Sparse and Low-Rank Optimization for Dense Wireless Networks Part II: Algorithms and Theory

Jun Zhang

HKUST

Yuanming Shi

ShanghaiTech University

GLOBECOM 2017 TUTORIAL

Outline

Motivations

Issues on computation, storage, nonconvexity,...

Two Vignettes:

- Large-scale convex optimization
 - Motivation: Why convex optimization?
 - Large-Scale Convex Optimization Algorithms
- Scalable nonconvex optimization on manifolds
 - Motivation: Why Nonconvex Optimization?
 - Riemannian Optimization Algorithms

Future Directions

Motivation: Optimization for Dense Wireless Networks

GLOBECOM 2017 TUTORIAL

Motivations

The era of dense wireless networks

- Lead to new issues related to modeling and computing
- Part I: Modeling issue
 - Sparse and low-rank modeling frameworks for dense wireless networks

Part II: Computational issue

- Excessively large problem dimension, parameter size
- Real-time communication requirements: polynomial-time algorithms often not fast enough
- Non-convexity in general formulations

Issue A: Large-scale structured optimization

 Explosion in scale and complexity of the optimization problem in dense wireless networks

Questions:

How to exploit the low-dimensional structures (e.g., sparsity and lowrankness) to assist efficient algorithms design?

Issue B: Real-time convex optimization

Polynomial-time algorithms often not fast enough for real-time communications: parallel computing and approximations are essential

Questions:

- > When is there a gap between polynomial-time and exponential-time algorithms?
- How to reduce computational complexity while retaining optimality and accuracy?

Issue C: Scalable nonconvex optimization

Nonconvex optimization may be super scary

Question:

How to exploit the geometry of nonconvex programs to guarantee optimality and enable scalability in computation and storage?

Vignettes A: Large-Scale Convex Optimization

I. Motivation: Why Convex Optimization?

I) Theory I: Convexify sparse functions
 2) Theory II: Geometry of convex relaxation

2. Large-Scale Convex Optimization Algorithms

I) Matrix stuffing for homogeneous self-dual embedding transforming
 2) Operator splitting for homogeneous self dual embedding solving

2) Operator splitting for homogeneous self-dual embedding solving

Motivation: Why Convex Optimization?

Convex optimization – classical form

Convex optimization problem in classical form

 $\begin{array}{ll} \underset{\boldsymbol{z}}{\text{minimize}} & f_0(\boldsymbol{z}; \boldsymbol{\alpha}) \\ \text{subject to} & f_i(\boldsymbol{z}; \boldsymbol{\alpha}) \leq g_i(\boldsymbol{z}; \boldsymbol{\alpha}), i = 1, \dots, m \\ & u_i(\boldsymbol{z}; \boldsymbol{\alpha}) = v_i(\boldsymbol{z}; \boldsymbol{\alpha}), i = 1, \dots, p. \end{array}$

>
$$f_i$$
 convex, g_i concave, u_i, v_i affine

Convex functions: have nonnegative (upward) curvature

$$f_i(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) \le \theta f_i(\mathbf{x}) + (1 - \theta)f_i(\mathbf{y})$$

$$(x, f(x))$$

Convex optimization – conic form

Convex optimization in *modern* canonical form

minimize $\mathbf{c}^T \boldsymbol{\nu}$ subject to $\mathbf{A}\boldsymbol{\nu} + \boldsymbol{\mu} = \mathbf{b}$ $(\boldsymbol{\nu}, \boldsymbol{\mu}) \in \mathbb{R}^n \times \mathcal{K}.$

 $\succ \mathcal{K} = \mathcal{K}_1 \times \cdots \times \mathcal{K}_q \in \mathbb{R}^m$ is a Cartesian product of closed convex cones

- ♦ Nonnegative reals: $\mathbb{R}_+ = \{z \in \mathbb{R} | z \ge 0\}$ (LP)
- Second-order cone: $Q^d = \{(z, \mathbf{x}) \in \mathbb{R} \times \mathbb{R}^{d-1} | \|\mathbf{x}\| \le z\}$ (SOCP)
- * Positive semidefinite cone: $\mathbf{S}^n_+ = \{ \boldsymbol{M} \in \mathbb{R}^{n \times n} | \boldsymbol{M} = \boldsymbol{M}^T, \boldsymbol{M} \succeq \mathbf{0} \}$ (SDP)

- Theoretical foundations: Beautiful, nearly complete theory
 - Duality, optimality conditions, convex geometry,...
- Effective algorithms: Convex optimization problems can be solved effectively with global optimality
 - Use generic methods for not huge problems: high level language support (CVX/CVXPY/Convex.jl) makes prototyping easy
 - Develop custom methods for huge problems (e.g., stochastic gradient descent)
- Lots of applications: Machine learning, signal processing, statistics, wireless communications, …

Theory I: Convexify Sparse Functions

Geometric view: sparsity

• Sparse approximation via convex hull $\mathcal{D} := \operatorname{conv}(\{\pm e_i | i \in [n]\})$

Geometric view: low-rank

Low-rank approximation via convex hull

2x2 rank I symmetric matrices (normalized)

convex hull: nuclear norm $\|oldsymbol{M}\|_* = \sum_i \sigma_i(oldsymbol{M})$

Structured sparsity

 ℓ_p -regularized combinatorial penalties of the form

 $F_p(\boldsymbol{z}) = \mu F(\operatorname{Supp}(\boldsymbol{z})) + \nu \|\boldsymbol{z}\|_p^p$

