresponding average

probability constraint is 0.9731, and is in the range between 0.9522 and 0.9891.

We can see that the stochastic DC programming algorithm can achieve a lower transmit

power than the scenario approach on average. The scenario approach yields a much more

conservative approximation for the probability constraint. Furthermore, the performance of

the scenario approach cannot be improved by increasing the sampling size as this will cause

more conservative solutions. This is in contrast to the proposed stochastic DC programming

algorithm, as Theorem 6 indicates that more samples can improve the Monte Carlo approx-

imation performance and most Monte Carlo approach based stochastic algorithms possess

such a property.

Finally, the average value of the parameter κ is 1.5 × 10−3 and is in the rang between

7.8× 10−4 and 2.6× 10−3 when the stochastic DC programming algorithm terminates. This

justifies the conclusion that the parameter κ will converge to zero as presented in Theorem 5.
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Figure 4.3: Convergence of the stochastic DC programming algorithm.

4.4.2 Convergence of the Stochastic DC Programming Algorithm

We report a typical performance on the convergence of the stochastic DC programming al-

gorithm, as shown in Fig. 4.3, with the initial point being the solution from the Bernstein

approximation method. This figure shows that the convergence rate of the proposed stochas-

tic DC programming is very fast for the simulated scenario. We can see that the stochastic

DC programming algorithm can achieve a much lower transmit power than the Bernstein

approximation method. This figure also demonstrates the effectiveness of jointly optimizing

over the parameter κ and beamforming vector v, as this can significantly improve the con-

vergence rate. Furthermore, the parameter κ is 1.3× 10−3 when the proposed stochastic DC

programming algorithm terminates under this scenario.

4.4.3 Conservativeness of the Algorithms

We also report the typical performances of all the algorithms on the conservativeness of ap-

proximating probability constraints in the SCB problem under the same scenario as the above

subsection. The estimated probability constraint in PSCB is shown in Fig. 4.4, which is 0.988

using the Bernstein approximation. On the other hand, for the stochastic DC programming

algorithm, we can see that the probability constraint becomes tight when it terminates, and

thus the Bernstein approximation is too conservative. This coincide with the fact that the

suboptimal algorithms only seek conservative approximations to the chance constraint.
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Figure 4.4: Probability constraint.

4.5 Discussions

We presented a unified framework consisting of a novel compressive CSI acquisition method

and a generic stochastic coordinated beamforming framework for the optimal transmission

strategy design with a probabilistic model for the CSI uncertainty in dense Cloud-RAN. This

framework frees us from the structural modeling assumptions and distribution types assump-

tions for the uncertain channel knowledge, and thus it provides modeling flexibility. With the

optimality guarantee, the proposed stochastic DC programming algorithm can serve as the

benchmark for evaluating suboptimal and heuristic algorithms. The benchmarking capability

was demonstrated numerically in terms of conservativeness, stability and optimal values by

comparing with the Bernstein approximation method and scenario approach. Furthermore,

the proposed algorithm has a better convergence rate by jointly optimizing the approximation

parameter κ. As the proposed stochastic DC programming algorithm provides optimality

guarantee, we believe this algorithm can be applied in various beamforming design problems

with probabilistic QoS guarantees due to the CSI uncertainty, and it will find wide applica-

tions in future wireless networks.

Several future research directions are listed as follows:

• Although our framework only requires the distribution information of the uncertain

channel knowledge, so as to generate Monte Carlo samples for the stochastic DC pro-

gramming algorithm, it might be challenging to obtain the exact information in some
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scenarios. Therefore, one may either seek more sophisticated measuring methods to

estimate the distribution information or adopt the distributionally robust optimization

approaches to deal with the ambiguous distributions, e.g., [116].

• The main drawback of the stochastic DC programming algorithm is the highly compu-

tational complexity with the sample problem P [j]
QCQP at each iteration, one may either

resort to ADMM [59] based algorithms to solve the large-sized sample problem in par-

allel or reduce the optimization dimensions by fixing the directions of the beamformers

and only optimizing the transmit power allocation (e.g., in [102], the corresponding

power allocation problem is a linear program and can be solved with a much lower

computational complexity).

• The optimality of the compressive CSI acquisition should be characterized by establish-

ing relation between the performance loss and the acquired number of channel links.

• The partial connectivity in wireless networks provides great opportunities for massive

CSI overhead reduction. In particular, some preliminary results on the topological

interference management based on the low rank matrix completion with Riemannian

optimization [117] were presented in [25]. In particular, the low rank matrix comple-

tion approach has the potential for the applications in index coding, network coding,

and distributed caching and storage problems.
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Chapter 5

Large-Scale Convex Optimization for

Dense Cloud-RAN

In this chapter we present a two-stage approach to solve large-scale convex optimization

problems in dense Cloud-RAN, which can effectively detect infeasibility and enjoy modeling

flexibility. In the proposed approach, the original large-scale convex problem is transformed

into a standard cone programming form in the first stage via matrix stuffing, which only needs

to copy the problem parameters to the pre-stored structure of the standard form. The capabil-

ity of yielding infeasibility certificates and enabling parallel computing is achieved by solving

the homogeneous self-dual embedding of the primal-dual pair of the standard form. In the

solving stage, the operator splitting method, namely, the alternating direction method of mul-

tipliers (ADMM), is adopted to solve the large-scale homogeneous self-dual embedding in

parallel. These results will serve the purpose of providing practical and theoretical guidelines

on designing algorithms for generic large-scale optimization problems in dense wireless net-

works. The derivations of the standard conic programming form transformation are presented

in Appendix D. The material in this chapter has been presented in part in [67, 97].

5.1 Introduction

The proliferation of smart mobile devices, coupled with new types of wireless applications,

has led to an exponential growth of wireless and mobile data traffic. In order to provide high-

volume and diversified data services, ultra-dense wireless cooperative network architectures

have been proposed for next generation wireless networks [11], e.g., Cloud-RAN [10, 29],
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and distributed antenna systems [118]. To enable efficient interference management and re-

source allocation, large-scale multi-entity collaboration will play pivotal roles in dense wire-

less networks. For instance, in Cloud-RAN, all the baseband signal processing is shifted to

a single cloud data center with very powerful computational capability. Thus the centralized

signal processing can be performed to support large-scale cooperative transmission/reception

among the remote radio heads (RRHs).

Convex optimization serves as an indispensable tool for resource allocation and signal

processing in wireless communication systems [17, 84, 87]. For instance, coordinated beam-

forming [18] often yields a direct convex optimization formulation, i.e., second-order cone

programming (SOCP) [22]. The network max-min fairness rate optimization [119] can be

solved through the bi-section method [22] in polynomial time, wherein a sequence of convex

subproblems are solved. Furthermore, convex relaxation provides a principled way of devel-

oping polynomial-time algorithms for non-convex or NP-hard problems, e.g., group-sparsity

penalty relaxation for the NP-hard mixed integer nonlinear programming problems [29],

semidefinite relaxation [84] for NP-hard robust beamforming [61, 83] and multicast beam-

forming [60], and sequential convex approximation to the highly intractable stochastic coor-

dinated beamforming [72].

Nevertheless, in dense Cloud-RAN [11], which may possibly need to simultaneously

handle hundreds of RRHs, resource allocation and signal processing problems will be dra-

matically scaled up. The underlying optimization problems will have high dimensions and/or

large numbers of constraints (e.g., per-RRH transmit power constraints and per-MU (mobile

user) QoS constraints). For instance, for a Cloud-RAN with 100 single-antenna RRHs and

100 single-antenna MUs, the dimension of the aggregative coordinated beamforming vec-

tor (i.e., the optimization variables) will be 104. Most advanced off-the-shelf solvers (e.g.,

SeDuMi [120], SDPT3 [121] and MOSEK [122]) are based on the interior-point method.

However, the computational burden of such second-order method makes it inapplicable for

large-scale problems. For instance, solving convex quadratic programs has cubic complex-

ity [114]. Furthermore, to use these solvers, the original problems need to be transformed

to the standard forms supported by the solvers. Although the parser/solver modeling frame-

works like CVX [123] and YALMIP [124] can automatically transform the original problem

instances into standard forms, it may require substantial time to perform such transforma-

tion [125], especially for problems with a large number of constraints [67].
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One may also develop custom algorithms to enable efficient computation by exploiting the

structures of specific problems. For instance, the uplink-downlink duality [18] is exploited

to extract the structures of the optimal beamformers [126] and enable efficient algorithms.

However, such an approach still has the cubic complexity to perform matrix inversion at each

iteration [127]. First-order methods, e.g., the ADMM algorithm [59], have recently attracted

attention for their distributed and parallelizable implementation, as well as the capability of

scaling to large problem sizes. However, most existing ADMM based algorithms cannot pro-

vide the certificates of infeasibility [83, 127, 128]. Furthermore, some of them may still fail

to scale to large problem sizes, due to the SOCP subproblems [128] or semidefinite program-

ming (SDP) subproblems [83] needed to be solved at each iteration.

Without efficient and scalable algorithms, previous studies of wireless cooperative net-

works either only demonstrate performance in small-size networks, typically with less than

10 RRHs, or resort to sub-optimal algorithms, e.g., zero-forcing based approaches [65, 129].

Meanwhile, from the above discussion, we see that the large-scale optimization algorithms to

be developed should possess the following two features:

• To scale well to large problem sizes with parallel computing capability;

• To effectively detect problem infeasibility, i.e., provide certificates of infeasibility.

To address these two challenges in a unified way, in this chapter, we shall propose a two-

stage approach as shown in Fig. 5.1. The proposed framework is capable to solve large-scale

convex optimization problems in parallel, as well as providing certificates of infeasibility.

Specifically, the original problem P will be first transformed into a standard cone program-

ming form Pcone [114] based on the Smith form reformulation [130], via introducing a new

variable for each subexpression in the disciplined convex programming form [131] of the

original problem. This will eventually transform the coupled constraints in the original prob-

lem into the constraint only consisting of two convex sets: a subspace and a convex set formed

by a Cartesian product of a finite number of standard convex cones. Such a structure helps

to develop efficient parallelizable algorithms and enable the infeasibility detection capability

simultaneously via solving the homogeneous self-dual embedding [132] of the primal-dual

pair of the standard form by the ADMM algorithm.

As the mapping between the standard cone program and the original problem only de-

pends on the network size (i.e., the numbers of RRHs, MUs and antennas at each RRH),
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Transformation ADMM Solver
P Pcone x⋆

Figure 5.1: The proposed two-stage approach for large-scale convex optimization. The opti-
mal solution or the certificate of infeasibility can be extracted from x? by the ADMM solver.

we can pre-generate and store the structures of the standard forms with different candidate

network sizes. Then for each problem instance, that is, given the channel coefficients, QoS

requirements, and maximum RRH transmit powers, we only need to copy the original prob-

lem parameters to the standard cone programming data. Thus, the transformation procedure

can be very efficient and can avoid repeatedly parsing and re-generating problems [123, 124].

This technique is called matrix stuffing [67, 125], which is essential for the proposed frame-

work to scale well to large problem sizes. It may also help rapid prototyping and testing for

practical equipment development.

5.1.1 Contributions

The major contributions of the chapter are summarized as follows:

1. We formulate main performance optimization problems in dense wireless cooperative

networks into a general framework. It is shown that all of them can essentially be

solved through solving one or a sequence of large-scale convex optimization or convex

feasibility problems.

2. To enable both the infeasibility detection capability and parallel computing capability,

we propose to transform the original convex problem to an equivalent standard cone

program. The transformation procedure scales very well to large problem sizes with

the matrix stuffing technique. Simulation results will demonstrate the effectiveness of

the proposed fast transformation approach over the state-of-art parser/solver modeling

frameworks.

3. The operator splitting method is then adopted to solve the large-scale homogeneous

self-dual embedding of the primal-dual pair of the transformed standard cone program

in parallel. This first-order optimization algorithm makes the second stage scalable.

Simulation results will show that it can speedup several orders of magnitude over the

state-of-art interior-point solvers.

104



4. The proposed framework enables evaluating various cooperation strategies in dense

wireless networks, and helps reveal new insights numerically. For instance, simula-

tion results demonstrate a significant performance gain of optimal beamforming over

sub-optimal schemes, which shows the importance of developing large-scale optimal

beamforming algorithms.

This work will serve the purpose of providing practical and theoretical guidelines on de-

signing algorithms for generic large-scale optimization problems in dense wireless networks.

