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Part I: Introduction
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Ultra Mobile Broadband

 Era of mobile data traffic deluge

4
Source: Cisco VNI Mobile, 2015
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Solution?

5

25 5 5

1600

Factor of Capacity Increase Since 1950

Network densification 
is a dominated theme!



Challenges: Green, Flexibility, Scalability 

 Networking issues:

 Huge network power consumption

 Massive channel state information acquisition

 Computing issues:

 Large-scale performance optimizations

 Critical for latency
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Credit:  Alcatel-Lucent, 2013



Part II: Two Vignettes
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Vignette A: Group Sparse Beamforming for Green 
Cloud-RAN
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Dense Cloud Radio Access Networks

 Dense Cloud-RAN: A cost-effective way for network densification and
cooperation
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Cost-effective cooperative wireless 
networks to improve the network 
capacity and network energy efficiency
1. Centralized signal processing and resource 

allocation
2. Dense deployment of low-cost low-power 

RRHs
3. Real-time cloud infrastructure with BS 

virtualization



Network Power Consumption

 Goal: Design a green dense Cloud-RAN

 Prior works: Physical-layer transmit power consumption

 Wireless power control: [Chiang, et al., FT 08], [Qian, et al., TWC 09],
[Sorooshyari, et al.,TON 12], …

 Transmit beamforming: [Sidiropoulos and Luo, TSP 2006], [Yu and Lan, TSP
07], [Gershman, et al., SPMag 10],…

 Unique challenge:

 Network power consumption:

 RRHs, fronthaul links, etc.
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Network Adaptation

 Question: Can we provide a holistic approach for network power
minimization?

 Key observation: Spatial and temporal mobile data traffic variation

 Approach: Network adaptation

 Adaptively switch off network entities to save power
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Problem Formulation

 Goal: Minimize network power consumption in Cloud-RAN

 Fronthaul power:

 Transmit power:

 Prior algorithms: heuristic or computationally expensive: [Philipp, et. al,
TSP 13], [Luo, et. al, JSAC 13], [Quek, et. al,TWC 13],…

12

combinatorial composite function



Finding Structured Solutions

 Proposal: Group sparse beamforming framework [1]

 Switch off the -th RRH , i.e., group sparsity structure in
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Beamforming coefficients of 
the first RRH, forming a group
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[1] Y. Shi, J. Zhang, and K. B. Letaief, “Group sparse beamforming for green Cloud-RAN,” 
IEEE Trans. Wireless Commun., vol. 13, pp. 2809– 2823, May 2014.



Proposed Algorithm

 Proposition [1]: The tightest convex positively homogeneous lower
bound of the combinatorial composite objective function

 Adaptive RRH selection: switch off the RRHs with smallest coefficients in
the aggregative beamformers
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mixed        -norm induce group sparsity
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The Power of Group Sparse Beamforming

 Example: Group spare beamforming for green Cloud-RAN [1] (10
RRHs, 15 MUs)
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Advantages: 
1) Enabling flexible network adaptation; 
2) Offering efficient algorithm design via 
convex programming
3) Empowering wide applications

[1] Y. Shi, J. Zhang, and K. B. Letaief, “Group sparse beamforming for green Cloud-RAN,” 
IEEE Trans. Wireless Commun., vol. 13, pp. 2809– 2823, May 2014.



Scalability in Dense Cloud-RAN?
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High computational complexity: a sequence of convex 
optimization and feasibility problems needs to be solved.
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Solution: Large-Scale Convex Optimization 
for Dense Cloud-RAN
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Large-Scale Convex Optimization

 Large-scale convex optimization: A powerful tool for system design
in dense wireless networks

 Prior works: Mainly focus on small-size networks or well-structured
problems

 Limitations: scalability [Luo, et al., SPMag 10], parallelization [Yu and Lan, TWC
10], infeasibility detection [Liao, et al.,TSP 14], …

 Unique challenges in dense Cloud-RAN:

 Design problems: 1) A high dimension; 2) a large number of constraints; 3)
complicated structures
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Beamforming, wireless caching, 
user admission control, etc.