- \succ μ and ν are positive scalar coefficients, $p \in (1,\infty]$
- \succ Positive-valued set-function F: control the structure of a model with non-zero patterns
- \succ ℓ_p -norm: control the magnitude of the coefficients
- **Examples:** I) individual sparsity F(A) = |A|; 2) group sparsity

 $F(A) = \sum_{i=1}^{T} \mathbb{1}_{\{A \cap G_i \neq \emptyset\}}$

Structure preserved by convex relaxations

• The tightest positively homogeneous lower bound (1/p + 1/q = 1)

$$F_h(\boldsymbol{z}) = (q\mu)^{1/q} (p\nu)^{1/p} Q(\boldsymbol{z})$$

• The convex envelope of Q is given by the norm Ω_p with dual norm as

$$\Omega_p^*(\boldsymbol{s}) := \max_{A \subset V, A \neq \emptyset} \frac{\|\boldsymbol{s}_A\|_q}{F(A)^{1/q}}$$

Examples:

- \succ I) ℓ_1 -norm (Lasso): If F(A) = |A|, then $\Omega_p(z) = ||z||_1$, since $\Omega_p^*(s) = ||s||_{\infty}$
- ▶ 2) ℓ_p -norm: If $F(A) = 1_{\{A \neq \emptyset\}}$, then $\Omega_p(z) = \|z\|_p$, since $\Omega_p^*(s) = \|s\|_q$
- > 3) ℓ_1/ℓ_p -norm (Group Lasso): If $F(A) = \sum_{i=1}^T \mathbb{1}_{\{A \cap G_j \neq \emptyset\}}$, then $\Omega_p(\boldsymbol{z}) = \sum_{i=1}^T \|\boldsymbol{z}_{G_i}\|_p$

Enhance sparsity via sequential convex programming

• Goal: Provide tight approximation for sparsity function $u(x) = 1_{\{x \neq 0\}}$

Non-convex approximation:

$$\|\mathbf{x}\|_{0} = \lim_{p \to 0} \|\mathbf{x}\|_{p}^{p} = \lim_{p \to 0} \sum |x_{i}|^{p}$$

At the origin, ℓ_0 function is better approximated by the log-sum function (check the slop at the origin)

Iterative reweighted- ℓ_1 algorithm (I)

- Approximate $\operatorname{card}(z) \approx \log(1 + z/\epsilon)$, where $\epsilon > 0, z \in \mathbb{R}_+$

Using this approximation, we get (non-convex) problem

$$\underset{\boldsymbol{z} \in \mathbb{C}^n}{\text{minimize}} \quad \sum_{i=1}^n \log(1 + z_i/\epsilon) \quad \text{subject to} \quad \boldsymbol{z} \in \mathcal{C}, \boldsymbol{z} \succeq \boldsymbol{0}$$

Iterative reweighted- ℓ_1 algorithm (II)

Find a local solution by linearizing objective at current point

$$\sum_{i=1}^{n} \log(1 + z_i/\epsilon) \approx \sum_{i=1}^{n} \log(1 + z_i^{[k]}/\epsilon) + \sum_{i=1}^{n} \frac{z_i - z_i^{[k]}}{\epsilon + z_i^{[k]}}$$

Solve resulting convex problem

$$\begin{split} & \underset{\pmb{z} \in \mathbb{C}^n}{\text{minimize}} \ \sum_{i=1}^n \omega_i^{[k]} z_i \quad \text{ subject to } \ \pmb{z} \in \mathcal{C}, \pmb{z} \succeq \pmb{0} \\ & \text{with } \omega_i^{[k]} = 1/(\epsilon + x_i^{[k]}) \text{, to get next iterate} \end{split}$$

Repeat until convergence to get a local solution

Iterative reweighted- ℓ_2 algorithm

- Adopt $\|\boldsymbol{z}\|_p (0 to approximate <math>\|\boldsymbol{z}\|_0 \colon \|\boldsymbol{z}\|_0 = \lim_{p \to 0} \|\boldsymbol{z}\|_p^p$
- Solve the following (non-convex) smoothed ℓ_p -minimization problem

$$\underset{\boldsymbol{z} \in \mathbb{C}^n}{\text{minimize}} \quad \sum_{i=1}^n (z_i^2 + \epsilon^2)^{p/2} \quad \text{subject to} \quad \boldsymbol{z} \in \mathcal{C}$$

• Construct an upper bound for objective function $Q(z; \omega^{[k]}) := \sum_{i=1}^{n} \omega_i^{[k]} z_i^2$

majorization-minimization algorithm

 $\omega_i^{[k]} = \frac{p}{2} \left[\left(z_i^{[k]} \right)^2 + \epsilon^2 \right]^{\frac{p}{2} - 1}$

• Find the local solution via convex iterates $m{z}^{[k+1]} := rgmin_{m{z}\in\mathcal{C}} Q(m{z};m{\omega}^{[k]})$

Simulation results: enhanced sparsity

Network power minimization via group sparse beamforming

Group sparse beamforming for network power minimization (IR2A: iterative reweighted ℓ_2 -algorithm)