5.1.2 Organization

The remainder of the chapter is organized as follows. Section 5.2 presents the system model

and problem formulations. In Section 5.3, a systematic cone programming form transfor-

mation procedure is developed. The operator splitting method is presented in Section 5.4.

The practical implementation issues are discussed in Section 5.5. Numerical results will be

demonstrated in Section 5.6. Finally, conclusions and discussions are presented in Section

5.7. To keep the main text clean and free of technical details, we divert most of the proofs,

derivations to the appendix.

5.2 Large-Scale Optimization in Dense Cloud-RAN

In this section, we will first present two representative optimization problems in Cloud-RAN,

i.e., the network power minimization problem and the network utility maximization problem.

We will then provide a unified formulation for large-scale optimization problems in dense

Cloud-RAN.

5.2.1 Signal Model

Consider a dense fully cooperative Cloud-RAN1 with L RRHs and K single-antenna MUs,

where the l-th RRH is equipped with Nl antennas. The centralized signal processing is per-

formed at a central processor, e.g., the baseband unit pool in Cloud-RAN [10, 29]. The propa-

gation channel from the l-th RRH to the k-th MU is denoted as hkl ∈ CNl , ∀k, l. We focus on

1This is mainly for notation simplification. The proposed framework can be easily extended to more general
cooperation scenarios as presented in [87].
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the downlink transmission, for which the signal processing is more challenging. The received

signal yk ∈ C at MU k is given by

yk =
L∑
l=1

hH
klvlksk +

∑
i 6=k

L∑
l=1

hH
klvlisi + nk,∀k, (5.2.1)

where sk is the encoded information symbol for MU k with E[|sk|2] = 1, vlk ∈ CNl is the

transmit beamforming vector from the l-th RRH to the k-th MU, and nk ∼ CN (0, σ2
k) is the

additive Gaussian noise at MU k. We assume that sk’s and nk’s are mutually independent

and all the users apply single user detection. Thus the signal-to-interference-plus-noise ratio

(SINR) of MU k is given by

Γk(v) =
|hH
kvk|2∑

i 6=k |hH
kvi|2 + σ2

k

,∀k, (5.2.2)

where hk , [hTk1, . . . ,h
T
kL]T ∈ CN with N =

∑L
l=1Nl, vk , [vT1k,v

T
2k, . . . ,v

T
Lk]

T ∈ CN and

v , [vT1 , . . . ,v
T
K ]T ∈ CNK . We assume that each RRH has its own power constraint,

K∑
k=1

‖vlk‖2
2 ≤ Pl, ∀l, (5.2.3)

where Pl > 0 is the maximum transmit power of the l-th RRH. In this chapter, we assume

that the full and perfect CSI is available at the central processor and all RRHs only provide

unicast/broadcast services.

5.2.2 Network Power Minimization

Network power consumption is an important performance metric for the energy efficiency

design in wireless cooperative networks. Coordinated beamforming is an efficient way to

design energy-efficient systems [18], in which, beamforming vectors vlk’s are designed to

minimize the total transmit power among RRHs while satisfying the QoS requirements for

all the MUs. Specifically, given the target SINRs γ = (γ1, . . . , γK) for all the MUs with

γk > 0, ∀k, we will solve the following total transmit power minimization problem:

P1(γ) : minimize
v∈V

L∑
l=1

K∑
k=1

‖vlk‖2
2, (5.2.4)
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where V is the intersection of the sets formed by QoS constraints and transmit power con-

straints, i.e.,

V = P1 ∩ P2 ∩ · · · ∩ PL ∩Q1 ∩Q2 . . . ,∩QK , (5.2.5)

where Pl ’s are feasible sets of v that satisfy the per-RRH transmit power constraints, i.e.,

Pl =

{
v ∈ CNK :

K∑
k=1

‖vlk‖2
2 ≤ Pl

}
,∀l, (5.2.6)

and Qk’s are the feasible sets of v that satisfy the per-MU QoS constraints, i.e.,

Qk = {v ∈ CNK : Γk(v) ≥ γk},∀k. (5.2.7)

As all the sets Qk’s and Pl’s can be reformulated into second-order cones as shown in [29],

problem P1(γ) can be reformulated as an SOCP problem.

However, in dense wireless cooperative networks, the mobile hauling network consump-

tion can not be ignored. In [29], a two-stage group sparse beamforming (GSBF) framework is

proposed to minimize the network power consumption for Cloud-RAN, including the power

consumption of all optical fronthaul links and the transmit power consumption of all RRHs.

Specially, in the first stage, the group-sparsity structure of the aggregated beamformer v is

induced by minimizing the weighted mixed `1/`2-norm of v, i.e.,

P2(γ) : minimize
v∈V

L∑
l=1

ωl‖ṽl‖2, (5.2.8)

where ṽl = [vTl1, . . . ,v
T
lK ]T ∈ CNlK is the aggregated beamforming vector at RRH l, and

ωl > 0 is the corresponding weight for the beamformer coefficient group ṽl. Based on the

(approximated) group sparse beamformer v?, which is the optimal solution to P2(γ), in

the second stage, an RRH selection procedure is performed to switch off some RRHs so as

to minimize the network power consumption. In this procedure, we need to check if the

remaining RRHs can support the QoS requirements for all the MUs, i.e., check the feasibility

of problem P1(γ) given the active RRHs. Please refer to [29] for more details on the group

sparse beamforming algorithm.
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5.2.3 Network Utility Maximization

Network utility maximization is a general approach to optimize network performance. We

consider maximizing an arbitrary network utility functionU(Γ1(v), . . . ,ΓK(v)) that is strictly

increasing in the SINR of each MU [87], i.e.,

P3 : maximize
v∈V1

U(Γ1(v), . . . ,ΓK(v)), (5.2.9)

where V1 = ∩Ll=1Pl is the intersection of the sets of the per-RRH transmit power constraints

(5.2.6). It is generally very difficult to solve, though there are tremendous research efforts

on this problem [87]. In particular, Liu et al. in [133] proved that P3 is NP-hard for many

common utility functions, e.g., weighted sum-rate. Please refer to [87, Table 2.1] for details

on classification of the convexity of utility optimization problems.

Assume that we have the prior knowledge of SINR values Γ?1, . . . ,Γ
?
K that can be achieved

by the optimal solution to problem P3. Then the optimal solution to problem P1(γ) with

target SINRs as γ = (Γ?1, . . . ,Γ
?
K) is an optimal solution to problem P3 as well [126].

The difference between problem P1(γ) and problem P3 is that the SINRs in P1(γ) are

pre-defined, while the optimal SINRs in P3 need to be searched. For the max-min fairness

maximization problem, optimal SINRs can be searched by the bi-section method [67], which

can be accomplished in polynomial time. For the general increasing utility maximization

problem P3, the corresponding optimal SINRs can be searched as follows

maximize
γ∈R

U(γ1, . . . , γK), (5.2.10)

whereR ∈ RK
+ is the achievable performance region

R = {(Γ1(v), . . . ,ΓK(v)) : v ∈ V1}. (5.2.11)

Problem (5.2.10) is a monotonic optimization problem [134] and thus can be solved by the

polyblock outer approximation algorithm [134] or the branch-reduce-and-bound algorithm

[87]. The general idea of both algorithms is iteratively improving the lower-bound Umin and

upper-bound Umax of the objective function of problem (5.2.10) such that

Umax − Umin ≤ ε, (5.2.12)
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for a given accuracy ε in finite iterations. In particular, at the m-iteration, we need to check

the convex feasibility problem of P1(γ [m]) given the target SINRs γ [m] = (Γ
[m]
1 , . . . ,Γ

[m]
K ).

However, the number of iterations scales exponentially with the number of MUs [87]. Please

refer to the tutorial [87, Section 2.3] for more details. Furthermore, the network achievable

rate region [135] can also be characterized by the rate profile method [136] via solving a

sequence of such convex feasibility problems P1(γ).

5.2.4 A Unified Framework of Large-Scale Network Optimization

In dense wireless cooperative networks, the central processor can support hundreds of RRHs

for simultaneously transmission/reception [10]. Therefore, all the above optimization prob-

lems are shifted into a new domain with a high problem dimension and a large number of

constraints. As presented previously, to solve the performance optimization problems, we

essentially need to solve a sequence of the following convex optimization problem with dif-

ferent problem instances (e.g., different channel realizations, network sizes and QoS targets)

P : minimize
v∈V

f(v), (5.2.13)

where f(v) is convex in v as shown in P1(γ) and P2(γ). Solving problem P means that the

corresponding algorithm should return the optimal solution or the certificate of infeasibility.

For all the problems discussed above, problem P can be reformulated as an SOCP prob-

lem, and thus it can be solved in polynomial time via the interior-point method, which

is implemented in most advanced off-the-shelf solvers, e.g., public software packages like

SeDuMi [120] and SDPT3 [121] and commercial software packages like MOSEK [122].

However, the computational cost of such second-order methods will be prohibitive for large-

scale problems. On the other hand, most custom algorithms, e.g., the uplink-downlink ap-

proach [18] and the ADMM based algorithms [83, 127, 128], however, fail to either scale well

to large problem sizes or detect the infeasibility effectively.

To overcome the limitations of the scalability of the state-of-art solvers and the capability

of infeasibility detection of the custom algorithms, in this chapter, we propose to solve the

homogeneous self-dual embedding [132] (which aims at providing necessary certificates) of

problem P via a first-order optimization method [59] (i.e., the operator splitting method).

This will be presented in Section 5.4. To arrive at the homogeneous self-dual embedding
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and enable parallel computing, the original problem will be first transformed into a standard

cone programming form as will be presented in Section 5.3. This forms the main idea of the

two-stage based large-scale optimization framework as shown in Fig. 5.1.

5.3 Matrix Stuffing for Fast Standard Cone Programming

Transformation

Although the parser/solver modeling language framework, like CVX [123] and YALMIP

[124], can automatically transform the original problem instance into a standard form, it re-

quires substantial time to accomplish this procedure [67, 125]. In particular, for each problem

instance, the parser/solver modeling frameworks need to repeatedly parse and canonicalize

it. To avoid such modeling overhead of reading problem data and repeatedly parsing and

canonicalizing, we propose to use the matrix stuffing technique [67, 125] to perform fast

transformation by exploiting the problem structures. Specifically, we will first generate the

mapping from the original problem to the cone program, and then the structure of the standard

form will be stored. This can be accomplished offline. Therefore, for each problem instance,

we only need to stuff its parameters to data of the corresponding pre-stored structure of the

standard cone program. Similar ideas were presented in the emerging parse/generator model-

ing frameworks like CVXGEN [137] and QCML [125], which aim at embedded applications

for some specific problem families. In this chapter, we will demonstrate in Section 5.6 that

matrix stuffing is essential to scale to large problem sizes for fast transformation at the first

stage of the proposed framework.

5.3.1 Conic Formulation of Convex Programs

In this section, we describe a systematic way to transform the original problem P to the

standard cone program. To enable parallel computing, a common way is to replicate some

variables through either exploiting problem structures [83, 127] or using the consensus for-

mulation [59, 128]. However, directly working on these reformulations is difficult to provide

computable mathematical certificates of infeasibility. Therefore, heuristic criteria are often

adopted to detect the infeasibility, e.g., the underlying problem instance is reported to be
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infeasible when the algorithm exceeds the pre-defined maximum iterations without conver-

gence [127]. To unify the requirements of parallel and scalable computing and to provide

computable mathematical certificates of infeasibility, in this chapter, we propose to transform

the original problem P to the following equivalent cone program Pcone:

Pcone : minimize
ν,µ

cTν

subject to Aν + µ = b (5.3.1)

(ν,µ) ∈ Rn ×K, (5.3.2)

where ν ∈ Rn and µ ∈ Rm are the optimization variables, K = {0}r × Sm1 × · · · × Smq

with Sp as the standard second-order cone of dimension p

Sp = {(y,x) ∈ R× Rp−1|‖x‖ ≤ y}, (5.3.3)

and S1 is defined as the cone of nonnegative reals, i.e., R+. Here, each S i has dimension mi

such that (r+
∑q

i=1 mi) = m, A ∈ Rm×n, b ∈ Rm, c ∈ Rn. The equivalence means that the

optimal solution or the certificate of infeasibility of the original problem P can be extracted

from the solution to the equivalent cone program Pcone. To reduce the storage and memory

overhead, we store the matrix A, vectors b and c in the sparse form [138] by only storing the

non-zero entries.