Matrix Stuffing and Operator Splitting

 Goal: Design a unified framework for general large-scale convex
optimization problem ?

 Disciplined convex programming framework [Grant & Boyd ’08]

 Proposal:Two-stage approach for large-scale convex optimization

 Matrix stuffing: Fast homogeneous self-dual embedding (HSD) transformation

 Operator splitting (ADMM): Large-scale homogeneous self-dual embedding
19

Time consuming: modeling phase & solving phase



Stage One: Fast Transformation

 Example: Coordinated beamforming problem family (with transmit
power constraints and QoS constraints)

 Smith form reformulation [Smith ’96]

 Key idea: Introduce a new variable for each subexpression in

Smith form for (1)
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Linear constraint

Second-order cone

The Smith form is ready for standard cone programming transformation



Stage One: Fast Transformation

 HSD embedding of the primal-dual pair of transformed standard
cone program (based on KKT conditions)

 Matrix stuffing for fast transformation:

 Generate and keep the structure

 Copy problem instance parameters to the pre-stored structure
21

+ ⟹

Certificate of infeasibility:



Stage Two: Parallel and Scalable Computing

 HSD embedding in consensus form:

 Final algorithm: Apply the operating splitting method (ADMM)
[Donoghue, Chu, Parikh, and Boyd ’13]
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subspace projection

computationally trivial
parallel cone projection 



Proximal Algorithms for Cone Projection 

 Proximal algorithms for parallel cone projection [Parikn & Boyd, FTO 14]

 Projection onto the second-order cone:

 Projection onto positive semidefinite cone:
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SVD is computationally expensive



Numerical Results (I)

 Example: Power minimization coordinated beamforming problem [2]

Network Size (L=K) 20 50 100 150

CVX+SDPT3

Modeling Time [sec] 0.7563 4.4301 N/A N/A

Solving Time [sec] 4.2835 326.2513 N/A N/A

Objective [W] 12.2488 6.5216 N/A N/A

Matrix 
Stuffing+ADMM

Modeling Time [sec] 0.0128 0.2401 2.4154 9.4167

Solving Time [sec] 0.1009 2.4821 23.8088 81.0023

Objective [W] 12.2523 6.5193 3.1296 2.0689

ADMM can speedup 130x over 
the interior-point method

Matrix stuffing can 
speedup 60x over CVX
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[2] Y. Shi, J. Zhang, B. O’Donoghue, and K. B. Letaief, “Large-scale convex optimization for dense 
wireless cooperative networks,” IEEE Trans. Signal Process., vol. 63, no. 18, pp. 4729-4743, Sept. 2015.



Numerical Results (II)

 Group sparse beamforming for network power minimization [2]
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Can We do Better?

26

1. High computational complexity (computing 
depends on the instantaneous CSI)

2. Limited capability to enhance group sparsity
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Solution: Large System Analysis
for Enhanced Group Sparse Beamforming
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Proposed Algorithm: Iterative Reweighted-l2 
Algorithm
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Proposed Method 

 Smoothed -minimization approach to induce group sparsity

 Enhance sparsity:
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Nonconvex!



