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Part I: Introduction
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= Networking issues:
" Huge network power consumption

®  Massive channel state information acquisition

Credit: Alcatel-Lucent, 2013

= Computing issues:
m |large-scale performance optimizations

m  Critical for latency



Part ll: Two Vignettes
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Group Sparse Beamforming
Cloud-RAN

Green



Dense Cloud Radio Access Networks

= Dense Cloud-RAN: A cost-effective way for network densification and
cooperation

Cloud-RAN

Baseband Unit Pool

me

Cost-effective cooperative wireless

networks to improve the network

capacity and network energy efficiency
Centralized signal processing and resource

allocation

Dense deployment of low-cost low-power
RRHs

Real-time cloud infrastructure with BS
virtualization




Network Power Consumption

= Goal: Design a green dense Cloud-RAN

= Prior works: Physical-layer transmit power consumption

" Wireless power control: [Chiang, et al, FT 08], [Qian, et al, TWC 09],
[Sorooshyari, et al., TON 12], ...

®  Transmit beamforming: [Sidiropoulos and Luo, TSP 2006], [Yu and Lan, TSP
07], [Gershman, et al., SPMag 10],...

Baseband Unit Pool
O

= Unique challenge: Fromork
: Cloud-RAN
= Network power consumption: ; /«4 I XN\
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= Question: Can we provide a holistic approach for network power
minimization!?

= Key observation: Spatial and temporal mobile data traffic variation
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= Approach: Network adaptation

= Adaptively switch off network entities to save power



Problem Formulation

= Goal: Minimize network power consumption in Cloud-RAN

minierélize fi(v) + f2(v)  combinatorial composite function
A%

hHV 2
LA N 2

subject to
> ik MR Vi[2 + of

L
= Fronthaul power: fi(v) = > PFI(T(v) NV # 0)
=1

= Transmit power: fo(v) = S, ST & vl

® Prior algorithms: heuristic or computationally expensive: [Philipp, et. al,
TSP 13], [Luo, et. al, JSAC | 3], [Quek, et.al, TWC 13],...
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@ § 5 g Beamforming coefficients of :
é : . the first RRH, forming a group

= Switch off the I-th RRH=» v, = 0, i.e., group sparsity structure inv

[1]1Y.Shi,]. Zhang, and K. B. Letaief,“Group sparse beamforming for green Cloud-RAN,’
IEEE Trans.Wireless Commun., vol. |3, pp. 2809— 2823, May 2014.




Proposed Algorithm

= Proposition [1]: The tightest convex positively homogeneous lower
bound of the combinatorial composite objective function

_9 Z HVI||2 minimize Q(v)

mixed ¢, /¢>-norm induce group sparsity

= Adaptive RRH selection: switch off the RRHs with smallest coefficients in
the aggregative beamformers

-_Q*‘

Stage | Stage Il Stage Il
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= Example: Group spare beamforming for green Cloud-RAN [I] (10
RRHs, 15 MUs)

Average Network Power Consumption [W]

Advantages:
|) Enabling flexible network adaptation;

2) Offering efficient algorithm design via
convex programming
3) Empowering wide applications

- =B~ Proposed GSBF Algorithm

=B = Conventional SP Based Algorithm
+={-  Coordinated Beamforming Algorithm
. , , =© = Branch-and-Bound Algorithm

0 1 2 3 4 5 6 7 8
Target SINR [dB]

[17Y-Shi,]. Zhang, and K. B. Letaief,“Group sparse beamforming for green Cloud-RAN,”
IEEE Trans.Wireless Commun., vol. |3, pp. 2809— 2823, May 2014.




Scalability in Dense Cloud-RAN?

Stage | Stage Il Stage IlI

High computational complexity: a sequence of convex
optimization and feasibility problems needs to be solved.




Solution: Large-Scale Convex Optimization
for Dense Cloud-RAN

P0riginal P *
" | Matrix Stuffing b ADMM Solver -
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Large-Scale Convex Optimization

= Large-scale convex optimization: A powerful tool for system design
in dense wireless networks

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 18, SEPTEMBER 15, 2015

Beamforming, wireless caching, Large-Scale Convex Optimization for Dense
T e Wireless Cooperative Networks
, etc.

Yuanming Shi, Student Member; H:,E:,E: Jun Zhang, Member, [EEE, Brendan O'Donoghue, and
aled B. Letaief, Fellow, IEEE

" Prior works: Mainly focus on small-size networks or well-structured
problems

® Limitations: scalability [Luo, et al., SPMag |0], parallelization [Yu and Lan, TWC
| 0], infeasibility detection [Liao, et al., TSP 14], ...