The general idea of such transformation is to rewrite the original problem P into a Smith

form by introducing a new variable for each subexpression in disciplined convex program-

ming form [131] of problem P . The details are presented in the Appendix. Working with

this transformed standard cone program Pcone has the following two advantageous:

• The homogeneous self-dual embedding of the primal-dual pair of the standard cone

program can be induced, thereby providing certificates of infeasibility. This will be

presented in Section 5.4.1.

• The feasible set V (5.2.5) formed by the intersection of a finite number of constraint

sets Pl’s andQk’s in the original problem P can be transformed into two sets in Pcone:

a subspace (5.3.1) and a convex cone K, which is formed by the Cartesian product

of second-order cones. This salient feature will be exploited to enable parallel and

scalable computing, as will be presented in Section 5.4.2.
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5.3.2 Matrix Stuffing for Fast Transformation

Inspired by the work [125] on fast optimization code deployment for embedding second-order

cone program, we propose to use the matrix stuffing technique [67, 125] to transform the

original problem into the standard cone program quickly. Specifically, for any given network

size, we first generate and store the structure that maps the original problem P to the standard

form Pcone. Thus, the pre-stored standard form structure includes the problem dimensions

(i.e., m and n), the description of V (i.e., the array of the cone sizes [r,m1,m2, . . . ,mq]), and

the symbolic problem parameters A, b and c. This procedure can be done offline.

Based on the pre-stored structure, for a given problem instance P , we only need to copy

its parameters (i.e., the channel coefficients hK’s, maximum transmit powers Pl’s, SINR

targets γk’s) to the corresponding data in the standard form Pcone (i.e., A and b). Details

of the exact description of copying data for transformation are presented in the Appendix.

As the procedure for transformation only needs to copy memory, it thus is suitable for fast

transformation and can avoid repeated parsing and generating as in parser/solver modeling

frameworks like CVX.

Remark 7. As shown in the Appendix, the dimension of the transformed standard cone pro-

gram Pcone becomes m = (L+K) + (2NK + 1) +
∑L

l=1(2KNl + 1)+K(2K + 2), which

is much larger than the dimension of the original problem, i.e., 2NK in the equivalent real-

field. But as discussed above, there are unique advantages of working with this standard

form, which compensate for the increase in the size, as will be explicitly presented in later

sections.

5.4 The Operator Splitting Method For Large-Scale Homo-

geneous Self-Dual Embedding

Although the standard cone program Pcone itself is suitable for parallel computing via the

operator splitting method [139], directly working on this problem may fail to provide certifi-

cates of infeasibility. To address this limitation, based on the recent work by O’Donoghue et.

al [96], we propose to solve the homogeneous self-dual embedding [132] of the primal-dual

pair of the cone program Pcone. The resultant homogeneous self-dual embedding is further

solved via the operator splitting method, a.k.a. the ADMM algorithm [59].
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5.4.1 Homogeneous Self-Dual Embedding of Cone Programming

The basic idea of the homogeneous self-dual embedding is to embed the primal and dual

problems of the cone program Pcone into a single feasibility problem (i.e., finding a feasible

point of the intersection of a subspace and a convex set) such that either the optimal solution

or the certificate of infeasibility of the original cone program Pcone can be extracted from the

solution of the embedded problem.

The dual problem of Pcone is given by [96]

Dcone : maximize
η,λ

−bTη

subject to −ATη + λ = c

(λ,η) ∈ {0}n ×K∗, (5.4.1)

where λ ∈ Rn and η ∈ Rm are the dual variables, K∗ is the dual cone of the convex cone K.

Note that K = K∗, i.e., K is self dual. Define the optimal values of the primal program Pcone

and dual program Pcone are p? and d?, respectively. Let p? = +∞ and p? = −∞ indicate

primal infeasibility and unboundedness, respectively. Similarly, let d? = −∞ and d? = +∞

indicate the dual infeasibility and unboundedness, respectively. We assume strong duality for

the convex cone program Pcone, i.e., p? = d?, including cases when they are infinite. This is a

standard assumption for practically designing solvers for conic programs, e.g., it is assumed

in [96, 120–122, 132]. Besides, we do not make any regularity assumption on the feasibility

and boundedness assumptions on the primal and dual problems.

5.4.1.1 Certificates of Infeasibility

Given the cone program Pcone, a main task is to detect feasibility. In [50, Theorem 1], a

sufficient condition for the existence of strict feasible solution was provided for the transmit

power minimization problem without power constraints. However, for the general problem

P with per-MU QoS constraints and per-RRH transmit power constraints, it is difficult to

obtain such a feasibility condition analytically. Therefore, most existing works either assume

that the underlying problem is feasible [18] or provide heuristic ways to handle infeasibility

[127].

Nevertheless, the only way to detect infeasibility effectively is to provide a certificate or

proof of infeasibility as presented in the following proposition.
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Proposition 5. [Certificates of Infeasibility] The following system

Aν + µ = b,µ ∈ K, (5.4.2)

is infeasible if and only if the following system is feasible

ATη = 0,η ∈ K?,bTη < 0. (5.4.3)

Therefore, any dual variable η satisfying the system (5.4.3) provides a certificate or proof

that the primal program Pcone (equivalently the original problem P) is infeasible.

Similarly, any primal variable ν satisfying the following system

−Aν ∈ K, cTν < 0, (5.4.4)

is a certificate of the dual program Dcone infeasibility.

Proof. This result directly follows the theorem of strong alternatives [22, Section 5.8.2].

5.4.1.2 Optimality Conditions

If the transformed standard cone program Pcone is feasible, then (ν?,µ?,λ?,η?) are optimal

if and only if they satisfy the following Karush-Kuhn-Tucker (KKT) conditions

Aν? + µ? − b = 0 (5.4.5)

ATη? − λ? + c = 0 (5.4.6)

(η?)Tµ? = 0 (5.4.7)

(ν?,µ?,λ?,η?) ∈ Rn ×K × {0}n ×K∗. (5.4.8)

In particular, the complementary slackness condition (C.4.8) can be rewritten as

cTν? + bTη? = 0, (5.4.9)

which explicitly forces the duality gap to be zero.
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5.4.1.3 Homogeneous Self-Dual Embedding

We can first detect feasibility by Proposition 5, and then solve the KKT system if the problem

is feasible and bounded. However, the disadvantage of such a two-phase method is that two

related problems (i.e., checking feasibility and solving KKT conditions) need to be solved se-

quentially [132]. To avoid such inefficiency, we propose to solve the following homogeneous

self-dual embedding [132]:

Aν + µ− bτ = 0 (5.4.10)

ATη − λ+ cτ = 0 (5.4.11)

cTν + bTη + κ = 0 (5.4.12)

(ν,µ,λ,η, τ, κ) ∈ Rn ×K × {0}n ×K∗ × R+ × R+, (5.4.13)

to embed all the information on the infeasibility and optimality into a single system by in-

troducing two new nonnegative variables τ and κ, which encode different outcomes. The

homogeneous self-dual embedding thus can be rewritten as the following compact form

FHSD : find (x,y)

subject to y = Qx

x ∈ C,y ∈ C∗, (5.4.14)

where 
λ

µ

κ


︸ ︷︷ ︸

y

=


0 AT c

−A 0 b

−cT −bT 0


︸ ︷︷ ︸

Q


ν

η

τ


︸ ︷︷ ︸

x

, (5.4.15)

x ∈ Rm+n+1, y ∈ Rm+n+1, Q ∈ R(m+n+1)×(m+n+1), C = Rn × K∗ × R+ and C∗ =

{0}n ×K × R+. This system has a trivial solution with all variables as zeros.

The homogeneous self-dual embedding problem FHSD is thus a feasibility problem find-

ing a nonzero solution in the intersection of a subspace and a convex cone. Let (ν,µ,λ,η, τ, κ)

be a non-zero solution of the homogeneous self-dual embedding. We then have the following

remarkable trichotomy derived in [132]:
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• Case 1: τ > 0, κ = 0, then

ν̂ = ν/τ, η̂ = η/τ, µ̂ = µ/τ (5.4.16)

are the primal and dual solutions to the cone program Pcone.

• Case 2: τ = 0, κ > 0; this implies cTν + bTη < 0, then

1. If bTη < 0, then η̂ = η/(−bTη) is a certificate of the primal infeasibility as

AT η̂ = 0, η̂ ∈ V?,bT η̂ = −1. (5.4.17)

2. If cTν < 0, then ν̂ = ν/(−cT ν̂) is a certificate of the dual infeasibility as

−Aν̂ ∈ V , cT ν̂ = −1. (5.4.18)

• Case 3: τ = κ = 0; no conclusion can be made about the cone problem Pcone.

Therefore, from the solution to the homogeneous self-dual embedding, we can extract

either the optimal solution (based on (D.1.17)) or the certificate of infeasibility for the original

problem. Furthermore, as the set (5.4.13) is a Cartesian product of a finite number of sets, this

will enable parallelizable algorithm design. With the distinct advantages of the homogeneous

self-dual embedding, in the sequel, we focus on developing efficient algorithms to solve the

large-scale feasibility problem FHSD via the operator splitting method.

5.4.2 The Operator Splitting Method

Conventionally, the convex homogeneous self-dual embedding FHSD can be solved via the

interior-point method, e.g., [120–122, 132]. However, such second-order method has cubic

computational complexity for the scend-order cone programs [114], and thus the compu-

tational cost will be prohibitive for large-scale problems. Instead, O’Donoghue et al. [96]

develop a first-order optimization algorithm based on the operator splitting method, i.e., the

ADMM algorithm [59], to solve the large-scale homogeneous self-dual embedding. The key

observation is that the convex cone constraint in FHSD is the Cartesian product of standard

convex cones (i.e., second-order cones, nonnegative reals and free variables), which enables
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parallelizable computing. Furthermore, we will show that the computation of each iteration

in the operator splitting method is very cheap and efficient.

Specifically, the homogeneous self-dual embedding FHSD can be rewritten as

minimize IC×C∗(x,y) + IQx=y(x,y), (5.4.19)

where IS is the indicator function of the set S, i.e., IS(z) is zero for z ∈ S and it is +∞

otherwise. By replicating variables x and y, problem (5.4.19) can be transformed into the

following consensus form [59, Section 7.1]

PADMM : minimize IC×C∗(x,y) + IQx̃=ỹ(x̃, ỹ)

subject to (x,y) = (x̃, ỹ), (5.4.20)

which is readily to be solved by the operator splitting method.

Applying the ADMM algorithm [59, Section 3.1] to problem PADMM and eliminating

the dual variables by exploiting the self-dual property of the problem FHSD (Please refer

to [96, Section 3] on how to simplify the ADMM algorithm), the final algorithm is shown as

follows:

OSADMM :


x̃[i+1] = (I + Q)−1(x[i] + y[i])

x[i+1] = ΠC(x̃
[i+1] − y[i])

y[i+1] = y[i] − x̃[i+1] + x[i+1],

(5.4.21)

where ΠC(x) denotes the Euclidean projection of x onto the set C. This algorithm has the

O(1/k) convergence rate [140] with k as the iteration counter (i.e., the ε accuracy can be

achieved in O(1/ε) iterations) and will not converge to zero if a nonzero solution exists [96,

Section 3.4]. Empirically, this algorithm can converge to modest accuracy within a reasonable

amount of time. As the last step is computationally trivial, in the sequel, we will focus on

how to solve the first two steps efficiently.
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5.4.2.1 Subspace Projection via Factorization Caching

The first step in the algorithm OSADMM is a subspace projection. After simplification [96,

Section 4], we essentially need to solve the following linear equation at each iteration, i.e., I −AT

−A −I


︸ ︷︷ ︸

S

 ν
−η


︸ ︷︷ ︸

x

=

ν [i]

η[i]


︸ ︷︷ ︸

b

, (5.4.22)

for the given ν [i] and η[i] at iteration i, where S ∈ Rd×d with d = m + n is a symmetric

quasidefinite matrix [141]. To enable quicker inversions and reduce memory overhead via

exploiting the sparsity of the matrix S, the sparse permuted LDLT factorization [138] method

can be adopted. Specifically, such factor-solve method can be carried out by first computing

the sparse permuted LDLT factorization as follows

S = PLDLTPT , (5.4.23)

where L is a lower triangular matrix, D is a diagonal matrix [139] and P with P−1 = PT is a

permutation matrix to fill-in of the factorization [138], i.e., the number of nonzero entries in

L. Such factorization exists for any permutation P, as the matrix S is symmetric quasidefinite

[141, Theorem 2.1]. Computing the factorization costs much less thanO(1/3d3) flops, while

the exact value depends on d and the sparsity pattern of S in a complicated way. Note that

such factorization only needs to be computed once in the first iteration and can be cached for

re-using in the sequent iterations for subspace projections. This is called the factorization

caching technique [96].

