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Part I: Introduction
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Ultra Mobile Broadband

 Era of mobile data traffic deluge
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Source: Cisco VNI Mobile, 2015
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Solution?
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Network densification 
is a dominated theme!



Challenges: Green, Flexibility, Scalability 

 Networking issues:

 Huge network power consumption

 Massive channel state information acquisition

 Computing issues:

 Large-scale performance optimizations

 Critical for latency
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Credit:  Alcatel-Lucent, 2013



Part II: Two Vignettes

7

Group Sparse 
Beamforming

Low-Rank 
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Completion



Vignette A: Group Sparse Beamforming for Green 
Cloud-RAN
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Dense Cloud Radio Access Networks

 Dense Cloud-RAN: A cost-effective way for network densification and
cooperation
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Cost-effective cooperative wireless 
networks to improve the network 
capacity and network energy efficiency
1. Centralized signal processing and resource 

allocation
2. Dense deployment of low-cost low-power 

RRHs
3. Real-time cloud infrastructure with BS 

virtualization



Network Power Consumption

 Goal: Design a green dense Cloud-RAN

 Prior works: Physical-layer transmit power consumption

 Wireless power control: [Chiang, et al., FT 08], [Qian, et al., TWC 09],
[Sorooshyari, et al.,TON 12], …

 Transmit beamforming: [Sidiropoulos and Luo, TSP 2006], [Yu and Lan, TSP
07], [Gershman, et al., SPMag 10],…

 Unique challenge:

 Network power consumption:

 RRHs, fronthaul links, etc.
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Network Adaptation

 Question: Can we provide a holistic approach for network power
minimization?

 Key observation: Spatial and temporal mobile data traffic variation

 Approach: Network adaptation

 Adaptively switch off network entities to save power
11



Problem Formulation

 Goal: Minimize network power consumption in Cloud-RAN

 Fronthaul power:

 Transmit power:

 Prior algorithms: heuristic or computationally expensive: [Philipp, et. al,
TSP 13], [Luo, et. al, JSAC 13], [Quek, et. al,TWC 13],…
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combinatorial composite function



Finding Structured Solutions

 Proposal: Group sparse beamforming framework [1]

 Switch off the -th RRH , i.e., group sparsity structure in
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Beamforming coefficients of 
the first RRH, forming a group
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[1] Y. Shi, J. Zhang, and K. B. Letaief, “Group sparse beamforming for green Cloud-RAN,” 
IEEE Trans. Wireless Commun., vol. 13, pp. 2809– 2823, May 2014.



Proposed Algorithm

 Proposition [1]: The tightest convex positively homogeneous lower
bound of the combinatorial composite objective function

 Adaptive RRH selection: switch off the RRHs with smallest coefficients in
the aggregative beamformers
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mixed        -norm induce group sparsity

RRH Selection
by Solving

Transmit Power 
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Minimize the Group Sparsity 
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Ordering



The Power of Group Sparse Beamforming

 Example: Group spare beamforming for green Cloud-RAN [1] (10
RRHs, 15 MUs)

15

Advantages: 
1) Enabling flexible network adaptation; 
2) Offering efficient algorithm design via 
convex programming
3) Empowering wide applications

[1] Y. Shi, J. Zhang, and K. B. Letaief, “Group sparse beamforming for green Cloud-RAN,” 
IEEE Trans. Wireless Commun., vol. 13, pp. 2809– 2823, May 2014.



Scalability in Dense Cloud-RAN?
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High computational complexity: a sequence of convex 
optimization and feasibility problems needs to be solved.
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Solution: Large-Scale Convex Optimization 
for Dense Cloud-RAN
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Large-Scale Convex Optimization

 Large-scale convex optimization: A powerful tool for system design
in dense wireless networks

 Prior works: Mainly focus on small-size networks or well-structured
problems

 Limitations: scalability [Luo, et al., SPMag 10], parallelization [Yu and Lan, TWC
10], infeasibility detection [Liao, et al.,TSP 14], …

 Unique challenges in dense Cloud-RAN:

 Design problems: 1) A high dimension; 2) a large number of constraints; 3)
complicated structures
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Beamforming, wireless caching, 
user admission control, etc.



Matrix Stuffing and Operator Splitting

 Goal: Design a unified framework for general large-scale convex
optimization problem ?