= Unique challenges in dense Cloud-RAN:

= Design problems: |) A high dimension; 2) a large number of constraints; 3)
complicated structures



Matrix Stuffing and Operator Splitting

" Goal: Design a unified framework for general large-scale convex

optimization problem Zoriginai ?

= Disciplined convex programming framework [Grant & Boyd '08]

Poriginal

‘-@CODE

- CVX

Time consuming: modeling phase & solving phase

¥

>'e *
Interior-Point Solver Cvx

RESEARCH

" Proposal: Two-stage approach for large-scale convex optimization

Poriginal

Matrix Stuffing

A

Pusp

x*

ADMM Solver

m  Matrix stuffing: Fast homogeneous self-dual embedding (HSD) transformation

m  Operator splitting (ADMM): Large-scale homogeneous self-dual embedding

9



Stage One: Fast Transformation

= Example: Coordinated beamforming problem family (with transmit
power constraints and QoS constraints)

*@Original : minimize Hv”g
subject to ||Dyv|le < /P, VI,
ICkv + grll2 < Brry v, Vk.
= Smith form reformulation [Smith "96]

= Key idea: Introduce a new variable for each subexpression in 2q ;.1

(yé,yll) c Qi Second-order cone
Smith form for (1) G1(I) : { #5=+VP €R
Vll —Dyve REN Linear constraint

The Smith form is ready for standard cone programming transformation

20



Stage One: Fast Transformation

= HSD embedding of the primal-dual pair of transformed standard
cone program (based on KKT conditions)

miI,l,iilize clv maa;%l){lize ~b'n usp : find (x,y)
subject to Av+pu=D>b + subject to —ATp+A=c¢ || subject to y = Qx

(v, ) ER™ x K (A, m) € {0} x K7 x €C,y €C
A 0 AT ¢ V]

Certificate of infeasibility: 7 = 0,x > 0 pl=|-A 0 biin

K —c' b7 0 T
—— N ~ )

y Q x

= Matrix stuffing for fast transformation:
®  Generate and keep the structure Q

m  Copy problem instance parameters to the pre-stored structure Q

21



Stage Two: Parallel and Scalable Computing

= HSD embedding in consensus form:

9HSD : find (X: Y) @ADMM : minhimikze ICxC"‘ (X.}, y) T IQi:Sr(ij Sf
subject to y = Qx — xxyy o
xeC,yeCH subject to (x,y) = (X,¥)

= Final algorithm: Apply the operating splitting method (ADMM)
[Donoghue, Chu, Parikh, and Boyd ’ | 3]

U = (14 Q) (x4 yl1)  subspace projection
xH = T (&l — yliy parallel cone projection
ylitll =yl g+ 4 <+ computationally trivial

22



Proximal Algorithms for Cone Projection

= Proximal algorithms for parallel cone projection [Parikn & Boyd, FTO [4]

= Projection onto the second-order cone: C = {(y,x) € R x RP7}|||x|| < y}

0, lwll2 < =7
He(w,7) =9 (w,7), w2 <7
(1/2)(A + 7/[|wll2)(w, [wll2), lw]l2 = [7].

= Projection onto positive semidefinite cone: C = S7

(V) =37 (\)rwiuf

SVD is computationally expensive

new

23



Numerical Results (I)

= Example: Power minimization coordinated beamforming problem [2]

311296

Network Size (L=K) 20 50 100 150
Modeling Time [sec] 0.7563 4.4301 L-NIA N
CVX+SDPT3 Solving Time [sec] 4.2835 326.2513 N/A N/A ,)
Objective [W] 12.2488 6.5216 \‘NLQ\ NIA-~
Modeling Time [sec] 0.0128 0.2401 24154 94167
Matrix A .

Solving T 2

Stuffing+ADMM olving Time [sec] 0.1009 2.4821 23.8088 81.0023
Objective [W] 12.2523 6.5193 2.0689

Matrix stuffing can

speedup 60x over CVX

ADMM can speedup 130x over
the interior-point method

[2] Y. Shi, ). Zhang, B. O’'Donoghue, and K. B. Letaief, “Large-scale convex optimization for dense
wireless cooperative networks,” IEEE Trans. Signal Process., vol. 63, no. |8, pp. 4729-4743, Sept. 201 5.