Given the cached factorization (5.4.23), solving subsequent projections x = S−1b (5.4.22)

can be carried out by solving the following much easier equations:

Px1 = b,Lx2 = x1,Dx3 = x2,L
Tx4 = x3,P

Tx = x4, (5.4.24)

which cost zero flops, O(sd) flops by forward substitution with s as the number of nonzero

entries in L, O(d) flops, O(sd) flops by backward substitution, and zero flops, respectively

[22, Appendix C].
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5.4.2.2 Cone Projection via Proximal Operator Evaluation

The second step in the algorithm OSADMM is to project a point ω onto the cone C. As C

is the Cartesian product of the finite number of convex cones Ci, we can perform projection

onto C by projecting onto Ci separately and in parallel. Furthermore, the projection onto each

convex cone can be done with closed-forms. Specifically, for nonnegative real Ci = R+, we

have that [142, Section 6.3.1]

ΠCi(ω) = ω+, (5.4.25)

where the nonnegative part operator (·)+ is taken elementwise. For the second-order cone

Ci = {(y,x) ∈ R× Rp−1|‖x‖ ≤ y}, we have that [142, Section 6.3.2]

ΠCi(ω, τ) =


0, ‖ω‖2 ≤ −τ

(ω, τ), ‖ω‖2 ≤ τ

(1/2)(1 + τ/‖ω‖2)(ω, ‖ω‖2), ‖ω‖2 ≥ |τ |.

(5.4.26)

In summary, we have presented that each step in the algorithmOSADMM can be computed

efficiently. In particular, from both (5.4.25) and (5.4.26), we see that the cone projection can

be carried out very efficiently with closed-forms, leading to parallelizable algorithms.

5.5 Practical Implementation Issues

In previous sections, we have presented the unified two-stage framework for large-scale con-

vex optimization in dense wireless cooperative networks. In this section, we will focus on the

implementation issues of the proposed framework.

5.5.1 Automatic Code Generation for Fast Transformation

In the Appendix, we describe a systematic way to transform the original problem to the stan-

dard cone programming form. The resultant structure that maps the original problem to the

standard form can be stored and re-used for fast transforming via matrix stuffing. This can

significantly reduce the modeling overhead compared with the parse/solver modeling frame-

works like CVX. However, it requires tedious manual works to find the mapping and may

not be easy to verify the correctness of the generated mapping. Chu et al. [125] gave such
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an attempt intending to automatically generate the code for matrix stuffing. However, the

corresponding software package QCML [125], so far, is far from complete and may not be

suitable for our applications. Extending the numerical-based transformation modeling frame-

works like CVX to the symbolic-based transformation modeling frameworks like QCML is

not trivial and requires tremendous mathematical and technical efforts. In this chapter, we

derive the mapping in the Appendix manually and verify the correctness by comparing with

CVX through extensive simulations.

5.5.2 Implementation of the Operator Splitting Algorithm

Theoretically, the presented operator splitting algorithmOSADMM is compact, parameter-free,

with parallelizable computing and linear convergence. Practically, there are typically several

ways to improve the efficiency of the algorithm. In particular, there are various tricks that

can be employed to improve the convergence rate, e.g, over-relaxation, warm-staring and

problem data scaling as described in [96]. In the dense wireless cooperative networks with

multi-entity collaborative architecture, we are interested in two particular ways to speed up

the subspace projection of the algorithm OSADMM, which is the main computational bottle-

neck. Specifically, one way is to use the parallel algorithms for the factorization (5.4.23) by

utilizing the distributed computing and memory resources [143]. For instance, in the cloud

computing environments in Cloud-RAN, all the baseband units share the computing, mem-

ory and storage resources in a single baseband unit pool [10, 29]. Another way is to leverage

symbolic factorization (5.4.23) to speed up the numerical factorization for each problem in-

stance, which is a general idea for the code generation system CVXGEN [137] for realtime

convex quadratic optimization [144] and the interior-point method based SOCP solver [145]

for embedded systems. Eventually, the ADMM solver in Fig. 5.1 can be symbolic based so

as to provide numerical solutions for each problem instance extremely fast and in a realtime

way. However, this requires further investigation.

120



5.6 Numerical Results

In this section, we simulate the proposed two-stage based large-scale convex optimization

framework for performance optimization in dense wireless cooperative networks. We con-

sider the following channel model for the link between the k-th MU and the l-th RRH:

hkl = 10−L(dkl)/20√ϕklsklfkl,∀k, l, (5.6.1)

where L(dkl) is the path-loss in dB at distance dkl as shown in [29, Table I], skl is the shad-

owing coefficient, ϕkl is the antenna gain and fkl is the small-scale fading coefficient. We use

the standard cellular network parameters as showed in [29, Table I]. All the simulations are

carried out on a personal computer with 3.2 GHz quad-core Intel Core i5 processor and 8 GB

of RAM running Linux. The reference implementation of the operator splitting algorithm

SCS is available at (https://github.com/cvxgrp/scs), which is a general software

package for solving large-scale convex cone problems based on [96] and can be called by the

modeling frameworks CVX and CVXPY [146]. The settings (e.g., the stopping criteria) of

SCS can be found in [96].

The proposed two-stage approach framework, termed “Matrix Stuffing+SCS”, is com-

pared with the following state-of-art frameworks:

• CVX+SeDuMi/SDPT3/MOSEK: This category adopts second-order methods. The

modeling framework CVX will first automatically transform the original problem in-

stance (e.g., the problem P written in the disciplined convex programming form) into

the standard cone programming form and then call an interior-point solver, e.g., Se-

DuMi [120], SDPT3 [121] or MOSEK [122].

• CVX+SCS: In this first-order method based framework, CVX first transforms the orig-

inal problem instance into the standard form and then calls the operator splitting solver

SCS.

We define the “modeling time” as the transformation time for the first stage, the “solving

time” as the time spent for the second stage, and the “total time” as the time of the two

stages for solving one problem instance. As the large-scale convex optimization algorithm

should scale well to both the modeling part and the solving part simultaneously, the time
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comparison of each individual stage will demonstrate the effectiveness of the proposed two-

stage approach.

Given the network size, we first generate and store the problem structure of the standard

form Pcone, i.e., the structure of A, b, c and the descriptions of V . As this procedure can be

done offline for all the candidate network sizes, we thus ignore this step for time comparison.

We repeat the following procedures to solve the large-scale convex optimization problem P

with different parameters and sizes using the proposed framework “Matrix Stuffing+SCS”:

1. Copy the parameters in the problem instance P to the data in the pre-stored structure

of the standard cone program Pcone.

2. Solve the resultant standard cone programming instance Pcone using the solver SCS.

3. Extract the optimal solutions of P from the solutions to Pcone by the solver SCS.

Finally, note that all the interior-point solvers are multiple threaded (i.e., they can utilize

multiple threads to gain extra speedups), while the operator splitting algorithm solver SCS is

single threaded. Nevertheless, we will show that SCS performs much faster than the interior-

point solvers. We also emphasize that the operator splitting method aims at scaling well to

large problem sizes and thus provides solutions to modest accuracy within reasonable time,

while the interior-point method intends to provide highly accurate solutions. Furthermore,

the modeling framework CVX aims at rapid prototyping and providing a user-friendly tool

for automatically transformations for general problems, while the matrix-stuffing technique

targets at scaling to large-scale problems for the specific problem family P . Therefore, these

frameworks and solvers are not really comparable with different purposes and application

capabilities. We mainly use them to verify the effectiveness and reliability of our proposed

framework in terms of the solution time and the solution quality.

5.6.1 Effectiveness and Reliability of the Proposed Large-Scale Convex

Optimization Framework

Consider a network with L 2-antenna RRHs and K single-antenna MUs uniformly and inde-

pendently distributed in the square region [−3000, 3000]×[−3000, 3000] meters with L = K.

We consider the total transmit power minimization problem P1(γ) with the QoS require-

ments for each MU as γk = 5 dB, ∀k. Table 5.1 demonstrates the comparison of the running
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Table 5.1: Time and Solution Results for Different Convex Optimization Frameworks
Network Size (L = K) 20 50 100 150 200

CVX+SeDuMi
Total Time [sec] 8.1164 N/A N/A N/A N/A

Objective [W] 12.2488 N/A N/A N/A N/A

CVX+SDPT3
Total Time [sec] 5.0398 330.6814 N/A N/A N/A

Objective [W] 12.2488 6.5216 N/A N/A N/A

CVX+MOSEK
Total Time [sec] 1.2072 51.6351 N/A N/A N/A

Objective [W] 12.2488 6.5216 N/A N/A N/A

CVX+SCS
Total Time [sec] 0.8501 5.6432 51.0472 227.9894 725.6173

Modeling Time [sec] 0.7563 4.4301 38.6921 178.6794 534.7723

Objective [W] 12.2505 6.5215 3.1303 2.0693 1.5404

Matrix Stuffing+SCS
Total Time [sec] 0.1137 2.7222 26.2242 90.4190 328.2037

Modeling Time [sec] 0.0128 0.2401 2.4154 9.4167 29.5813

Objective [W] 12.2523 6.5193 3.1296 2.0689 1.5403

time and solutions using different convex optimization frameworks. Each point of the simu-

lation results is averaged over 100 randomly generated network realizations (i.e., one small

scaling fading realization for each large-scale fading realization).

For the modeling time comparisons, this table shows that the value of the proposed ma-

trix stuffing technique ranges between 0.01 and 30 seconds2 for different network sizes and

can speedup about 15x to 60x compared to the parser/solver modeling framework CVX. In

particular, for large-scale problems, the transformation using CVX is time consuming and be-

comes the bottleneck, as the “modeling time” is comparable and even larger than the “solving

time”. For example, when L = 150, the “modeling time” using CVX is about 3 minutes,

while the matrix stuffing only requires about 10 seconds. Therefore, the matrix stuffing for

fast transformation is essential for solving large-scale convex optimization problems quickly.

For the solving time (which can be easily calculated by subtracting the “modeling time”

from the “total time”) using different solvers, this table shows that the operator splitting

solver can speedup by several orders of magnitude over the interior-point solvers. For exam-

ple, for L = 50, it can speedup about 20x and 130x over MOSEK3 and SDPT3, respectively,

while SeDuMi is inapplicable for this problem size as the running time exceeds the pre-

defined maximum value, i.e., one hour. In particular, all the interior-point solvers fail to solve

large-scale problems (i.e., L = 100, 150, 200), denoted as “N/A”, while the operator splitting

solver SCS can scale well to large problem sizes. For the largest problems with L = 200, the

2This value can be significantly reduced in practical implementations, e.g., at the BBU pool in Cloud-RAN,
which, however, requires substantial further investigation. Meanwhile, the results effectively confirm that the
proposed matrix stuffing technique scales well to large-scale problems.

3Although SeDuMi, SDPT3 and MOSEK (commercial software) are all based on the interior-point method,
the implementation efficiency of the corresponding software packages varies substantially. In the following
simulations, we mainly compare with the state-of-art public solver SDPT3.
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Fig. 3. The empirical probability of feasibility versus target SINR withFigure 5.2: The empirical probability of feasibility versus target SINR with different network
sizes.

operator splitting solver can solve them in about 5 minutes.

For the quality of the solutions, this table shows that the propose framework can provide

a solution to modest accuracy within much less time. For the two problem sizes, i.e., L = 20

and L = 50, which can be solved by the interior-point method based frameworks, the optimal

values attained by the proposed framework are within 0.03% of that obtained via the second-

order method frameworks.

In summary, the proposed two-stage based large-scale convex optimization framework

scales well to large-scale problem modeling and solving simultaneously. Therefore, it pro-

vides an effective way to evaluate the system performance via large-scale optimization in

dense wireless networks. However, its implementation and performance in practical systems

still need further investigation. In particular, this set of results indicate that the scale of co-

operation in dense wireless networks may be fundamentally constrained by the computation

complexity/time.