 Disciplined convex programming framework [Grant & Boyd ’08]

 Proposal:Two-stage approach for large-scale convex optimization

 Matrix stuffing: Fast homogeneous self-dual embedding (HSD) transformation

 Operator splitting (ADMM): Large-scale homogeneous self-dual embedding
19

Time consuming: modeling phase & solving phase



Stage One: Fast Transformation

 Example: Coordinated beamforming problem family (with transmit
power constraints and QoS constraints)

 Smith form reformulation [Smith ’96]

 Key idea: Introduce a new variable for each subexpression in

Smith form for (1)
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Linear constraint

Second-order cone

The Smith form is ready for standard cone programming transformation



Stage One: Fast Transformation

 HSD embedding of the primal-dual pair of transformed standard
cone program (based on KKT conditions)

 Matrix stuffing for fast transformation:

 Generate and keep the structure

 Copy problem instance parameters to the pre-stored structure
21

+ ⟹

Certificate of infeasibility:



Stage Two: Parallel and Scalable Computing

 HSD embedding in consensus form:

 Final algorithm: Apply the operating splitting method (ADMM)
[Donoghue, Chu, Parikh, and Boyd ’13]
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subspace projection

computationally trivial
parallel cone projection 



Proximal Algorithms for Cone Projection 

 Proximal algorithms for parallel cone projection [Parikn & Boyd, FTO 14]

 Projection onto the second-order cone:

 Projection onto positive semidefinite cone:
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SVD is computationally expensive



Numerical Results (I)

 Example: Power minimization coordinated beamforming problem [2]

Network Size (L=K) 20 50 100 150

CVX+SDPT3

Modeling Time [sec] 0.7563 4.4301 N/A N/A

Solving Time [sec] 4.2835 326.2513 N/A N/A

Objective [W] 12.2488 6.5216 N/A N/A

Matrix 
Stuffing+ADMM

Modeling Time [sec] 0.0128 0.2401 2.4154 9.4167

Solving Time [sec] 0.1009 2.4821 23.8088 81.0023

Objective [W] 12.2523 6.5193 3.1296 2.0689

ADMM can speedup 130x over 
the interior-point method

Matrix stuffing can 
speedup 60x over CVX
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[2] Y. Shi, J. Zhang, B. O’Donoghue, and K. B. Letaief, “Large-scale convex optimization for dense 
wireless cooperative networks,” IEEE Trans. Signal Process., vol. 63, no. 18, pp. 4729-4743, Sept. 2015.



Numerical Results (II)

 Group sparse beamforming for network power minimization [2]
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Can We do Better?
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1. High computational complexity (computing 
depends on the instantaneous CSI)

2. Limited capability to enhance group sparsity
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Solution: Large System Analysis
for Enhanced Group Sparse Beamforming
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Proposed Algorithm: Iterative Reweighted-l2 
Algorithm
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Proposed Method 

 Smoothed -minimization approach to induce group sparsity

 Enhance sparsity:
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Nonconvex!



Majorization-Minimization Algorithm

 Solve the following (nonconvex) smoothed -minimization problem

 MM algorithm: the successive upper-bound minimization method

 An upper bound for the objective function can be constructed as

30



Enhanced Group Sparse Beamforming

 Final algorithm: iterative reweighted- algorithm
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weights:

Advantageous:
1. Enhance sparsity
2. Lead to closed form solution via duality theory



Simple Solution Structures

 Optimal beamforming vectors are given by

 The powers are given by

 The Lagrange multipliers can be computed from the fixed-point equations

32

beamforming 
direction

The first step to reduce computational complexity



Optimality

 Theorem I: Let be the sequence generated by the iterative
reweighted- algorithm. Then, every limit point of has the
following properties:

 1) is a KKT point of the smoothed -minimization problem

 2) converges monotonically to for some KKT point

 RRH ordering criteria to determine which RRHs should be switched off

 Challenges to compute the ordering criteria

 Massive instantaneous CSI

 High computation cost
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Random Matrix Theory: Large System Analysis
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Modern Applications
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Random Matrix Theory

Wireless 
Communication

Robust 
Statistics

Machine
Learning

Signal
Processing

Since 2012
 Detection in 

impulsive noises

Since 1990
 Performance analysis
 Optimal transceiver design

Since 2015
 Subspace clustering
 Community detection

Since 2007
 Estimation
 Detection



Deterministic Equivalent of Optimal Parameters (I)

 Channel models in Cloud-RAN with distributed RRHs:

 Optimal Lagrange multipliers

 Lemma 1 (Deterministic Equivalent of the -Parameter):

Assume . Let and satisfy

and , respectively.We have

where
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almost surely



Deterministic Equivalent of Optimal Parameters (II)

 Lemma 2 (Asymptotic Result for the Optimal Powers): Let

be such that . If and only if , then

where

Here , and are given by
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almost surely



Statistical Group Sparse Beamforming

 Theorem 2 (Asymptotic Result for RRH Ordering Criteria):

where
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almost surely

The ordering criteria will  change only when 
the long-term channel attenuation is updated!