GLOBECOM 2017 TUTORIAL

Theory II: Geometry of Convex Relaxation

GLOBECOM 2017 TUTORIAL

Linear inverse problems

- Let $x^{
 aturel} \in \mathbb{R}^d$ be a structured, unknown vector
 - Group sparsity for user activity detection
- Let $f : \mathbb{R}^d \to \mathbb{R}$ be a convex function that reflects structure, e.g., ℓ_1 -norm
- Let $\boldsymbol{A} \in \mathbb{R}^{m imes d}$ be a measurement operator
- Observe $z = Ax^{\natural}$
- Find estimate \hat{x} by solving **convex program**

minimize $f(\boldsymbol{x})$ subject to $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{z}$

• Hope: $\hat{x} = x^{\natural}$

Geometry of linear inverse problems

• **Descent cone** of a function f at a point x is

 $\mathscr{D}(f, \boldsymbol{x}) := \{ \boldsymbol{d} : f(\boldsymbol{x} + \epsilon \boldsymbol{d}) \le f(\boldsymbol{x}), \text{ for some } \epsilon > 0 \}$

References: Rockafellar 1970

Geometry of linear inverse problems

References: Candes-Romberg-Tao 2005, Rudelson-Vershynin 2006, Chandrasekaran et al. 2010, Amelunxen et al. 2013

Linear inverse problems with random data

Assume

- \succ The vector $oldsymbol{x}^{
 atural} \in \mathbb{R}^d$ is unknown
- \succ The observation $m{z} = m{A} m{x}^{
 atural}$ where $m{A} \in \mathbb{R}^{m imes d}$ is standard normal
- \succ The vector $\hat{m{x}}$ solves

minimize $f(\boldsymbol{x})$ subject to $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{z}$ Then

$$m \succeq \delta(\mathscr{D}(f, x^{\natural})) \implies \hat{x} = x^{\natural}, \text{ w.h.p.}$$

 $m \preceq \delta(\mathscr{D}(f, x^{\natural})) \implies \hat{x} \neq x^{\natural}, \text{ w.h.p.}$
statistical dimension [Amelunxen-McCoy-Tropp'13]

Examples for statistical dimension

• **Example I:** ℓ_1 -minimization for compressed sensing

$$> x^{\natural} \in \mathbb{R}^{d} \text{ with } s \text{ non-zero entries}$$

$$\delta \left(\mathscr{D}(\|\cdot\|_{1}, x^{\natural}) \right) = \inf_{\tau \ge 0} \left\{ s(1+\tau^{2}) + (d-s)\sqrt{\frac{2}{\pi}} \int_{\tau}^{\infty} (z-\tau)^{2} e^{-z^{2}} dz \right\}$$

Example 2: ℓ₁/ℓ₂ -minimization for massive device connectivity
 X[↓] ∈ ℝ^{N×M} with s non-zero rows

$$\delta\left(\mathscr{D}(\|\cdot\|_{2,1}, \mathbf{X}^{\natural})\right) = \inf_{\tau \ge 0} \left\{ s(M+\tau^2) + (N-s) \frac{2^{1-M/2}}{\Gamma(M/2)} \int_{\tau}^{\infty} (u-\tau)^2 u^{M-1} e^{-\frac{u^2}{2}} \mathrm{d}u \right\}$$

Numerical phase transition

• Compressed sensing with ℓ_1 -minimization

Figure credit: Amelunxen-McCoy-Tropp'13

Numerical phase transition

• User activity detection via ℓ_1/ℓ_2 -minimization

group-structured sparsity estimation

GLOBECOM 2017 TUTORIAL

Summary of convex optimization

- Theoretical foundations for sparse optimization
 - Convex relaxation: convex hull, convex analysis
 - Fundamental bounds for convex methods: convex geometry, high-dimensional statistics
- Computational limits for (convexified) sparse optimization
 - Custom methods (e.g., stochastic gradient descent): not generalizable for complicated problems
 - Generic methods (e.g., CVX): not scalable to large problem sizes

Can we design a unified framework for general large-scale convex programs?

Large-Scale Convex Optimization Algorithms

Modeling languages

- High level language support for convex optimization
 - > **Stage one:** problem description automatically transformed to standard form
 - Stage two: solved by standard solver, transformed back to original form

Implementation: YALMIP, CVX (Matlab), CVXPY (Python), Convex.jl (Julia)

Modeling languages

Disciplined convex programming framework [Grant & Boyd '08]

- enable rapid prototyping (for small and medium problems)
- widely used for applications with medium scale problems
- shifts focus from how to solve to what to solve
- Large-scale problems: time consuming in modeling phase & solving phase
- Goal: Scale to large problem sizes in modeling phase and solving phase

Large-scale convex optimization

Proposal: Two-stage approach for large-scale convex optimization

- > Matrix stuffing: Fast homogeneous self-dual embedding (HSD) transformation
- > Operator splitting (ADMM): Large-scale homogeneous self-dual embedding