5.6.2 Infeasibility Detection Capability

A unique property of the proposed framework is its infeasibility detection capability, which

will be verified in this part. Consider a network with L = 50 single-antenna RRHs and
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K = 50 single-antenna MUs uniformly and independently distributed in the square re-

gion [−2000, 2000]× [−2000, 2000] meters. The empirical probabilities of feasibility in Fig.

5.2 show that the propose framework can detect the infeasibility accurately compared with

the second-order method framework “CVX+SDPT3” and the first-order method framework

“CVX+SCS”. Each point of the simulation results is averaged over 200 randomly generated

network realizations. The average (“total time”, “solving time”) for obtaining a single point

with “CVX+SDPT3”, “CVX+SCS” and “Matrix Stuffing+SCS” are (101.7635, 99.1140)

seconds, (5.0754, 2.3617) seconds and (1.8549, 1.7959) seconds, respectively. This shows

that the operator splitting solver can speedup about 50x over the interior-point solver.

We further consider a larger-sized network with L = 100 single-antenna RRHs and

K = 100 single-antenna MUs uniformly and independently distributed in the square re-

gion [−2000, 2000]× [−2000, 2000] meters. As the second-order method framework fails to

scale to this size, we only compare with the first-order method framework. Fig. 5.2 demon-

strates that the proposed framework has the same infeasibility detection capability as the

first-order method framework. This verifies the correctness and the reliability of the pro-

posed fast transformation via matrix stuffing. Each point of the simulation results is averaged

over 200 randomly generated network realizations. The average (“solving time”, “mod-

eling time”) for obtaining a single point with “CVX+SCS” and “Matrix Stuffing+SCS”

are (41.9273, 18.6079) seconds and (31.3660, 0.5028) seconds, respectively. This shows that

the matrix stuffing technique can speedup about 40x over the numerical based parser/solver

modeling framework CVX. We also note that the solving time of the proposed framework is

smaller than the framework “CVX+SCS”, the speedup is due to the warm-staring [96, Sec-

tion 4.2].

5.6.3 Group Sparse Beamforming for Network Power Minimization

In this part, we simulate the network power minimization problem using the group sparse

beamforming algorithm [29, Algorithm 2]. We set each fronthaul link power consumption

as 5.6W and set the power amplifier efficiency coefficient for each RRH as 25%. In this

algorithm, a sequence of convex feasibility problems need to be solved to determine the active

RRHs and one convex optimization problem needs to be solved to determine the transmit

beamformers. This relies on the infeasibility detection capability of the proposed framework.

Consider a network with L = 20 2-antenna RRHs and K = 20 single-antenna MUs
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uniformly and independently distributed in the square region [−1000, 1000]× [−1000, 1000]

meters. Each point of the simulation results is averaged over 50 randomly generated net-

work realizations. Fig. 5.3 demonstrates the accuracy of the solutions in the network power

consumption obtained by the proposed framework compared with the second-order method

framework “CVX+SDPT3” and the first-order method framework “CVX+SCS”. The av-

erage (“total time”, “solving time”) for obtaining a single point with “CVX+SDPT3”,

“CVX+SCS” and “Matrix Stuffing+SCS” are (19.1822, 10.8831) seconds, (8.4101, 0.4255)

seconds and (0.5857, 0.5222) seconds, respectively. This shows that the operator splitting

solver can speedup about 25x over the interior-point solver.

We further consider a larger-sized network with L = 50 2-antenna RRHs and K = 50

single-antenna MUs uniformly and independently distributed in the square region [−3000, 3000]×

[−3000, 3000] meters. As the second-order method framework is not applicable to this prob-

lem size, we only compare with the first-order method framework. Each point of the simu-

lation results is averaged over 50 randomly generated network realizations. Fig. 5.3 shows

that the proposed framework can achieve the same solutions in network power consumption

as the first-order method framework “CVX+SCS”. The average (“solving time”, “mod-

eling time”) for obtaining a single point with “CVX+SCS” and “Matrix Stuffing+SCS”

are (11.9643, 69.0520) seconds and (14.6559, 2.1567) seconds, respectively. This shows that

126



−10 0 10 20 30

0

2

4

6

Optimal Beamforming

RZF

ZFBF

MRT

SNR [dB]

A
ve

ra
ge

M
in

im
um

R
at

e
[b

ps
/H

z]

CVX+SCS
Matrix Stuffing+SCS

Figure 5.4: The minimum network-wide achievable versus transmit SNR with 55 single-
antenna RRHs and 50 single-antenna MUs.

the matrix stuffing technique can speedup about 30x over the numerical based parser/solver

modeling framework CVX.

In summary, Fig. 5.3 demonstrates the capability of infeasibility detection (as a sequence

of convex feasibility problems need to be solved in the RRH selection procedure), the accu-

racy of the solutions, and speedups provided by the proposed framework over the existing

frameworks.

5.6.4 Max-min Rate Optimization

We will simulate the minimum network-wide achievable rate maximization problem using

the max-min fairness optimization algorithm in [67, Algorithm 1] via the bi-section method,

which requires to solve a sequence of convex feasibility problems. We will not only show the

quality of the solutions and speedups provided by the proposed framework, but also demon-

strate that the optimal coordinated beamformers significantly outperform the low-complexity

and heuristic transmission strategies, i.e., zero-forcing beamforming (ZFBF) [129, 147], regu-

larized zero-forcing beamforming (RZF) [148] and maximum ration transmission (MRT) [3].

Consider a network with L = 55 single-antenna RRHs and K = 50 single-antenna MUs

uniformly and independently distributed in the square region [−5000, 5000]× [−5000, 5000]
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meters. Fig. 5.4 demonstrates the minimum network-wide achievable rate versus different

SNRs (which is defined as the transmit power at all the RRHs over the receive noise power at

all the MUs) using different algorithms. Each point of the simulation results is averaged over

50 randomly generated network realizations. For the optimal beamforming, this figure shows

the accuracy of the solutions obtained by the proposed framework compared with the first-

order method framework “CVX+SCS”. The average (“solving time”, “modeling time”) for

obtaining a single point for the optimal beamforming with “CVX+SCS” and “Matrix Stuff-

ing+SCS” are (176.3410, 55.1542) seconds and (82.0180, 1.2012) seconds, respectively.

This shows that the proposed framework can reduce both the solving time and modelling

time via warm-starting and matrix stuffing, respectively.

Furthermore, this figure also shows that the optimal beamforming can achieve quite an im-

provement for the per-user rate compared to suboptimal transmission strategies RZF, ZFBF

and MRT, which clearly shows the importance of developing optimal beamforming algo-

rithms for such networks. The average (“solving time”, “modeling time”) for a single point

using “CVX+SDPT3” for the RZF, ZFBF and MRT are (2.6210, 30.2053) seconds, (2.4592,

30.2098) seconds and (2.5966, 30.2161) seconds, respectively. Note that the solving time is

very small, which is because we only need to solve a sequence of linear programming prob-

lems for power control when the directions of the beamformers are fixed during the bi-section

search procedure. The main time consuming part is from transformation using CVX.

5.7 Discussions

We proposed a unified two-stage framework for large-scale optimization in dense Cloud-

RAN. We showed that various performance optimization problems can be essentially solved

by solving one or a sequence of convex optimization or feasibility problems. The proposed

framework only requires the convexity of the underlying problems (or subproblems) without

any other structural assumptions, e.g., smooth or separable functions. This is achieved by first

transforming the original convex problem to the standard form via matrix stuffing and then

using the ADMM algorithm to solve the homogeneous self-dual embedding of the primal-

dual pair of the transformed standard cone program. Simulation results demonstrated the

infeasibility detection capability, the modeling flexibility and computing scalability, and the

reliability of the proposed framework.
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In principle, one may apply the proposed framework to any large-scale convex optimiza-

tion problems and only needs to focus on the standard form reformulation as shown in Ap-

pendix, as well as to compute the proximal operators for different cone projections in (5.4.26).

However, in practice, we need to address the following issues to provide a user-friendly

framework and to assist practical implementation:

• Although the parse/solver frameworks like CVX can automatically transform an origi-

nal convex problem into the standard form numerically based on the graph implemen-

tation, extending such an idea to the automatic and symbolic transformation, thereby

enabling matrix stuffing, is desirable but challenging in terms of reliability and correct-

ness verification.

• Efficient projection algorithms are highly desirable. For the subspace projection, as

discussed in Section 5.5.2, parallel factorization and symbolic factorization are espe-

cially suitable for the cloud computing environments as in Cloud-RAN [10, 29]. For

the cone projection, although the projection on the second-order cone is very efficient,

as shown in (5.4.26), projecting on the semidefinite cone (which is required to solve

the semidefinite programming problems) is computationally expensive, as it requires

to perform eigenvalue decomposition. The structure of the cone projection should be

exploited to make speedups.

• It is interesting to apply the proposed framework to various non-convex optimization

problems. For instance, the well-known majorization-minimization optimization pro-

vides a principled way to solve the general non-convex problems, whereas a sequence

of convex subproblems need to be solved at each iteration. Enabling scalable compu-

tation at each iteration will hopefully lead to scalability of the overall algorithm.
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Chapter 6

Summary and Future Directions

6.1 Summary

The central theme of the thesis has been to exploit the problem structures (e.g., group sparsity

and low-rankness) based on the convex optimization and Riemannian optimization to address

the networking issues (i.e., network power consumption, massive CSI acquisition and explo-

ration) and computing issues in dense Cloud-RANs. We end this thesis by summarizing our

main findings and discussing several future research directions.

6.1.1 Group Sparse Optimization for Network Adaptation

Network power minimization in green dense Cloud-RAN is a difficult non-convex mixed

combinatorial optimization problem. Group sparse optimization offers a principled way to

investigate the green dense Cloud-RAN design problems by enabling network adaptation.

The underlying idea is that the network entity selection (e.g., RRHs and fronthaul links)

can be achieved via controlling the group-sparsity structure of the aggregative beamforming

vector. This key observation enables efficient group sparse beamforming algorithm design.

Specifically, the mixed `1/`2-norm was proposed to convexify the combinatorial composite

function of network power consumption. A novel quadratic variational formulation of the

weighted mixed `1/`2 -norm was further developed to induce the group-sparsity structure for

the robust multicast beamformer, thereby guiding the RRH selection. Extensive numerical

results have demonstrated the computational efficiency and near-optimal performance of the

group sparse beamforming algorithms.
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It is critical but also challenging to establish the optimality of the group sparse beamform-

ing algorithms. Finding more applications of the group sparse optimization techniques are

very interesting, e.g., computation offloading in mobile edge computing and networking [11].

6.1.2 Massive CSI Acquisition in Dense Cloud-RAN

We proposed a unified framework consisting of a novel compressive CSI acquisition method

and stochastic coordinated beamforming (SCB) with mixed CSI for dense Cloud-RAN, thereby

significantly reducing the CSI overhead. In particular, the The proposed SCB framework pro-

vides modeling flexibility in the channel knowledge uncertainty, while the stochastic DC pro-

gramming algorithm guarantees to find a stationary point to the resulting chance constrained

programming problem. The key finding is that the challenge of CSI overhead reduction may

be overcome by exploiting the sparsity (partial connectivity) in wireless channels.

This initial investigation demonstrated that modeling the wireless channels, CSI acquisi-

tion and utilization are critical to address the massive CSI challenges in dense Cloud-RAN. In

particular, the underlying channel structures assumptions (e.g., sparsity) need to be verified

by real-world measurements. The CSI exploitation methods need to be algorithmic efficient.

Our recent results on the low-rank matrix completion for interference management based on

the network topology information provides a promising example [25].

6.1.3 Large-Scale Convex Optimization for Dense Cloud-RAN

Large-scale convex optimization is essential for scalable and flexible networking in dense

Cloud-RAN. We developed a unified two-stage framework to solve general large-scale con-

vex optimization problems. This is achieved by first transforming the original convex prob-

lem to the standard form via matrix stuffing and then using the ADMM algorithm to solve the

homogeneous self-dual embedding of the primal-dual pair of the transformed standard cone

program. The key findings suggest that convex optimization can not only handle highly in-

tractable design problems in dense Cloud-RAN but also can scale very well to large problem

sizes. The proposed framework will offer a promising way to solve general convex prob-

lems with wide applications in wireless networking, operation research, finance and machine

learning.

To further improve the computational efficiency of the two-stage approach framework,
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serval issues need to be further addressed including efficient semidefinite cone projection

algorithm for SDP problems as well as communication-efficient parallel and distributed im-

plementations.