The second step to reduce computational complexity



Simulation Results (I)

 Convergence results (5 30-antenna RRHs and 5 single antenna MUs) [3]
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[3] Y. Shi, J. Zhang, and K. B. Letaief, “Scalable Group Sparse Beamforming for Dense Green Cloud-
RAN: A Random Matrix Approach,” submitted to IEEE Trans. Signal Process., Jul. 2016.



Simulation Results (II)

 Network power minimization (5 10-antenna RRHs and 6 single antenna
MUs) [3]
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[1] Y. Shi, J. Zhang, and K. B. Letaief, “Group sparse beamforming for green Cloud-RAN,” 
IEEE Trans. Wireless Commun., vol. 13, pp. 2809– 2823, May 2014.



Conclusions

 Network power minimization: A difficult non-convex mixed
combinatorial optimization problem

 Key techniques (scalable algorithms design):
 GSBF: convexify the combinatorial composite network power consumption

function using the mixed -norm

 Large-Scale Convex Optimization:
 Matrix stuffing: fast transformation

 Operator splitting method (ADMM): large-scale HSD embedding

 Enhanced GSBF:
 Smoothed -minimization with iterative reweighted- algorithm

 Large random matrix theory: low computational complexity of RRH selection

 Results: group sparse optimization offers a principled way to design
a dense green Cloud-RAN
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Vignette B: Low-Rank Matrix Completion 
forTopological Interference Management
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Issue B: Interference Management

 Goal: Interference mitigation in dense wireless networks

 Prior works: Abundant CSIT Relaxed CSIT

 Perfect CSIT [Cadambe and Jafar,TIT 08]

 Delayed CSIT [Maddah-Ali and Tse,TIT 12]

 Alternating CSIT [Tandon, et al., TIT 13], partial and imperfect CSIT
[Shi, et al.,TSP 14],…

 Curses: CSIT is rarely abundant (due to training & feedback overhead)
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No CSIT Perfect CSITCSIT

Prior worksApplicable?Start here?



Topological Interference Management

 Blessings: Partial connectivity in dense wireless networks

 Approach: Topological interference management (TIM) [Jafar,TIT 14]

 Maximize the achievable DoF: Only based on the network topology
information (no CSIT)
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path-loss

shadowing

transmitter receiver transmitter receiver

Degrees of Freedom?



TIM via Index Coding

 Theorem [Jafar, TIT 14]: Under linear (vector space) solutions, TIM
problem and index coding problem are equivalent
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TIM problem
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Bottleneck: the only finite-capacity link
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Only a few index coding problems have been solved!
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TIM via LRMC

 Goal: Deliver one data stream per user over time slots

 : tx. beamformer at the i-th tx.

 : rx. beamformer at the j-th rx.

 We need:

 Approach: Low-rank matrix completion (LRMC) [4]
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align interference

Key conclusion: 

DoF𝟏𝟏/𝑵𝑵

Any network topology: 

rewrite

[4] Y. Shi, J. Zhang, and K. B. Letaief, “Low-rank matrix completion for topological interference 
management by Riemannian pursuit,” IEEE Trans. Wireless Commun., vol. 15, no. 7, Jul. 2016.



LRMC &TIM & Index Coding
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LRMC offers a new way to investigate these problems!

Index Coding

[Birk, Kol, INFOCOM’98]

[Maddah-Ali & Niesen ’13]

[Jafar ’14] [Rouayheb et al. ’10, ’15]

[Cadambe et al. ’13] 
[Shanmugam et al. ’14]

Caching

Network CodingTIM Problem

Distributed Storage



Riemannian Pursuit Algorithm

 NP-hard: Non-convex rank objective function

 Poorly structured affine constraint:

 Nuclear-norm relaxation [Candes & Recht, FCM 09]: (full rank)

 Riemannian pursuit [4]: Alternatively perform the fixed-rank
optimization and rank increase

 Riemannian optimization: address convergence issues in fixed-rank methods
48



Riemannian Optimization for Fixed-Rank Problems

 Solve fixed-rank problems by Riemannian optimization [Absil, et al., 08]

 Generalize Euclidean gradien (Hessian) to Riemannian gradient (Hessian)
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Quotient manifold geometry of fixed rank matrices

Riemannian Gradient Euclidean Gradient

Tangent space

Retraction Operator



Numerical Results (1): Convergence Rate

 Riemannian optimization over the quotient matrix manifold [4].
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[4] Y. Shi, J. Zhang, and K. B. Letaief, “Low-rank matrix completion for topological interference 
management by Riemannian pursuit,” IEEE Trans. Wireless Commun., vol. 15, no. 7, Jul. 2016.