Stage I: Matrix Stuffing
Smith form reformulation

Goal: transform the classical form to conic form

$$\begin{array}{ll} \underset{\boldsymbol{z}}{\text{minimize}} & f_0(\boldsymbol{z};\boldsymbol{\alpha}) & \underset{\boldsymbol{\nu},\boldsymbol{\mu}}{\text{minimize}} & \boldsymbol{c}^T \boldsymbol{\nu} \\ \text{subject to} & f_i(\boldsymbol{z};\boldsymbol{\alpha}) \leq g_i(\boldsymbol{z};\boldsymbol{\alpha}), \\ & u_i(\boldsymbol{z};\boldsymbol{\alpha}) = v_i(\boldsymbol{z};\boldsymbol{\alpha}). \end{array} \xrightarrow{\text{minimize}} & \mathbf{subject to} & \mathbf{A}\boldsymbol{\nu} + \boldsymbol{\mu} = \mathbf{b}, \\ & (\boldsymbol{\nu},\boldsymbol{\mu}) \in \mathbb{R}^n \times \mathcal{K}. \end{array}$$

- Key idea: Introduce a new variable for each subexpression in classical form [Smith '96]
 - > The Smith form is ready for standard cone programming transformation

Example

Coordinated beamforming problem family

 $\mathscr{P}_{\mathrm{Original}}: \mathrm{minimize} \ \| \boldsymbol{v} \|_2^2$

subject to
$$\|\boldsymbol{D}_{l}\boldsymbol{v}\|_{2} \leq \sqrt{P_{l}}, \forall l, \text{ Per-BS power constraint}$$
(1)
 $\|\boldsymbol{C}_{k}\boldsymbol{v} + \boldsymbol{g}_{k}\|_{2} \leq \beta_{k}\boldsymbol{r}_{k}^{T}\boldsymbol{v}, \forall k. \text{ QoS constraints}$ (2)

Smith form reformulation

The Smith form is readily to be reformulated as the standard cone program

Reference: Grant-Boyd'08

GLOBECOM 2017 TUTORIAL

Optimality condition

- KKT conditions (necessary and sufficient, assuming strong duality)
 - \succ Primal feasibility: $\mathbf{A} \mathbf{
 u}^{\star} + \mathbf{\mu}^{\star} \mathbf{b} = \mathbf{0}$
 - \succ Dual feasibility: $\mathbf{A}^T \boldsymbol{\eta}^\star \boldsymbol{\lambda}^\star + \mathbf{c} = \mathbf{0}$
 - > Complementary slackness: $\mathbf{c}^T \boldsymbol{\nu}^\star + \mathbf{b}^T \boldsymbol{\eta}^\star = 0$ zero duality gap
 - $\succ \ \text{Feasibility:} \ (\boldsymbol{\nu}^{\star}, \boldsymbol{\mu}^{\star}, \boldsymbol{\lambda}^{\star}, \boldsymbol{\eta}^{\star}) \in \mathbb{R}^{n} \times \mathcal{K} \times \{0\}^{n} \times \mathcal{K}^{*}$

no solution if primal or dual problem infeasible/unbounded

Homogeneous self-dual (HSD) embedding

 HSD embedding of the primal-dual pair of transformed standard cone program (based on KKT conditions) [Ye et al. 94]

$$\begin{array}{c} \underset{\nu,\mu}{\text{minimize } \mathbf{c}^{T}\nu} \\ \text{subject to } \mathbf{A}\nu + \mu = \mathbf{b} \\ (\nu,\mu) \in \mathbb{R}^{n} \times \mathcal{K}. \end{array} + \begin{array}{c} \underset{\eta,\lambda}{\text{maximize } -\mathbf{b}^{T}\eta} \\ \text{subject to } -\mathbf{A}^{T}\eta + \lambda = \mathbf{c} \\ (\lambda,\eta) \in \{0\}^{n} \times \mathcal{K}^{*} \end{array} \Longrightarrow \begin{array}{c} \mathscr{F}_{\text{HSD}} : \text{find } (\mathbf{x},\mathbf{y}) \\ \text{subject to } \mathbf{y} = \mathbf{Q}\mathbf{x} \\ \mathbf{x} \in \mathcal{C}, \mathbf{y} \in \mathcal{C}^{*} \end{array}$$

$$\underbrace{ \begin{bmatrix} \boldsymbol{\lambda} \\ \boldsymbol{\mu} \\ \boldsymbol{\kappa} \end{bmatrix} }_{\mathbf{y}} = \underbrace{ \begin{bmatrix} \mathbf{0} & \mathbf{A}^T & \mathbf{c} \\ -\mathbf{A} & \mathbf{0} & \mathbf{b} \\ -\mathbf{c}^T - \mathbf{b}^T & \mathbf{0} \end{bmatrix} }_{\mathbf{Q}} \underbrace{ \begin{bmatrix} \boldsymbol{\nu} \\ \boldsymbol{\eta} \\ \boldsymbol{\tau} \end{bmatrix} }_{\mathbf{x}}$$
 finding a *nonzero* solution