6.2 Future Directions

6.2.1 High-Dimensional Channel Estimation

CSI plays a pivotal role for effective interference management and resource allocation in

dense Cloud-RAN. With the dense deployment of RRHs, CSI acquisition becomes a formidable

task. In particular, due to the limited radio resources for CSI training, the training pilot

length is typically smaller than the dimension of the channel. Conventional methods, such

as the least square estimate, become inapplicable in such settings, and novel CSI acquisition

methodologies are needed. A unique property of Cloud-RAN with geographically distributed

RRHs is the sparsity of the large-scale fading coefficients due to pathloss and shadowing.

That is, the channel links between the RRHs and MUs that are far away will have negli-

gible channel gains and contribute little to system performance. A practical way to reduce

the CSI acquisition overhead in terms of training and feedback is to only obtain a subset of

the strongest channel links. This is called compressive CSI acquisition [72], in which only

a subset of “relevant” channel links will be obtained. Therefore, it is expected that exploit-

ing the “low-complexity” structures of channels can reduce the training overhead, thereby

overcoming the curse of dimensionality of channel estimation in dense Cloud-RAN.

Furthermore, in terms of CSI exploitation, the proposed stochastic coordinated beam-

forming framework has demonstrated its modeling flexibility to deal with CSI uncertainty.

But the knowledge of channel distribution is still required, which may not be applicable in

some scenarios. Based on the fact of the partial connectivity in dense wireless networks due

to pathloss and shadowing, a practical way to manage the interference with the minimum

channel acquisition overhead is only based on the network topology information without CSI

at the transmitters. This forms the basic CSI assumption for the recent studies of topological

interference management [24]. It is thus interesting to develop efficient algorithms in dense

Cloud-RAN to exploit the network topology knowledge, e.g., the low-rank matrix completion

approach [25].

133



6.2.2 Fronthaul Compression

Most of the algorithms developed in this thesis assume that the Cloud-RAN is deployed in

the scenarios with abundant fronthaul resources, i.e., the capacity of the fronthaul links is

high enough. However, it is critical to consider the limited fronthaul capacity constrained

scenarios [14]. It is obvious that this will complicate the design problems, e.g., in the down-

link case, the limited fronthaul capacity will yield non-convex DC constraints [45]. The

developed stochastic DC programming algorithm in Chapter 4 will have the potential to ac-

commodate the DC constraints in the limited fronthaul capacity case. However, to scale well

to large problem sizes, it is not trivial to extend the large-scale parallel convex optimization

framework in Chapter 5 to the non-convex optimization problems. A interesting future re-

search direction will be developing large-scale parallel algorithms for general non-convex

optimization problems.
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Appendix A

Proofs and Preliminaries in Chapter 2

A.1 Proof of Proposition 1

We begin by deriving the tightest positively homogeneous lower bound of p(w), which is

given by [54, 149]

ph(w) = inf
λ>0

p(λw)

λ
= inf

λ>0
λT (w) +

1

λ
F (T (w)). (A.1.1)

Setting the gradient of the objective function to zero, the minimum is obtained at λ =√
F (T (w))/T (w). Thus, the positively homogeneous lower bound of the objective func-

tion becomes

ph(w) = 2
√
T (w)F (T (w)), (A.1.2)

which combines two terms multiplicatively.

Define diagonal matrices U ∈ RN×N , V ∈ RN×N with N = K
∑L

l=1Nl, for which

the l-th block elements are ηlIKNl
and 1

ηl
IKNl

, respectively. Next, we calculate the convex

envelope of ph(w) via computing its conjugate:

p∗h(y) = sup
w∈CN

(
yTUTVw − 2

√
T (w)F (T (w))

)
,

= sup
I⊆V

sup
wI∈C|I|

(
yTIUT

IIVIIwI−2
√
T (wI)F (I)

)
=

0 if Ω∗(y) ≤ 1

∞, otherwise.
(A.1.3)
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where yI is the |I|-dimensional vector formed with the entries of y indexed by I (similarly

for w), and UII is the |I| × |I| matrix formed with the rows and columns of U indexed by

I (similarly for V), and Ω∗(y) defines a dual norm of Ω(w):

Ω∗(y) = sup
I⊆V,I6=∅

‖yIUI‖`2
2
√
F (I)

=
1

2
max
l=1,...,L

√
ηl
P c
l

‖yGl‖`2 . (A.1.4)

The first equality in (A.1.4) can be obtained by the Cauchy-Schwarz inequality:

yTIUT
IIVIIwI ≤‖yIUI‖`2 · ‖VIIwI‖`2 = ‖yIUI‖`2 ·

√
T (wI). (A.1.5)

The second equality in (A.1.4) can be justified by

Ω∗(y)≥ sup
I⊆V,I6=∅

(
1

2
√
F (I)

max
l=1,...,L

‖yI∩GlUI∩Gl‖`2

)

=
1

2
max
l=1,...,L

√
ηl
P c
l

‖yGl‖`2 , (A.1.6)

and

Ω∗(y)≤ sup
I⊆V,I6=∅

(
‖yIUI‖`2

2 minl=1,...,L

√
F (I ∩ Gl)

)
=

1

2
max
l=1,...,L

√
ηl
P c
l

‖yGl‖`2 . (A.1.7)

Therefore, the tightest convex positively homogeneous lower bound of the function p(w) is

Ω(w) = sup
Ω∗(y)≤1

wTy ≤ sup
Ω∗(y)≤1

L∑
l=1

‖wGl‖`2‖yGl‖`2

≤ sup
Ω∗(y)≤1

(
L∑
l=1

√
P c
l

ηl
‖wGl‖`2

)(
max
l=1,...,L

√
ηl
P c
l

‖yGl‖`2
)

= 2
L∑
l=1

√
P c
l

ηl
‖wGl‖`2 . (A.1.8)

This upper bound actually holds with equality. Specifically, we let ȳGl = 2
√

P c
l

ηl

w†Gl
‖w†Gl‖`2

, such

that Ω∗(ȳ) = 1. Therefore,

Ω(w) = sup
Ω∗(y)≤1

wTy ≥
L∑
l=1

wT
GlȳGl = 2

L∑
l=1

√
P c
l

ηl
‖wGl‖`2 . (A.1.9)
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A.2 Preliminaries on Majorization-Minimization Algorithms

The majorization-minimization (MM) algorithm, being a powerful tool to find a local opti-

mum by minimizing a surrogate function that majorizes the objective function iteratively, has

been widely used in statistics, machine learning, etc., [56]. We introduce the basic idea of

MM algorithms, which allows us to derive our main results.

Consider the problem of minimizing f(x) over F . The idea of MM algorithms is as

follows. First, we construct a majorization function g(x|x[m]) for f(x) such that

g(x|x[m]) ≥ f(x),∀ x ∈ F , (A.2.1)

and the equality is attained when x = x[m]. In an MM algorithm, we will minimize the

majorization function g(x|x[m]) instead of the original function f(x). Let x[m+1] denote the

minimizer of the function g(x|x[m]) over F at the m-th iteration, i.e.,

x[m+1] = arg min
x∈F

g(x|x[m]), (A.2.2)

then we can see that this iterative procedure will decrease the value of f(x) monotonically

after each iteration, i.e.,

f(x[m+1]) ≤ g(x[m+1]|x[m]) ≤ g(x[m]|x[m]) = f(x[m]), (A.2.3)

which is a direct result from the definitions (A.2.1) and (A.2.2). The decreasing property

makes an MM algorithm numerically stable. More details can be found in a tutorial on MM

algorithms [56] and references therein.
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Appendix B

Proofs in Chapter 3

B.1 Proof of Theorem 1

We first need to prove that

lim sup
ε↘0

Ω(ε) ⊂ Ω(0). (B.1.1)

For any z̄ ∈ lim supε↘0 Ω(ε[n]), there exists z[n] ∈ Ω(ε[n]) such that z[n] → z̄ and ε[n] ↘ 0.

To prove (B.1.1), we only need to prove that z̄ ∈ Ω(0). Specifically, z[n] ∈ Ω(ε[n]) indicates

that

0 ∈ ∇zfp(z[n]; ε[n]) +NC(z[n]). (B.1.2)

As fp(z; ε) is continuously differentiable in both z and ε, we have

lim
n→∞

∇zfp(z[n]; ε[n]) = lim
z[n]→z̄

lim
ε[n]↘0

∇zfp(z[n]; ε[n])

=∇zfp(z̄; 0). (B.1.3)

Furthermore, based on [150, Proposition 6.6], we have

lim sup
z[n]→z̄

NC(z[n]) = NC(z̄). (B.1.4)

Based on (B.1.3) and (B.1.4) and taking n → ∞ in (B.1.2), we thus prove (B.1.1). Based

on [104, Theorem 4], we complete the proof for (C.4.5).
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B.2 Convergence of the Iterative Reweighted-`2 Algorithm

1) We will show that any convergent subsequence {z[nk]}∞k=1 of {z[n]}∞n=1 satisfies the defi-

nition of the KKT points of problem Psm(ε) (3.4.10). Specifically, let z[nk] → z̄ be one such

convergent subsequence with

lim
k→∞

z[nk+1] = lim
k→∞

z[nk] = z̄. (B.2.1)

As

z[nk+1] := arg min
z∈C

Q(z;ω[nk]), (B.2.2)

which is a convex optimization problem, the KKT condition holds at z[nk+1], i.e.,

0 ∈ ∇zQ(z[nk+1];ω[nk]) +NC(z[nk+1]). (B.2.3)

Based on [150, Proposition 6.6] and (B.2.1), we have

lim sup
z[nk+1]→z̄

NC(z[nk+1]) = NC(z̄). (B.2.4)

Furthermore, based on (B.2.1), we also have

lim
k→∞
∇zQ(z[nk+1];ω[nk]) = lim

k→∞
2

m∑
i=1

ω[nk]znk+1
i

= lim
k→∞

m∑
i=1

pz[nk+1][(
z

[nk]
i

)2

+ ε2
]1− p

2

=∇zfp(z̄; ε). (B.2.5)

Therefore, taking k →∞ in (B.2.3), we have

0 ∈ ∇zQ(z̄; ω̄) +NC(z̄), (B.2.6)

which indicates that z̄ is a KKT point of problem Psm(ε). We thus complete the proof.

2) As fp(z; ε) is continuous and C is compact, we have the fact that the limit of the

sequence fp(z[n]; ε) is finite. Furthermore, we have fp(z[n+1]; ε) ≤ fp(z
[n]; ε) according to
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(3.4.18). Based on the results in 1), we complete the proof. Note that a similar result was

presented in [91] by leveraging the results in the EM algorithm theory.
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Appendix C

Proofs in Chapter 4

C.1 Proof of Lemma 1

For simplicity, we denote ck,1(v) , ck,1(v−k,hk), ck,2(v) , ck,2(vk,hk) and dk(v) ,

dk(v,hk). For any v ∈ V , ∀k, dk(v) = ck,1(v) − ck,2(v) is a DC function on V , as both

ck,1(v) and ck,2(v) are convex functions of v. For any ν > 0, we first prove that the follow-

ing function

ψ

(
max

1≤k≤K
dk(v), ν

)
=

1

ν

[(
ν + max

1≤k≤K
dk(v)

)+

−
(

max
1≤k≤K

dk(v)

)+
]
, (C.1.1)

is also a DC function. The function dk(v) can be rewritten as

dk(v) = ck,1(v) +
∑
i 6=k

ci,2(v)−
K∑
i=1

ci,2(v). (C.1.2)

Therefore, the following function

max
1≤k≤K

dk(v) = max
1≤k≤K

{
ck,1(v) +

∑
i 6=k

ci,2(v)

}
︸ ︷︷ ︸

C1(v,h)

−
K∑
i=1

ci,2(v)︸ ︷︷ ︸
C2(v,h)

, (C.1.3)

is a DC function, as both the functions C1(v,h) and C2(v,h) are convex in v. Furthermore,

for any z1, z2 ∈ R and z = z1 − z2, we have z+ = max{z1, z2} − z2. Therefore,

ψ

(
max

1≤k≤K
dk(v), ν

)
=

1

ν
[m(v, ν)−m(v, 0)], (C.1.4)
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is a DC function of v, as

m(v, ν) = max{ν + C1(v,h), C2(v,h)}, (C.1.5)

is a convex function of v. According to [113, Proposition 2.1], f̂(v, ν) = E[ψ (max1≤k≤K dk(v,hk), ν)]

is a DC function on V . Therefore, the proof is completed.