24




Numerical Results (Il)

= Group sparse beamforming for network power minimization [2]

- - = CVX+SDPT3
10~ 1-2 | —e— CVX+SCS
—uw— Matrix Stuffing+SCS

e

—1.4
10 20 RAUS, 40 MUs

1039

™

50 RAUs, 50 MUs

jg—1#

Normalized Network Power Consumption

0 1 2 3 4 5 6

Target SINR [dB]
25



Can We do Better?
R o

Stage | Stage Il Stage IlI

I. High computational complexity (computing
depends on the instantaneous CSI)
2. Limited capability to enhance group sparsity

26



Solution: Large System Analysis
for Enhanced Group Sparse Beamforming

27



Proposed Algorithm: Iterative Reweighted-I2
Algorithm

f(6)
hnff?) gn(f;J
, bat £(6,) < f(6u)

28



Proposed Method

= Smoothed ¢,-minimization approach to induce group sparsity

m1n1mlze gp(Vse€) Zf/g V|3 + € )p/2
=1

Nonconvex!

subject to

- f(@) =s ‘ L 7
T (s W' % -
= Enhance sparsity: ol T ks s sionied
—f@=t-h | g
. . ’ . T ISR TSN N .).;f ......... TS {1 %
|zllo = lim [|z[[5 = lim » |z 3 e »
p—0 P05 S luw LT
el :
e i 5
i &
oL ] ; P : 1 s
e e e i e s S
// ]0g(:1?+;a) : :
¥ g :
0 0.5 | 1.5 = 2 25 3 3.5
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Majorization-Minimization Algorithm

= Solve the following (nonconvex) smoothed¢,-minimization problem

m

e o 2 2\p/2
minimize f(z): Z;(zﬁ + €)

= MM algorithm: the successive upper-bound minimization method

1: Find a feasible point z!%! € C and set kK =0

2: repeat

3: 2k = argmin,cc g(z|2*]) (global minimum)
4: k—k+1

5:

until some convergence criterion is met

= An upper bound for the objective function f(z) can be constructed as

21

2
QziwlM) 1= 31 w22 wE’“]—gl(Zz[k]) “2] Vi

30



= Final algorithm:iterative reweighted-/, algorithm

L

e e nfe. 112
minimize Ez:wz[ ]||VIH2 weightS'
hH 2 [n] _ — L || [n] i
subject to | kHVk‘Q > >, Yk Y 2 [ + ¢ v
D izk M Vil? + 0%

Advantageous:

|. Enhance sparsity
2. Lead to closed form solution via duality theory

31



Simple Solution Structures

= Optimal beamforming vectors vi,...,vj are given by

n] Ai H
vk — | Pk mﬁ ! LNIN v Dpeamforming
F LN direction
n] + Zz 1 LN

= The K powers are given by
p1 o L2 AP
=M My = YRR

1 |h VJl ; :
—"ﬁ— ] .
PK o2 TIN [l U

®  The Lagrange multipliers can be computed from the fixed-point equations

\p = LN [(1 L)nf (Q+ 2, 2ehimt) hkll

The first step to reduce computational complexity

32



Optimality

= Theorem I: Let {vl"}32, be the sequence generated by the iterative
reweighted- (> algorithm. Then, every limit point v of {v"}>2, has the
following properties:

m |) v is a KKT point of the smoothed L,-minimization problem

= 2) g,(vI";€) converges monotonically to g,(v*;€) for some KKT point v*

= RRH ordering criteria to determine which RRHs should be switched off
0 = r|[V1)13 = e gy VEQueve, Yl = 1,..., L
® Challenges to compute the ordering criteria

m  Massive instantaneous CSI

= High computation cost

33



Random Matrix Theory: Large System Analysis

Random Matrix
Methods for
Wireless
Communications

Romain Couillet and Mérouane Debbah

CAMBRIDGE

34



Modern Applications

Robust Machine
Statistics Learning

Since 2012
» Detection in
impulsive noises

Since 2015
» Subspace clustering
» Community detection

Random Matrix Theory

Wireless Signal
Communication Processing
Since 1990 Since 2007
» Performance analysis » Estimation

» Optimal transceiver design » Detection

35



Deterministic Equivalent of Optimal Parameters (I)

= Channel models in Cloud-RAN with distributed RRHs:
hy = @;lf/zgka gr ~ CN(0,In), ®f = diag{dg1,...,drr} ®In