This feasibility problem is homogeneous and self-dual

Recovering solution or certificates

- Any HSD solution $(\boldsymbol{\nu}, \boldsymbol{\mu}, \boldsymbol{\lambda}, \boldsymbol{\eta}, \tau, \kappa)$ falls into one of three cases:
 - \blacktriangleright Case I: $\tau > 0, \kappa = 0$, then $\hat{\nu} = \nu/\tau, \hat{\eta} = \eta/\tau, \hat{\mu} = \mu/\tau$ is a solution
 - > Case 2: $\tau = 0, \kappa > 0$, implies $\mathbf{c}^T \boldsymbol{\nu} + \mathbf{b}^T \boldsymbol{\eta} < 0$
 - * If $\mathbf{b}^T \boldsymbol{\eta} < 0$, then $\hat{\boldsymbol{\eta}} = \boldsymbol{\eta}/(-\mathbf{b}^T \boldsymbol{\eta})$ certifies primal infeasibility
 - * If $\mathbf{c}^T \boldsymbol{\nu} < 0$, then $\hat{\boldsymbol{\nu}} = \boldsymbol{\nu}/(-\mathbf{c}^T \hat{\boldsymbol{\nu}})$ certifies dual infeasibility
 - > Case 3: $\tau = \kappa = 0$, nothing can be said about original problem
- HSD embedding: I) obviates need for phase I / phase II solves to handle infeasibility/unboundedness; 2) used in all interior-point cone solvers

Matrix stuffing for fast transformation

HSD embedding of the primal-dual pair of standard cone program

$$\underbrace{\begin{bmatrix} \boldsymbol{\lambda} \\ \boldsymbol{\mu} \\ \boldsymbol{\kappa} \end{bmatrix}}_{\mathbf{y}} = \underbrace{\begin{bmatrix} \mathbf{0} & \mathbf{A}^T & \mathbf{c} \\ -\mathbf{A} & \mathbf{0} & \mathbf{b} \\ -\mathbf{c}^T & -\mathbf{b}^T & \mathbf{0} \end{bmatrix}}_{\mathbf{Q}} \underbrace{\begin{bmatrix} \boldsymbol{\nu} \\ \boldsymbol{\eta} \\ \boldsymbol{\tau} \end{bmatrix}}_{\mathbf{x}}$$

- Matrix stuffing: fast HSD embedding transformation
 - \succ Generate and keep the structure ${f Q}$
 - \succ Copy problem instance parameters to update the entries in ${f Q}$

Stage II: Operator Splitting

 $\begin{aligned} \mathscr{F}_{\text{HSD}} &: \text{find} \quad (\mathbf{x}, \mathbf{y}) \\ \text{subject to} \quad \mathbf{y} &= \mathbf{Q}\mathbf{x} \\ \mathbf{x} \in \mathcal{C}, \mathbf{y} \in \mathcal{C}^* \end{aligned}$

Alternating direction method of multipliers

• **ADMM:** an operator splitting method solving convex problems in form

 \mathscr{P}_{ADMM} : minimize $f(\mathbf{x}) + g(\mathbf{z})$ subject to $\mathbf{x} = \mathbf{z}$

- \succ f, g convex, not necessarily smooth, can take infinite values
- The basic ADMM algorithm [Boyd et al., FTML II] $\mathbf{x}^{[k+1]} = \arg\min_{\mathbf{x}} \left(f(\mathbf{x}) + (\rho/2) \|\mathbf{x} - \mathbf{z}^{[k]} - \lambda^{[k]}\|_{2}^{2} \right)$ $\mathbf{z}^{[k+1]} = \arg\min_{\mathbf{z}} \left(g(\mathbf{z}) + (\rho/2) \|\mathbf{x}^{[k+1]} - \mathbf{z} - \lambda^{[k]}\|_{2}^{2} \right)$ $\lambda^{[k+1]} = \lambda^{[k]} - \mathbf{x}^{[k+1]} + \mathbf{z}^{[k+1]}$

 $\succ \ \rho > 0$ is a step size; λ is the dual variable associated the constraint

Alternating direction method of multipliers

- Convergence of ADMM: Under benign conditions ADMM guarantees
 - $\succ f(\mathbf{x}^k) + g(\boldsymbol{z}^k) \rightarrow p^{\star}$
 - $\succ \lambda^k \to \lambda^\star$, an optimal dual variable
 - $\succ \mathbf{x}^k \boldsymbol{z}^k \to 0$
- Same as many other operator splitting methods for consensus problem, e.g., Douglas-Rachford method
- Pros: I) with good robustness of method of multipliers; 2) can support decomposition

Operator splitting

Transform HSD embedding $\mathscr{F}_{\rm HSD}$ in ADMM form: Apply the operating splitting method (ADMM)

 $\begin{aligned} \mathscr{P}_{\text{ADMM}} : \underset{\mathbf{x}, \tilde{\mathbf{x}}, \mathbf{y}, \tilde{\mathbf{y}}}{\text{minimize}} \quad I_{\mathcal{C} \times \mathcal{C}^*}(\mathbf{x}, \mathbf{y}) + I_{\mathbf{Q}\tilde{\mathbf{x}} = \tilde{\mathbf{y}}}(\tilde{\mathbf{x}}, \tilde{\mathbf{y}}) \\ \text{subject to} \quad (\mathbf{x}, \mathbf{y}) = (\tilde{\mathbf{x}}, \tilde{\mathbf{y}}) \end{aligned}$