Majorization-Minimization Algorithm

 Solve the following (nonconvex) smoothed -minimization problem

 MM algorithm: the successive upper-bound minimization method

 An upper bound for the objective function can be constructed as
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Enhanced Group Sparse Beamforming

 Final algorithm: iterative reweighted- algorithm
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weights:

Advantageous:
1. Enhance sparsity
2. Lead to closed form solution via duality theory



Simple Solution Structures

 Optimal beamforming vectors are given by

 The powers are given by

 The Lagrange multipliers can be computed from the fixed-point equations
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beamforming 
direction

The first step to reduce computational complexity



Optimality

 Theorem I: Let be the sequence generated by the iterative
reweighted- algorithm. Then, every limit point of has the
following properties:

 1) is a KKT point of the smoothed -minimization problem

 2) converges monotonically to for some KKT point

 RRH ordering criteria to determine which RRHs should be switched off

 Challenges to compute the ordering criteria

 Massive instantaneous CSI

 High computation cost
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Random Matrix Theory: Large System Analysis
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Modern Applications
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Random Matrix Theory

Wireless 
Communication

Robust 
Statistics

Machine
Learning

Signal
Processing

Since 2012
 Detection in 

impulsive noises

Since 1990
 Performance analysis
 Optimal transceiver design

Since 2015
 Subspace clustering
 Community detection

Since 2007
 Estimation
 Detection



Deterministic Equivalent of Optimal Parameters (I)

 Channel models in Cloud-RAN with distributed RRHs:

 Optimal Lagrange multipliers

 Lemma 1 (Deterministic Equivalent of the -Parameter):

Assume . Let and satisfy

and , respectively.We have

where
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almost surely



Deterministic Equivalent of Optimal Parameters (II)

 Lemma 2 (Asymptotic Result for the Optimal Powers): Let

be such that . If and only if , then

where

Here , and are given by
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almost surely



Statistical Group Sparse Beamforming

 Theorem 2 (Asymptotic Result for RRH Ordering Criteria):

where

38

almost surely

The ordering criteria will  change only when 
the long-term channel attenuation is updated!

The second step to reduce computational complexity



Simulation Results (I)

 Convergence results (5 30-antenna RRHs and 5 single antenna MUs) [3]
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[3] Y. Shi, J. Zhang, and K. B. Letaief, “Scalable Group Sparse Beamforming for Dense Green Cloud-
RAN: A Random Matrix Approach,” submitted to IEEE Trans. Signal Process., Jul. 2016.



Simulation Results (II)

 Network power minimization (5 10-antenna RRHs and 6 single antenna
MUs) [3]
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[1] Y. Shi, J. Zhang, and K. B. Letaief, “Group sparse beamforming for green Cloud-RAN,” 
IEEE Trans. Wireless Commun., vol. 13, pp. 2809– 2823, May 2014.



Conclusions

 Network power minimization: A difficult non-convex mixed
combinatorial optimization problem

 Key techniques (scalable algorithms design):
 GSBF: convexify the combinatorial composite network power consumption

function using the mixed -norm

 Large-Scale Convex Optimization:
 Matrix stuffing: fast transformation

 Operator splitting method (ADMM): large-scale HSD embedding

 Enhanced GSBF:
 Smoothed -minimization with iterative reweighted- algorithm

 Large random matrix theory: low computational complexity of RRH selection

 Results: group sparse optimization offers a principled way to design
a dense green Cloud-RAN
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Vignette B: Low-Rank Matrix Completion 
forTopological Interference Management
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Issue B: Interference Management

 Goal: Interference mitigation in dense wireless networks

 Prior works: Abundant CSIT Relaxed CSIT

 Perfect CSIT [Cadambe and Jafar,TIT 08]

 Delayed CSIT [Maddah-Ali and Tse,TIT 12]

 Alternating CSIT [Tandon, et al., TIT 13], partial and imperfect CSIT
[Shi, et al.,TSP 14],…

 Curses: CSIT is rarely abundant (due to training & feedback overhead)
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No CSIT Perfect CSITCSIT

Prior worksApplicable?Start here?



Topological Interference Management

 Blessings: Partial connectivity in dense wireless networks

 Approach: Topological interference management (TIM) [Jafar,TIT 14]

 Maximize the achievable DoF: Only based on the network topology
information (no CSIT)

44

path-loss

shadowing

transmitter receiver transmitter receiver

Degrees of Freedom?