= Optimal Lagrange multipliers

—1
A = LN [(1+,Y—1k)h;' Q[”]+Zf=1@ hy

" [emma | (Deterministic Equivalent of the A\ -Parameter):

—1

Assume 0 < liminfy_,, K/N < limsupy_,., K/N < oc . Let {d;} and {-;} satisfy

lim sup y maxy, ;{dx;} < oc and lim sup , maxy v, < oc, respectively.We have

N—
[ma,x1<k<K Ak — AR —5°0 almost surely]

where
K

~1
-1 1 d;i Vi [n]
Ab = Yk (% Ef’zl dkml) n = (— Z 7 - + Wy
NL i=1 % 25:1 dijn; 1+ y




Deterministic Equivalent of Optimal Parameters (ll)

= Lemma 2 (Asymptotic Result for the Optimal Powers): Let A ¢ RK*K

be such that [Alx; == 5 25 2. If and only if limsup . [| Al < 1, then

N—)oo

[ maxy |pr — pr| — 0 almost surely]

where Py = ’Yki’ﬁ‘ ((1+’¥k) * ak)

Here ¥ = L S0, dim b, and ¥, are given by
)\021’{}
Vi = L Zz 1 dkmz + NL Z; 1 (1—}—*}! )2 L Zz 1 zldamz

)\021’!) 1 L 1 L
= ¥I ZJ 1 (1+73)k2 T 21 dadmi + 1 202, dadpng

‘T:O'Q(IK—A)_lé 5!@:3\}[,25{:172%2;6

37



Statistical Group Sparse Beamforming

" Theorem 2 (Asymptotic Result for RRH Ordering Criteria):

N—
[ max; |0; — 07| —= 0 almost surely ]

where
K (4

o __ K] o kl

00 = NT 2k=1PF o

bt = Ledgm? 4 - S ATV UL g2
kKl = NLOU T NI 22j=1 (14~,)2 L 2=1=1 il

The ordering criteria will change only when

the long-term channel attenuation is updated!

The second step to reduce computational complexity

38



Simulation Results (I)

= Convergence results (5 30-antenna RRHs and 5 single antenna MUs) [3]

J‘ ' ' ' ' == Numerical Evaluation
4 = Large System Analysis

» » »
w L w
T

Objective Values

-
o

4.1

0 5 10 15 20 25 30 a5 40
Iteration

[3]Y.Shi, ). Zhang, and K. B. Letaief, “Scalable Group Sparse Beamforming for Dense Green Cloud-
RAN:A Random Matrix Approach,” submitted to IEEE Trans. Signal Process., Jul. 2016. .,




Simulation Results (lI)

= Network power minimization (5 10-antenna RRHs and 6 single antenna

MUs) [3]

&

i
(=]

Average Network Power Consumption [W]

na
(=]

W
w
T

w
[=]
T

0y

n
w
T

—6— Group Sparse Beamforming [1]
== Numerical Evaluation
—O— Large System Analysis

L
10

(=]
r -

4 6 8
Target SINR [dB]

[171Y.Shi,]. Zhang, and K. B. Letaief, “Group sparse beamforming for green Cloud-RAN,”
|IEEE Trans.Wireless Commun., vol. |3, pp. 2809—- 2823, May 2014.
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Conclusions

Network power minimization: A difficult non-convex mixed
combinatorial optimization problem

Key techniques (scalable algorithms design):

m  GSBF: convexify the combinatorial composite network power consumption
function using the mixed ¢, /¢s-norm

= Large-Scale Convex Optimization:

= Matrix stuffing: fast transformation

®  Operator splitting method (ADMM): large-scale HSD embedding
= Enhanced GSBF:

= Smoothed /;,-minimization with iterative reweighted- /5 algorithm

® Large random matrix theory: low computational complexity of RRH selection

Results: group sparse optimization offers a principled way to design
a dense green Cloud-RAN

41



Low-Rank Matrix Completion
Topological Interference Management

42



Issue B: Interference Management

" Goal: Interference mitigation in dense wireless networks

= Prior works: Abundant CSIT == Relaxed CSIT
®  Perfect CSIT [Cadambe and Jafar, TIT 08]
= Delayed CSIT [Maddah-Ali and Tse, TIT 2]

= Alternating CSIT [Tandon, et al, TIT 13], partial and imperfect CSIT
[Shi, et al., TSP 14],...

m  Curses: CSIT is rarely abundant (due to training & feedback overhead)

Start here? —— Applicable? «<— Prior works
S

No CSIT CSIT—— Perfect CSIT

43



Topological Interference Management

= Blessings: Partial connectivity in dense wireless networks

transmitter receiver transmitter receiver

Degrees of Freedom?