Final algorithm

$$\begin{split} \tilde{\mathbf{x}}^{[i+1]} &= (\mathbf{I} + \mathbf{Q})^{-1} (\mathbf{x}^{[i]} + \mathbf{y}^{[i]}) & \text{subspace projection} \\ \mathbf{x}^{[i+1]} &= \Pi_{\mathcal{C}} (\tilde{\mathbf{x}}^{[i+1]} - \mathbf{y}^{[i]}) & \text{parallel cone projection} \\ \mathbf{y}^{[i+1]} &= \mathbf{y}^{[i]} - \tilde{\mathbf{x}}^{[i+1]} + \mathbf{x}^{[i+1]} & \text{computationally trivial} \end{split}$$

Parallel cone projection

- Proximal algorithms for parallel cone projection [Parikn & Boyd, FTO 14]
 - ▶ Projection onto the second-order cone: $Q^d = \{(z, \mathbf{x}) \in \mathbb{R} \times \mathbb{R}^{d-1} | ||\mathbf{x}|| \le z\}$

$$\Pi_{\mathcal{C}}(\boldsymbol{\omega},\tau) = \begin{cases} 0, \|\boldsymbol{\omega}\|_{2} \leq -\tau \\ (\boldsymbol{\omega},\tau), \|\boldsymbol{\omega}\|_{2} \leq \tau \\ (1/2)(1+\tau/\|\boldsymbol{\omega}\|_{2})(\boldsymbol{\omega}, \|\boldsymbol{\omega}\|_{2}), \|\boldsymbol{\omega}\|_{2} \geq |\tau|. \end{cases}$$

Closed-form, computationally scalable (we mainly focus on SOCP)

- > Projection onto positive semidefinite cone: $\mathbf{S}_{+}^{n} = \{ \boldsymbol{M} \in \mathbb{R}^{n \times n} | \boldsymbol{M} = \boldsymbol{M}^{T}, \boldsymbol{M} \succeq \mathbf{0} \}$ $\Pi_{\mathcal{C}}(\boldsymbol{V}) = \sum_{i=1}^{n} (\lambda_{i})_{+} \boldsymbol{u}_{i} \boldsymbol{u}_{i}^{T}$
 - SVD is computationally expensive

Numerical results

Power minimization coordinated beamforming problem

Network Size (L=K)		20	50	100	150
CVX+SDPT3	Modeling Time [sec]	0.7563	4.4301	-1\7A	N/A
	Solving Time [sec]	4.2835	326.2513	(N/A	N/A
	Objective [W]	12.2488	6.5216	N/A	N/A
Matrix Stuffing+ADMM	Modeling Time [sec]	0.0128	0.2401	2.4154	9.4167
	Solving Time [sec]	0.1009	2.4821	23.8088	81.0023
	Objective [W]	12.2523	6.5193	3.1296	2.0689
	Matrix stuffing can speedup 60x over CVX		ADMM can speedup 130x over the interior-point method		

[Ref] Y. Shi, J. Zhang, B. O'Donoghue, and K. B. Letaief, "Large-scale convex optimization for dense wireless cooperative networks," IEEE Trans. Signal Process., vol. 63, no. 18, pp. 4729-4743, Sept. 2015. (The 2016 IEEE Signal Processing Society Young Author Best Paper Award)

Vignette B: Scalable Optimization on Manifolds

- I. Motivation: Why Nonconvex Optimization?
 - I) Geometry of Nonconvex Optimization
- 2. Riemannian Optimization Algorithms

Optimization over Riemannian Manifolds (non-Euclidean geometry)

Motivation: Why Nonconvex Optimization?

Low-rank matrix optimization

Rank-constrained matrix optimization problem

 $\underset{\boldsymbol{M} \in \mathbb{R}^{n \times n}}{\text{minimize}} \quad f(\mathcal{A}(\boldsymbol{M})) \quad \text{ subject to } \ \operatorname{rank}(\boldsymbol{M}) = r$

- $\succ \mathcal{A}: \mathbb{R}^{n \times n} \to \mathbb{R}^d$ is a real linear map on $n \times n$ matrices
- $\succ f: \mathbb{R}^d \to \mathbb{R}$ is convex and differentiable
- > A prevalent model in signal processing, statistics, and machine learning
- Challenge I: Reliably solve the low-rank matrix problem at scale
- Challenge II: Develop optimization algorithms with optimal storage $\Theta(rn)$

A brief biased history of convex methods

- I990s: Interior-point methods (computationally expensive)
 - > Storage cost $\Theta(n^4)$ for Hessian
- 2000s: Convex first-order methods
 - > (Accelerated) proximal gradient, spectral bundle methods, and others
 - > Store matrix variable $\Theta(n^2)$
- 2008-Present: Storage-efficient convex first-order methods
 - Conditional gradient method (CGM) and extensions
 - > Store matrix in low-rank form O(tn) after t iterations: no storage guarantees

52

Interior-point: Nemirovski & Nesterov 1994; ... First-order: Rockafellar 1976; Helmberg & Rendl 1997; Auslender & Teboulle 2006; ... CGM: Frank & Wolfe 1956; Levitin & Poljak 1967; Jaggi 2013; ... GLOBECOM 2017 TUTORIAL

Convexity: Why bother?

Convex relaxation fails: always return the identity matrix!