C.2 Proof of Theorem 3

In order to prove Theorem 3, we need to prove the following equality:

inf
ν>0

f̂(v, ν) = f(v). (C.2.1)

First, we need to prove the monotonicity of the function f̂(v, ν) in the variable ν. According

to (C.1.4) and (C.1.5), the function f̂(v, ν) can be rewritten as

f̂(v, ν) = E[π(ν, C1(v,h), C2(v,h))], (C.2.2)

where

π(ν, z1, z2) ,
1

ν
[max{ν + z1, z2} −max{z1, z2}] , (C.2.3)

for any z1, z2 ∈ R and ν > 0. Therefore, we only need to prove the monotonicity of the

function π(ν, z1, z2) in the variable ν.

Define z , z1 − z2, then we have

π(ν, z1, z2) =

(
1 +

1

ν
z

)
1(−ν,0](z) + 1(0,+∞)(z). (C.2.4)

For any ν1 > ν2 > 0 and any z1, z2 ∈ R, we have

π(ν1, z1, z2)− π(ν2, z1, z2) =

(
1 +

1

ν1

z

)
1(−ν1,−ν2](z) +

z

(
1

ν1

− 1

ν2

)
1(−ν2,0)(z) ≥ 0. (C.2.5)
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Therefore, f̂(v, ν) is nondecreasing in ν for ν > 0. Hence, we have

inf
ν>0

f̂(v, ν) = lim
ν↘0

f̂(v, ν) = lim
ν↘0

1

ν
[u(v, ν)− u(v, 0)], (C.2.6)

where ν ↘ 0 indicates that ν decreasingly goes to 0. Thus, based on (C.2.6), in order to

prove (C.2.1), we only need to prove

lim
ν↘0

1

ν
[u(v, ν)− u(v, 0)] = f(v). (C.2.7)

Furthermore, if the partial derivation of u(v, ν) exists, we have

lim
ν↘0

1

ν
[u(v, ν)− u(v, 0)] =

∂

∂ν
u(v, 0). (C.2.8)

Therefore, we need to prove that ∂
∂ν
u(v, ν) exists and ∂

∂ν
u(v, 0) = f(v).

According to (C.1.5), we have u(v, ν) = E[m(v,h, ν)] = E[max{ν+C1(v,h), C2(v,h)}].

As

∂

∂ν
(max{ν + z1, z2}) = 1(−ν,+∞)(z), (C.2.9)

for any z 6= −ν, and Pr {max1≤k≤K dk(v,h) = −ν} = 0, where max1≤k≤K dk(v,h) ,

C1(v,h)− C2(v,h) (C.1.3), we conclude that ∂
∂ν
u(v, ν) exists.

Let T , (−T, T ) with T > 0 being an open set such that the cumulative distribution

function F (v, ν) , Pr{max1≤k≤K dk(v) ≤ ν)} of the random variable (max1≤k≤K dk(v))

is continuously differentiable for any ν ∈ T . Next we will show that

∂

∂ν
u(v, ν) = lim

δ→0

1

δ
E[m(v,h, ν + δ)−m(v,h, ν)]

= Pr

{
max

1≤k≤K
dk(v) > −ν

}
= 1−F (v,−ν). (C.2.10)

For any ν ∈ T and v ∈ V , define the random variableX(δ) , [m(v,h, ν + δ)−m(v,h, ν)]/δ,

then we have the following two facts:

1. The limit of X(δ) exists and we have

lim
δ→0

X(δ) = 1(−ν,+∞)

(
max

1≤k≤K
dk(v,h)

)
, (C.2.11)
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with probability one.

2. X(δ) is dominated by a constant C > 0, i.e., |X(δ)| ≤ C, where 0 < C < ∞. This

can be justified by

|X(δ)|= 1

h
|m(v,h, ν + δ)−m(v,h, ν)|

=
1

δ
|[δ +Q(v,h, ν)]+ − [Q(v,h, ν)]+| ≤ 1,

where Q(v,h, ν) , ν+ max1≤k≤K dk(v,h) and the last inequality is based on the fact

|[x]+ − [y]+| ≤ |x− y|.

From the above two facts on the random variable X(δ), by the dominated convergence theo-

rem to interchange an expectation and the limit as δ → 0, and together with [151, Proposition

1], we have

∂

∂ν
u(v, ν) = lim

δ→0
E[X(δ)] = E[limδ→0X(δ)]

=E[1(−ν,+∞)(max1≤k≤K dk(v,h))] = 1− F (v,−ν). (C.2.12)

Therefore, we complete the proof by

inf
ν>0

f̂(v, ν) = lim
ν↘0

1

ν
[u(v, ν)− u(v, 0)]

=
∂

∂ν
u(v, 0) = 1− F (v, 0) = f(v). (C.2.13)

C.3 Proof of Lemma 2

It is well known that non-constant real-valued functions of complex variables are not holo-

morphic (or C-differentiable) [152]. Thus, the real-valued functions dk(v,hk) in (4.3.1) are

not differentiable in the complex domain CNK (i.e., with respect to the complex vector v).

Define a real-valued function m(v,h, ν) , max1≤k≤K+1 sk(v,h, ν), which is convex in v.

Although this function is not holomorphic in v, it can be viewed as a function of both v and its

complex conjugate v∗, i.e., m(v,v∗,h, ν). It is easy to verify that the function m(v,v∗,h, ν)

is holomorphic in v for a fixed v∗ and is also holomorphic in v∗ for a fixed v. Proving

Lemma 2 is equivalent to proving that the gradient of E[m(v,h, ν)] with respect to v∗ exists
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and equals

∇v∗E[m(v,h, ν)] = E[∇v∗m(v,h, ν)]. (C.3.1)

Based on the chain rule [152], the complex gradient of the function m(v,h, ν) with re-

spect to v∗ exists and is given by

∇v∗m(v,h, ν) ,
∂m(v,h, ν)

∂v∗
=
∂sk?(v,h, ν)

∂v∗
, (C.3.2)

with probability one, where k? = arg max
1≤k≤K+1

sk(v,h, ν). It is a vector operator and gives

the direction of the steepest ascent of a real scalar-valued function.

Denote ∂m(v,h,ν)
∂v∗

, [ ∂m
∂v∗i

]1≤i≤NK and ∂sk? (v,hk,ν)
∂v∗

, [∂sk?
∂v∗i

]1≤i≤NK , where v = [v1, v2, . . . , vNK ],

and define the following complex random variable

Y (∆v∗i ) ,
1

∆v∗i
[m(v−i, v

∗
i + ∆v∗i )−m(v−i, v

∗
i )], (C.3.3)

where v−i , [vk]k 6=i, ∆v∗i ∈ C and m(v) , m(v,h, ν) for simplicity, then we have the

following two facts on the random variable Y (∆v∗i ):

1. The limit of Y (∆v∗i ) exists and equals

lim
∆v∗i→0

Y (∆v∗i ) =
∂sk?

∂v∗i
, (C.3.4)

with probability one.

2. The random variable is dominated by a random variable Z with E[Z] ≤ +∞, i.e.,

|Y (∆v∗i )| ≤ Z, ∀i, (C.3.5)

which can be verified by the following lemma.

Lemma 3. For any x,y ∈ V , there exists a random variable Z with E[Z] ≤ ∞ such that

|m(x,h, ν)−m(y,h, ν)| ≤ Z‖x− y‖. (C.3.6)
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Proof. As m(v) is convex in v, we have

m(x)≥m(y) + 2〈∇v∗m(y),x− y〉, (C.3.7)

m(y)≥m(x) + 2〈∇v∗m(x),y − x〉. (C.3.8)

Based on the above two inequalities and by the Cauchy-Schwarz inequality, we have

|m(x)−m(y)| ≤ 2

(
max
v=x,y

‖∇v∗m(v)‖
)
‖x− y‖. (C.3.9)

Furthermore, for 1 ≤ k ≤ K, we have

‖∇v∗sk(v)‖=

(∑
i 6=k

∥∥∥∥(hkh
H
k +

1

γ2
k

hih
H
i

)
vi

∥∥∥∥2
)1/2

≤max
i 6=k
‖vi‖

(∑
i 6=k

∥∥∥∥(hkh
H
k +

1

γ2
k

hih
H
i

)∥∥∥∥2
)1/2

=Z1, (C.3.10)

where Z1 is a random variable with E[Z1] ≤ +∞, and for k = K + 1, we have

‖∇v∗sK+1(v)‖=

(
K∑
i=1

∥∥∥∥ 1

γ2
i

hih
H
i vi

∥∥∥∥2
)1/2

≤ max
1≤i≤K

‖vi‖

(
K∑
i=1

∥∥∥∥ 1

γ2
i

hih
H
i

∥∥∥∥2
)1/2

=Z2, (C.3.11)

where Z2 is a random variable with E[Z2] ≤ +∞. Therefore, letting Z , max{Z1, Z2} with

E[Z] < +∞, we have

∇v∗m(v) =
∂sk?(v)

∂v∗
≤ max{Z1, Z2} = Z. (C.3.12)

According to (C.3.9) and (C.3.12), we have the inequality (C.3.6).

Based on the above two facts (C.3.4) and (C.3.5) on the random variable Y (∆v∗i ), and by

the dominated convergence theorem to interchange an expectation and the limit as ∆v∗i → 0

148



and [151, Proposition 1], we have

lim
∆v∗i→0

E[Y (∆v∗i )] = E
[

lim
∆v∗i→0

Y (∆v∗i )

]
= E

[
∂sk?

∂v∗i

]
. (C.3.13)

Based on the fact

∇v∗E[m(v,h, ν)] =

[
lim

∆v∗i→0
E[Y (∆v∗i )]

]
1≤i≤NK

, (C.3.14)

we get (C.3.1) and thus complete the proof.

C.4 Proof of Theorem 5

For simplicity, we only consider the case with real variables and functions. The extension

to complex variables is straightforward. Specifically, define D0 = {v ∈ V : f(v) ≤ ε} as

the feasible set of the SCB problem PSCB. To ensure the existence of the KKT paris for the

SCB problem PSCB, we assume the following constraint qualification [150, Corollary 6.15]

for program PSCB, i.e., for any feasible point v ∈ D0, λ = 0 is the only value that satisfies

the following linear system:

−λ∇vf(v) ∈ NV(v), λ[f(v)− ε] = 0 (C.4.1)

where λ ≥ 0, and NV(v) is the normal cone to the convex set V at v, i.e.,

NV(v) = {x|〈x,y − v〉 ≤ 0, ∀y ∈ V}. (C.4.2)

With this constraint qualification, we have the KKT pairs (v?, λ?) [150, Corollary 6.15] for

the SCB problem as

Ω0 :


−[∇vf0(v?) + λ?∇vf(v?)] ∈ NV(v?)

λ?[f(v?)− ε] = 0

λ? ≥ 0,v? ∈ V ,

(C.4.3)

where f0(v) = ‖v‖2 is the objective function of PSCB.

Similarly, let (v?, κ?, λ?) be a KKT pair of the joint approximation program P̃DC as
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follows

Ω :



−{∇vf0(v?) + λ?∇v[u(v?, κ?)− κ?ε− u(v?, 0)]}

∈ NV(v?),

−{λ?∇κ[u(v?, κ?)− κ?ε− u(v?, 0)]} ∈ N(0,+∞)(κ
?),

λ?[u(v?, κ?)− κ?ε− u(v?, 0)] = 0

λ? ≥ 0,v? ∈ V , κ > 0.

In order to prove Theorem 5, we first prove the following lemma illustrating the relation-

ship between Ω0 and Ω.

Lemma 4. Suppose that there exists (v[j], κ[j], λ[j]) ∈ Ω, such that (v[j], κ[j], λ[j])→ (v̂, 0, λ̂),

then we have that (v̂, λ̂) ∈ Ω0.

Proof. We only need to consider two cases in terms of λ[j] being zeros or not.

Case one: suppose there exists a subsequence {λ[ki]} of {λ[j]} such that λ[ki] = 0, i =

0, 1, 2, . . . . As λ[ki]’s belong to Ω, we have −∇vf0(v[ki]) ∈ NV(v[ki]), which implies that

−∇vf0(v̂) ∈ NV(v̂), as i→∞. This indicates (v̂, 0) ∈ Ω0.