. C(SNR)
DoF = _lm 1 (snRy

= Approach: Topological interference management (TIM) [Jafar, TIT [4]

= Maximize the achievable DoF: Only based on the network topology
information (no CSIT)

44



TIM via Index Coding

" Theorem [Jafar, TIT [4]: Under linear (vector space) solutions, TIM

problem and index coding problem are equivalent
Bottleneck: the only finite-capacity link

TIM problem
) -
— Wi — I’Vl %
,\ e
: — Ws — Wa Q.
_ transformation ) %0
N W3 g} W3 =Y 3 : — W3 —
complements 'g
* . o
4 — W4 — W4 x
; <
— W‘S — W5 E

Only a few index coding problems have been solved!

45



TIM via LRMC

" Goal: Deliver one data stream per user over N time slots

® v, € CVN:tx. beamformer at the i-th tx.

" u; € CV:rx. beamformer at the j-th rx.
align interference

ul_—lv_ —1 V23 rewrite o
i Vi ) ) w Po(X) = 1g
= Weneed: X;; =< ullv, =0, Vi#j (i,j) €Q, (X)
*, otherwise. l,
1/N DoF
= Approach: Low-rank matrix completion (LRMC) [4] /" °
minimize rank(X) Key conclusion: DoF = 1/rank(X)

subject to  Pq(X) = Ik Any network topology:

[4] Y. Shi, J. Zhang, and K. B. Letaief, “Low-rank matrix completion for topological interference
management by Riemannian pursuit,” IEEE Trans.Wireless Commun., vol. 15, no. 7, Jul. 2016. 46




LRMC & TIM & Index Coding

TIM Problem Network Coding
[Jafar '14] [Rouayheb et al.’10,’15] x .
% Index Coding

[Birk, Kol, INFOCOM'98]

Distributed Storage

el o shared link
[Cadambe et al.’ | 3] Q . [Maddah-Ali & Niesen ’13]
[Shanmugam et al.’14] o A G

caches I_l [_I I_I } size M

LRMC offers a new way to investigate these problems!

47



Riemannian Pursuit Algorithm

= NP-hard: Non-convex rank objective function

minimize rank(X)

subject to  Pq(X) = Ik
Tr(X)[ < [[X]]

= Poorly structured affine constraint: l

= Nuclear-norm relaxation [Candes & Recht, FCM 09]: X* = I (full rank)

= Riemannian pursuit [4]: Alternatively perform the fixed-rank
optimization and rank increase

minimize ||Pq(X) —Ix|%
subject to rank(X) =r

®  Riemannian optimization: address convergence issues in fixed-rank methods
48



Riemannian Optimization for Fixed-Rank Problems

= Solve fixed-rank problems by Riemannian optimization [Absil, et al., 08]

m  Generalize Euclidean gradien (Hessian) to Riemannian gradient (Hessian)

Tangent space I va%X(k)) = Py (VF(XF)))

\ ,/////-\ :
. Riemannian Gradient Euclidean Gradient

F(x k)

“:,Rx(k) X (k+1) R (k) (_@(k)va(X(k)))

) \ Retraction Operator

Quotient manifold geometry of fixed rank matrices

[X] — {(UQU: QgEQVaVQV) . QU: QV € Q(T)}

49



Numerical Results (1): Convergence Rate

= Riemannian optimization over the quotient matrix manifold [4].

10° §

107 5
g o7 Jll Riemannian algorithms:
g NMERGEPACUFAGCRPVIREN | Exploit the rank structure
3 107l Alternating Minimization _ in a PrinCipled way
N 3
g 2. Develop second-order
= 1 Conjugate Gradient i i
;_or 107 | Riemannian Optimization algorlthms S)’Stematlca”)’

Scalable, SVD-free
_5_
10 Trust-Region
10—5 L| 1 1 1 | I
0 50 100 150 200 250 300
Iteration

[4] Y. Shi, J. Zhang, and K. B. Letaief, “Low-rank matrix completion for topological interference
management by Riemannian pursuit,” IEEE Trans.Wireless Commun., vol. 15, no. 7, Jul. 2016. 50