 $\begin{array}{ll} \underset{\boldsymbol{M} \in \mathbb{C}^{K \times K}}{\text{minimize}} & \|\boldsymbol{M}\|_{*} \\ \text{subject to} & M_{ii} = 1, i = 1, \dots, K \\ & M_{ij} = 0, \forall (i,j) \in \mathcal{S} \end{array}$

▶ Fact: Trace(M) ≤ $||M||_*$

The dilemma: Convex methods have slow memory hogs, high computational complexity, sometimes fail

Can we solve the nonconvex matrix optimization problem directly?

Recent advances in nonconvex optimization

2009–Present: Nonconvex heuristics

- Burer–Monteiro factorization idea + various nonlinear programming methods
- Store low-rank matrix factors $\Theta(rn)$

Guaranteed solutions: Global optimality with statistical assumptions

- Matrix completion/recovery: [Sun-Luo'14], [Chen-Wainwright'15], [Ge-Lee-Ma'16],...
- Phase retrieval: [Candes et al., 15], [Chen-Candes' 15], [Sun-Qu-Wright'16]
- Community detection/phase synchronization [Bandeira-Boumal-Voroninski'16], [Montanari et al., 17],...

When are nonconvex optimization problems not scary?

Geometry of Nonconvex Optimization

First-order stationary points

Saddle points and local minima:

 $\lambda_{\min}(\nabla^2 f(\boldsymbol{z})) \begin{cases} > 0 & \text{local minimum} \\ = 0 & \text{local minimum or saddle point} \\ < 0 & \text{strict saddle point} \end{cases}$

Local minima

Saddle points/local maxima

First-order stationary points

- **Applications:** PCA, matrix completion, dictionary learning etc.
 - Local minima: Either all local minima are global minima or all local minima as good as global minima
 - > Saddle points: Very poor compared to global minima; Several such points

Bottomline: Local minima much more desirable than saddle points

Summary of motivations

Convex methods:

- Slow memory hogs
- > Convex relaxation fails sometimes, e.g., topological interference alignment
- > High computational complexity, e.g., eigenvalue decomposition

• Nonconvex methods: fast, lightweight

Under certain statistical models with benign global geometry: no spurious local optima

How to escape saddle points efficiently?

Fig credit: Sun, Qu & Wright

Riemannian Optimization Algorithms

Escape saddle points via manifold optimization

What is manifold optimization?

Manifold (or manifold-constrained) optimization problem

 $\underset{\boldsymbol{M} \in \mathbb{C}^{m \times n}}{\text{minimize}} \quad f(\boldsymbol{M}) \quad \text{ subject to } \quad \boldsymbol{M} \in \mathcal{M}$

- $\succ f: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ is a smooth function
- Mis a Riemannian manifold: spheres, orthonormal bases (Stiefel), rotations, positive definite matrices, fixed-rank matrices, Euclidean distance matrices, semidefinite fixed-rank matrices, linear subspaces (Grassmann), phases, essential matrices, fixed-rank tensors, Euclidean spaces...

Escape saddle points via manifold optimization

- Convergence guarantees for Riemannian trust regions
 - Global convergence to second-order critical points
 - Quadratic convergence rate locally
 - ▶ Reach ϵ -second order stationary point $\| \operatorname{grad} f(\boldsymbol{z}) \| \leq \epsilon$ and $\nabla^2 f(\boldsymbol{z}) \succeq -\epsilon \boldsymbol{I}$

in $\mathcal{O}(1/\epsilon^3)$ iterations under Lipschitz assumptions [Cartis & Absil'16]

Escape strict saddle points via finding second-order stationary point

Other approaches: Gradient descent by adding noise [Ge et al., 2015],
 [Jordan et al., 17] (slow convergence rate in general)

Recent applications of manifold optimization

- Matrix/tensor completion/recovery: [Vandereycken'13], [Boumal-Absil'15], [Kasai-Mishra'16],...
- Gaussian mixture models: [Hosseini-Sra'15], Dictionary learning: [Sun-Qu-Wright'17], Phase retrieval: [Sun-Qu-Wright'17],...
- Phase synchronization/community detection: [Boumal'16], [Bandeira-Boumal-Voroninski'16],...
- Wireless transceivers design: [Shi-Zhang-Letaief'16], [Yu-Shen-Zhang-K. B. Letaief'16], [Shi-Mishra-Chen'16],...

The power of manifold optimization paradigms

Generalize Euclidean gradient (Hessian) to Riemannian gradient (Hessian)

$$\nabla_{\mathcal{M}} f(\mathbf{X}^{(k)}) = P_{\mathbf{X}^{(k)}}(\nabla f(\mathbf{X}^{(k)}))$$

Riemannian Gradient Euclidean Gradient

$$\mathbf{X}^{(k+1)} = \mathcal{R}_{\mathbf{X}^{(k)}}(-\alpha^{(k)}\nabla_{\mathcal{M}}f(\mathbf{X}^{(k)}))$$

Retraction Operator

• We need Riemannian geometry: I) linearize search space \mathcal{M} into a tangent space $T_X\mathcal{M}$; 2) pick a metric on $T_X\mathcal{M}$ to give intrinsic notions of gradient and Hessian

An excellent book

Optimization algorithms on matrix manifolds

A Matlab toolbox for optimization on manifolds

Optimization on manifolds is a powerful paradigm to address nonlinear optimization problems. With Manopt, it is easy to deal with various types of constraints that arise naturally in applications, such as orthonormality or low rank.