Case two: suppose that λ[n] 6= 0, for sufficiently large n. In this case, we have∇κ[u(v[n], κ[n])−

κ[n]ε] = 0, as κ[n] > 0 and N(0,+∞)(κ
[n]) = 0. Based on (C.2.13), let n → ∞ such that

κ[n] → 0, we have

f(v̂)− ε = 0. (C.4.4)

Furthermore, as κ[n] 6= 0, based on the KKT pairs in Ω, we have

−∇vf0(v[n])− λ[n]κ[n]

{
∇v[u(v[n], κ[n])− u(v[n], 0)]

κ[n]

}
∈ NV(v[n]), (C.4.5)

and

λ[n]κ[n]
{
∇κ[u(v[n], κ[n])− κ[n]ε]

}
= 0. (C.4.6)

According to (C.2.12), we have

∂

∂κ
∇vu(v[n], κ[n]) =∇v

(
∂

∂κ
u(v[n], κ[n])

)
= −∇vF (v[k],−κ[n]). (C.4.7)

150



Therefore, we have

lim
n→+∞

∇vu(v[n], κ[n])−∇vu(v[k], 0)

κ[n]
=− lim

n→+∞
∇vF (v[n],−κ̄[n])

=−∇vF (v̂, 0) = ∇vf(v̂), (C.4.8)

where κ̄[n] ∈ (0, κ[n]),∀n, due to the mean-value theorem.

Dividing both sides of equations (C.4.5) and (C.4.6) by λ[n]κ[n], respectively, let n → ∞

and suppose that λ[n]κ[n] → +∞, based on (C.4.4) and (C.4.8), we have

−∇vf(v̂) ∈ NV(v̂), f(v̂)− ε = 0. (C.4.9)

However, this contradicts the constraint qualification (C.4.1). Therefore, we conclude that

λ[n]κ[n] 9 +∞. We thus assume that λ[n]κ[n] → λ̂ with 0 ≤ λ̂ < +∞. Let n → ∞, based

on (C.4.4), (C.4.5), (C.4.6) and (C.4.8), we obtain

−
{
∇vf0(v̂) + λ̂∇vf(v̂)

}
∈ NV(v̂), λ̂[f(v̂)− ε] = 0. (C.4.10)

This indicates that (v̂, λ̂) ∈ Ω0. We thus complete the proof.

Based on Lemma 4, we further investigate whether κ converges to zero. The answer is

positive in most scenarios except two special cases. Suppose that (v̂, κ̂) is a KKT point of the

problem P̃DC. We consider two particular cases in terms of whether the SCB program PSCB

attaining its optimal value at the interior point or not.

Case one: When the SCB program PSCB attains the optimal value at the interior point of

its feasible region, then program P̃SCB also attains its optimal value at the interior point of

its feasible region based on Theorem 4. In this scenario, the DC constraint in P̃SCB does not

need to be tight. Thus, κ̂ is not necessary to be zero and it has multiple choices, while (v̂, 0)

still belongs to Ω0.

Case two: When all the optimal solutions of the SCB program PSCB make the probability

constraint tight. In this scenario, we have [u(v̂, κ̂)−κ̂ε]−u(v̂, 0) = 0. This reveals that κ = 0

is a minimizer of the function [u(v̂, κ)− κε] with respect to κ, i.e.,

Pr

{
max

1≤k≤K
dk(v̂,h) > 0

}
= ε, (C.4.11)
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where the calculation is based on (C.2.10). On the other hand, as κ̂ satisfies the KKT condi-

tions of program P̃DC, we have

∇κ[u(v̂, κ̂)− κ̂ε] = 0. (C.4.12)

According to [153, Theorem 10] and [154, Appendix A4], the minimizer (i.e., κ̂ 6= 0 in

(C.4.12)) of the function [u(v̂, κ)− κε] with respect to κ satisfies

Pr

{
max

1≤k≤K
dk(v,h) > −κ̂

}
≤ ε. (C.4.13)

Combining (C.4.11) and (C.4.13), we conclude that Pr {max1≤k≤K dk(v̂,h) ∈ (−κ̂, 0]} = 0.

This implies that the optimization variable κ in P̃DC converges to zero, if for any c > 0, we

have

Pr

{
max

1≤k≤K
dk(v̂,h) ∈ [−c, 0]

}
6= 0. (C.4.14)

From numerical examples in Section 4.4, we will demonstrate that variable κ will indeed

converge to zero.

Finally, based on Lemma 4, we only need to prove that the sequence generated by the

stochastic DC programming algorithm converges to a KKT point of the program P̃DC. This

directly follows [104, Property 3]. We thus complete the proof.

C.5 Proof of Theorem 6

By [81, Theorem 7.50] and [104, Theorem 6], we have that the SAA estimate l̄(v, κ; v[j], κ[j])

(4.3.22) converges to l(v, κ; v[j], κ[j]) uniformly on the convex compact set V with probability

one as M → +∞, i.e.,

sup
v∈V
|l̄(v, κ; v[j], κ[j])− l(v, κ; v[j], κ[j])| → 0,M→+∞, (C.5.1)

with probability one. Furthermore, by [81, Theorem 5.5], we have V ?
M(v[j], κ[j])→ V ?(v[j], κ[j])

and D(P?M(v[j], κ[j]),P?(v[j], κ[j])) → 0 with probability one as M → +∞. Therefore, we

complete the proof.
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Appendix D

Derivations in Chapter 5

D.1 Conic Formulation for Convex Programs

We shall present a systematic way to transform the original problem to the standard convex

cone programming form. We first take the real-field problem P with the objective function

f(x) = ‖v‖2 as an example. At the end of this subsection, we will show how to extend it to

the complex-field.

According to the principle of the disciplined convex programming [131], the original

problem P can be rewritten as the following disciplined convex programming form [131]

Pcvx : minimize ‖v‖2

subject to ‖Dlv‖2 ≤
√
Pl, l = 1, . . . , L (D.1.1)

‖Ckv + gk‖2 ≤ βkr
T
k v, k = 1, . . . , K, (D.1.2)

where Dl = blkdiag{D1
l , . . . ,D

K
l } ∈ RNlK×NK with Dk

l =
[
0Nl×

∑l−1
i=1Ni

, INl×Nl
,0Nl×

∑L
i=l+1Ni

]
∈

RNl×N , βk =
√

1 + 1/γk, rk =
[
0T(k−1)N ,h

T
k ,0

T
(K−k)N

]T
∈ RNK , gk = [0TK , σk]

T ∈ RK+1,

and Ck = [C̃k,0NK ]T ∈ R(K+1)×NK with C̃k = blkdiag{hk, . . . ,hk} ∈ RNK×K . It is thus

easy to check the convexity of problem Pcvx, following the disciplined convex programming

ruleset [131].
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D.1.1 Smith Form Reformulation

To arrive at the standard convex cone program Pcone, we rewrite problem Pcvx as the follow-

ing Smith form [130] by introducing a new variable for each subexpression in Pcvx,

minimize x0

subject to ‖x1‖ = x0,x1 = v

G1(l),G2(k),∀k, l, (D.1.3)

where G1(l) is the Smith form reformulation for the transmit power constraint for RRH l

(D.1.1) as follows

G1(l) :


(yl0,y

l
1) ∈ QKNl+1

yl0 =
√
Pl ∈ R

yl1 = Dlv ∈ RKNl ,

(D.1.4)

and G2(k) is the Smith form reformulation for the QoS constraint for MU k (D.1.2) as follows

G2(k) :



(tk0, t
k
1) ∈ QK+1

tk0 = βkr
T
k v ∈ R

tk1 = tk2 + tk3 ∈ RK+1

tk2 = Ckv ∈ RK+1

tk3 = gk ∈ RK+1.

(D.1.5)

Nevertheless, the Smith form reformulation (D.1.3) is not convex due to the non-convex

constraint ‖x1‖ = x0. We thus relax the non-convex constraint as ‖x1‖ ≤ x0, yielding the

following relaxed Smith form

minimize x0

subject to G0,G1(l),G2(k),∀k, l, (D.1.6)

where

G0 :

(x0,x1) ∈ QNK+1

x1 = v ∈ RNK .
(D.1.7)
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It can be easily proved that the constraint ‖x1‖ ≤ x0 has to be active at the optimal solution;

otherwise, we can always scale down x0 such that the cost function can be further minimized

while still satisfying the constraints. Therefore, we conclude that the relaxed Smith form

(D.1.6) is equivalent to the original problem Pcvx.

D.1.2 Conic Reformulation

Now, the relaxed Smith form reformulation (D.1.6) is readily to be reformulated as the stan-

dard cone programming form Pcone. Specifically, define the optimization variables [x0; v]

with the same order of equations as in G0, then G0 can be rewritten as

M[x0; v] + µ0 = m, (D.1.8)

where the slack variables belong to the following convex set

µ0 ∈ QNK+1, (D.1.9)

and M ∈ R(NK+1)×(NK+1) and m ∈ RNK+1 are given as follows

M =

−1

−INK

 ,m =

 0

0NK

 , (D.1.10)

respectively. Define the optimization variables [yl0; v] with the same order of equations as in

G1(l), then G1(l) can be rewritten as

Pl[yl0; v] + µl1 = pl, (D.1.11)

where the slack variables µl1 ∈ RKNl+2 belongs to the following convex set formed by the

Cartesian product of two convex sets

µl1 ∈ Q1 ×QKNl+1, (D.1.12)
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and Pl ∈ R(KNl+2)×(NK+1) and pl ∈ RKNl+2 are given as follows

Pl =


1

−1

−Dl

 ,pl =


√
Pl

0

0KNl

 , (D.1.13)

respectively. Define the optimization variables [tk0; v] with the same order of equations as in

G2(k), then G2(k) can be rewritten as

Qk[tk0; v] + µk2 = qk, (D.1.14)

where the slack variables µk2 ∈ RK+3 belong to the following convex set formed by the

Cartesian product of two convex sets

µk2 ∈ Q1 ×QK+2, (D.1.15)

and Qk ∈ R(K+3)×(NK+1) and qk ∈ RK+3 are given as follows

Qk =


1−βkrTk
−1

−Ck

 ,qk =


0

0

gk

 , (D.1.16)

respectively.

Therefore, we arrive at the standard form Pcone by writing the optimization variables

ν ∈ Rn as follows

ν = [x0; y1
0; . . . ; yL0 ; t10; . . . , tK0 ; v], (D.1.17)

and c = [1; 0n−1]. The structure of the standard cone programming Pcone is characterized by
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the following data

n= 1 + L+K +NK, (D.1.18)

m= (L+K) + (NK + 1) +
L∑
l=1

(KNl + 1)+K(K + 2), (D.1.19)

K=Q1 × · · · × Q1︸ ︷︷ ︸
L+K

×QNK+1 ×QKN1+1 × · · · × QKNL+1︸ ︷︷ ︸
L

×

QK+2 × · · · × QK+2︸ ︷︷ ︸
K

, (D.1.20)

where K is the Cartesian product of 2(L+K) + 1 second-order ones, and A and b are given

as follows:

A =



1
. . .

1

1 −β1r
T
1

. . . ...

1 −βKrTK

−1

−INK

−1

−D1

...
...

...

−1

−DL

−1

−C1

...
...

−1

−CK



,b =



√
P1

...
√
PL

0
...

0

0

0NK

0

0KN1

...

0

0KN1

0

g1

...

0

gK



, (D.1.21)

respectively.
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D.1.3 Matrix Stuffing

Given a problem instance P , to arrive at the standard cone program form, we only need to

copy the parameters of the maximum transmit power Pl’s to the data of the standard form,

i.e.,
√
Pl’s in b, copy the parameters of the SINR thresholds γ to the data of the standard

form, i.e., βk’s in A, and copy the parameters of the channel realizations hk’s to the data of

the standard form, i.e., rk’s and Ck’s in A. As we only need to perform copying the memory

for the transformation, this procedure can be very efficient compared to the state-of-the-art

numerical based modeling frameworks like CVX.

D.1.4 Extension to the Complex Case

For hk ∈ CN ,vi ∈ CN , we have

hH
kvi =⇒

R(hk)−J(hk)

J(hk) R(hk)


︸ ︷︷ ︸

h̃k

T R(vi)

J(vi)


︸ ︷︷ ︸

ṽi

, (D.1.22)

where h̃k ∈ R2N×2 and ṽi ∈ R2N . Therefore, the complex-field problem can be changed into

the real-field problem by the transformations: hk ⇒ h̃k and vi ⇒ ṽi.
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