Numerical Results (I1): Symmetric DoF

Wl—) —>W‘1

Wso — —> WQ

—)Wg

—>W4

S—

—)W5

S—

Optimal DoF=1/2

Advantages:

Recover all the optimal DoF
results for the special TIM

problems in [Jafar ’14]

Provide numerical insights
(optimal/lower-bound) for
the general TIM problems

SJ9AI9D3

transmitters

Riemannian pursuit: Rank=2
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Conclusions

= Topological interference management significantly improves DoFs
only based on the network topology information

= Key techniques:

®  Low-rank matrix completion

= Riemannian optimization

= Results: Low-rank matrix completion provides a first algorithmic

and systematic approach to investigate the TIM problem for any
network topology.

= Extensions:
m  User admission control, network topology design, finite SNR, ...

=  More applications: index coding, distributed storage and caching,...

= Optimality: Riemannian pursuit algorithm, LRMC approach

52



Concluding Remarks

= Future network design: dense, cooperative, scalable, unified

_ A . —
ey o

— Communication

SPARSE & LOYY-RANK
OPTIMIZATION

Side Information
¢ > Acquisition/Analysis

Computing

I. Structured models: Sparsity, low-rankness
2. Scalable algorithms: Convex optimization, Riemannian optimization, ADMM
3. Theory: Global optimality?
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Further Information: Sparse Optimization

= Y. Shi, J. Zhang, and K. B. Letaief, “Enhanced Group Sparse Beamforming for Dense Green
Cloud-RAN: A Random Matrix Approach,” submitted to IEEE Trans. Signal Process., Jul. 2016.

= Y. Shi, J. Cheng, J. Zhang, B. Bai, W. Chen and K. B. Letaief, “Smoothed L,,-minimization for
green Cloud-RAN with user admission control,” IEEE |. Select. Areas Commun., vol. 34, no. 4,
Apr.2016.

= Y. Shi, J. Zhang, B. O’'Donoghue, and K. B. Letaief, “Large-scale convex optimization for
dense wireless cooperative networks,” IEEE Trans. Signal Process., vol. 63, no. |8, pp. 4729-
4743, Sept. 201 5.

= Y. Shi, |. Zhang, and K. B. Letaief, “Robust group sparse beamforming for multicast green
Cloud- RAN with imperfect CSI,” IEEE Trans. Signal Process., vol. 63, no. 17, pp. 4647-4659,
Sept. 2015.

= Y. Shi, J. Zhang, K. B. Letaief, B. Bai and W. Chen,*“Large-scale convex optimization for ultra-
dense Cloud-RAN,” [EEE Wireless Commun. Mag., pp. 84-91, Jun.2015.

= Y. Shi, . Zhang, and K. B. Letaief, “Optimal stochastic coordinated beamforming for

wireless cooperative networks with CS| uncertainty,” IEEE Trans. Signal Process., vol. 63,, no.
4, pp. 960-973, Feb. 2015.

= Y. Shi, J. Zhang, and K. B. Letaief, “Group sparse beamforming for green Cloud-RAN,” I[EEE
Trans. Wireless Commun., vol. 13, no. 5, pp. 2809-2823, May 2014. (The 2016 Marconi Prize
Paper Award)
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Further Information: Low-Rank Optimization

= Y. Shi, . Zhang, and K. B. Letaief, “Low-rank matrix completion for
topological interference management by Riemannian pursuit,” IEEE Trans.
Wireless Commun., vol. 15, no.7,]Jul. 2016.

= Y. Shi, and B. Mishra, “Topological interference management with user
admission control via Riemannian optimization,” submitted to IEEE Trans.
Signal Process., Jul.2016.

= Y. Shi, and B. Mishra, “Sparse and low-rank decomposition for wireless
network densification by Riemannian optimization,” to be submitted to IEEE
Trans. Signal Process.

= K. Yang, Y. Shi, and Z. Ding, “Low-rank matrix completion for mobile edge
caching in Fog-RAN via Riemannian optimization,” accepted to IEEE Global
Communications Conf. (GLOBECOM), Washington, DC, Dec. 2016.

= K. Yang, Y. Shi, |. Zhang, Z. Ding and K. B. Letaief, “A low-rank approach for
interference management in dense wireless networks,” submitted to IEEE
Global Conf. Signal and Inf. Process. (GlobalSIP), Washington, DC, Dec. 2016

Personal Webpage: http://shiyuanming.github.io/home.html
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