TIM via Index Coding

 Theorem [Jafar, TIT 14]: Under linear (vector space) solutions, TIM
problem and index coding problem are equivalent
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TIM problem
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Bottleneck: the only finite-capacity link
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Only a few index coding problems have been solved!
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TIM via LRMC

 Goal: Deliver one data stream per user over time slots

 : tx. beamformer at the i-th tx.

 : rx. beamformer at the j-th rx.

 We need:

 Approach: Low-rank matrix completion (LRMC) [4]
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align interference

Key conclusion: 

DoF𝟏𝟏/𝑵𝑵

Any network topology: 

rewrite

[4] Y. Shi, J. Zhang, and K. B. Letaief, “Low-rank matrix completion for topological interference 
management by Riemannian pursuit,” IEEE Trans. Wireless Commun., vol. 15, no. 7, Jul. 2016.



LRMC &TIM & Index Coding
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LRMC offers a new way to investigate these problems!

Index Coding

[Birk, Kol, INFOCOM’98]

[Maddah-Ali & Niesen ’13]

[Jafar ’14] [Rouayheb et al. ’10, ’15]

[Cadambe et al. ’13] 
[Shanmugam et al. ’14]

Caching

Network CodingTIM Problem

Distributed Storage



Riemannian Pursuit Algorithm

 NP-hard: Non-convex rank objective function

 Poorly structured affine constraint:

 Nuclear-norm relaxation [Candes & Recht, FCM 09]: (full rank)

 Riemannian pursuit [4]: Alternatively perform the fixed-rank
optimization and rank increase

 Riemannian optimization: address convergence issues in fixed-rank methods
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Riemannian Optimization for Fixed-Rank Problems

 Solve fixed-rank problems by Riemannian optimization [Absil, et al., 08]

 Generalize Euclidean gradien (Hessian) to Riemannian gradient (Hessian)
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Quotient manifold geometry of fixed rank matrices

Riemannian Gradient Euclidean Gradient

Tangent space

Retraction Operator



Numerical Results (1): Convergence Rate

 Riemannian optimization over the quotient matrix manifold [4].
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[4] Y. Shi, J. Zhang, and K. B. Letaief, “Low-rank matrix completion for topological interference 
management by Riemannian pursuit,” IEEE Trans. Wireless Commun., vol. 15, no. 7, Jul. 2016.

[Wen, Yin & Zhang, MPC 12]
Riemannian algorithms:
1. Exploit the rank structure 

in a principled way
2. Develop second-order 

algorithms systematically
3. Scalable, SVD-free



Numerical Results (II): Symmetric DoF
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associated incomplete matrix

1 0 0

1 0 0

0 1 0
0 1 0

0 1

transmitters

receivers

1 .1 0 0 9.5
6.8 1 0 0 64
0 .1 1 -1 0
0 -.1 -1 1 0
.1 0 -.1 .1 1

Optimal DoF=1/2

Riemannian pursuit: Rank=2

Advantages: 
1. Recover all the optimal DoF 

results for the special TIM 
problems in [Jafar ’14]

2. Provide numerical insights 
(optimal/lower-bound) for 
the general TIM problems

LRMC



Conclusions

 Topological interference management significantly improves DoFs
only based on the network topology information

 Key techniques:

 Low-rank matrix completion

 Riemannian optimization

 Results: Low-rank matrix completion provides a first algorithmic
and systematic approach to investigate the TIM problem for any
network topology.

 Extensions:

 User admission control, network topology design, finite SNR, …

 More applications: index coding, distributed storage and caching,…

 Optimality: Riemannian pursuit algorithm, LRMC approach
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Concluding Remarks

 Future network design: dense, cooperative, scalable, unified
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Computing Side Information 
Acquisition/Analysis

Communication

1. Structured models: Sparsity, low-rankness
2. Scalable algorithms: Convex optimization, Riemannian optimization, ADMM
3. Theory: Global optimality?
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