[Wen, Yin & Zhang, MPC 12]
Riemannian algorithms:
1. Exploit the rank structure 

in a principled way
2. Develop second-order 

algorithms systematically
3. Scalable, SVD-free



Numerical Results (II): Symmetric DoF
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associated incomplete matrix

1 0 0

1 0 0

0 1 0
0 1 0

0 1

transmitters

receivers

1 .1 0 0 9.5
6.8 1 0 0 64
0 .1 1 -1 0
0 -.1 -1 1 0
.1 0 -.1 .1 1

Optimal DoF=1/2

Riemannian pursuit: Rank=2

Advantages: 
1. Recover all the optimal DoF 

results for the special TIM 
problems in [Jafar ’14]

2. Provide numerical insights 
(optimal/lower-bound) for 
the general TIM problems

LRMC



Conclusions

 Topological interference management significantly improves DoFs
only based on the network topology information

 Key techniques:

 Low-rank matrix completion

 Riemannian optimization

 Results: Low-rank matrix completion provides a first algorithmic
and systematic approach to investigate the TIM problem for any
network topology.

 Extensions:

 User admission control, network topology design, finite SNR, …

 More applications: index coding, distributed storage and caching,…

 Optimality: Riemannian pursuit algorithm, LRMC approach
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Concluding Remarks

 Future network design: dense, cooperative, scalable, unified
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Computing Side Information 
Acquisition/Analysis

Communication

1. Structured models: Sparsity, low-rankness
2. Scalable algorithms: Convex optimization, Riemannian optimization, ADMM
3. Theory: Global optimality?



Further Information: Sparse Optimization
 Y. Shi, J. Zhang, and K. B. Letaief, “Enhanced Group Sparse Beamforming for Dense Green

Cloud-RAN:A Random Matrix Approach,” submitted to IEEETrans. Signal Process., Jul. 2016.

 Y. Shi, J. Cheng, J. Zhang, B. Bai, W. Chen and K. B. Letaief, “Smoothed 𝐿𝐿𝑝𝑝-minimization for
green Cloud-RAN with user admission control,” IEEE J. Select. Areas Commun., vol. 34, no. 4,
Apr. 2016.

 Y. Shi, J. Zhang, B. O’Donoghue, and K. B. Letaief, “Large-scale convex optimization for
dense wireless cooperative networks,” IEEE Trans. Signal Process., vol. 63, no. 18, pp. 4729-
4743, Sept. 2015.

 Y. Shi, J. Zhang, and K. B. Letaief, “Robust group sparse beamforming for multicast green
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Sept. 2015.

 Y. Shi, J. Zhang, K. B. Letaief, B. Bai and W. Chen,“Large-scale convex optimization for ultra-
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 Y. Shi, J. Zhang, and K. B. Letaief, “Optimal stochastic coordinated beamforming for
wireless cooperative networks with CSI uncertainty,” IEEE Trans. Signal Process., vol. 63,, no.
4, pp. 960-973, Feb. 2015.

 Y. Shi, J. Zhang, and K. B. Letaief, “Group sparse beamforming for green Cloud-RAN,” IEEE
Trans. Wireless Commun., vol. 13, no. 5, pp. 2809-2823, May 2014. (The 2016 Marconi Prize
Paper Award)
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Further Information: Low-Rank Optimization
 Y. Shi, J. Zhang, and K. B. Letaief, “Low-rank matrix completion for

topological interference management by Riemannian pursuit,” IEEE Trans.
Wireless Commun., vol. 15, no. 7, Jul. 2016.

 Y. Shi, and B. Mishra, “Topological interference management with user
admission control via Riemannian optimization,” submitted to IEEE Trans.
Signal Process., Jul. 2016.

 Y. Shi, and B. Mishra, “Sparse and low-rank decomposition for wireless
network densification by Riemannian optimization,” to be submitted to IEEE
Trans. Signal Process.

 K. Yang, Y. Shi, and Z. Ding, “Low-rank matrix completion for mobile edge
caching in Fog-RAN via Riemannian optimization,” accepted to IEEE Global
Communications Conf. (GLOBECOM), Washington, DC, Dec. 2016.

 K. Yang, Y. Shi, J. Zhang, Z. Ding and K. B. Letaief, “A low-rank approach for
interference management in dense wireless networks,” submitted to IEEE
Global Conf. Signal and Inf. Process. (GlobalSIP), Washington, DC, Dec. 2016

Personal Webpage: http://shiyuanming.github.io/home.html
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Thanks
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