Download 🚣

Get started A

GLOBECOM 2017 TUTORIAL

Taking A Close Look at Gradient Descent

GLOBECOM 2017 TUTORIAL

GLOBECOM 2017 TUTORIAL

GLOBECOM 2017 TUTORIAL

Example: Rayleigh quotient

• Optimization over (sphere) manifold $\mathbb{S}^{n-1} = \{x \in \mathbb{R}^n : x^T x = 1\}$

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} f(x) = -x^T A x \quad \text{subject to} \quad x^T x = 1$$

 \succ The cost function is smooth on \mathbb{S}^{n-1} , symmetric matrix $A \in \mathbb{R}^{n \times n}$

• Step 1: Compute the Euclidean gradient in \mathbb{R}^n

$$\nabla f(x) = -2Ax$$

• Step 2: Compute the Riemannian gradient on \mathbb{S}^{n-1} via projecting $\nabla f(x)$ to the tangent space using the orthogonal projector $\operatorname{Proj}_x u = (I - xx^T)u$ $\operatorname{grad} f(x) = \operatorname{Proj}_x \nabla f(x) = -2(I - xx^T)Ax$

Example: Generalized low-rank optimization

 Generalized low-rank optimization for topological interference alignment via Riemannian optimization

 $\underset{\boldsymbol{M} \in \mathbb{C}^{m \times n}}{\text{minimize}} \quad f(\boldsymbol{M}), \quad \text{ subject to } \ \operatorname{rank}(\boldsymbol{M}) = r$

Optimization-Related Ingredients for Problem \mathscr{P}_r

	\mathscr{P}_r : minimize $\mathbf{X} \in \mathcal{M}_r$ $f(\mathbf{X})$
Matrix representation of an element $\mathbf{X} \in \mathcal{M}_r$	$\mathbf{X} = (\mathbf{U}, \boldsymbol{\Sigma}, \mathbf{V})$
Computational space \mathcal{M}_r	$\operatorname{St}(r, M) \times \operatorname{GL}(r) \times \operatorname{St}(r, M)$
Quotient space	$\operatorname{St}(r, M) \times \operatorname{GL}(r) \times \operatorname{St}(r, M) / (\mathcal{O}(r) \times \mathcal{O}(r))$
Metric $g_{\mathbf{X}}(\boldsymbol{\xi}_{\mathbf{X}},\boldsymbol{\zeta}_{\mathbf{X}})$ for $\boldsymbol{\xi}_{\mathbf{X}},\boldsymbol{\zeta}_{\mathbf{X}} \in T_{\mathbf{X}}\mathcal{M}_{r}$	$g_{\mathbf{X}}(\boldsymbol{\xi}_{\mathbf{X}},\boldsymbol{\zeta}_{\mathbf{X}}) = \langle \boldsymbol{\xi}_{U}, \boldsymbol{\zeta}_{U} \boldsymbol{\Sigma} \boldsymbol{\Sigma}^{T} \rangle + \langle \boldsymbol{\xi}_{\boldsymbol{\Sigma}}, \boldsymbol{\zeta}_{\boldsymbol{\Sigma}} \rangle + \langle \boldsymbol{\xi}_{V}, \boldsymbol{\zeta}_{V} \boldsymbol{\Sigma}^{T} \boldsymbol{\Sigma} \rangle$
Riemannian gradient grad $_{\mathbf{X}}f$	$\operatorname{grad}_{\mathbf{X}} f = (\boldsymbol{\xi}_U, \boldsymbol{\xi}_\Sigma, \boldsymbol{\xi}_V) (30)$
Riemannian Hessian Hess _X $f[\boldsymbol{\xi}_{\mathbf{X}}]$	$\operatorname{Hess}_{\mathbf{X}} f[\boldsymbol{\xi}_{\mathbf{X}}] = \Pi_{\mathcal{H}_{\mathbf{X}}} \mathcal{M}_r(\nabla_{\boldsymbol{\xi}_{\mathbf{X}}} \operatorname{grad}_{\mathbf{X}} f) (40)$
Retraction $\mathcal{R}_{\mathbf{X}}(\boldsymbol{\xi}_{\mathbf{X}}) : \mathcal{H}_{\mathbf{X}}\mathcal{M}_r \to \mathcal{M}_r$	$(\mathrm{uf}(\mathbf{U}+\boldsymbol{\xi}_{\mathbf{X}}),\boldsymbol{\Sigma}+\boldsymbol{\xi}_{\Sigma},\mathrm{uf}(\mathbf{V}+\boldsymbol{\xi}_{V}))$

Convergence rates

Optimize over fixed-rank matrices (quotient matrix manifold)

- Exploit the rank structure in a principled way
- 2. Develop second-order
 - algorithms systematically
- 3. Scalable, SVD-free

[Ref] Y. Shi, J. Zhang, and K. B. Letaief, "Low-rank matrix completion for topological interference management by Riemannian pursuit," *IEEE Trans. Wireless Commun.,* vol. 15, no. 7, Jul. 2016.
Concluding remarks

Large-scale convex optimization

- Convex geometry and analysis provide optimality guarantees
- Matrix stuffing for fast HSD embedding transformation
- Operator splitting for solving large-scale HSD embedding

Future directions:

- Optimality guarantees for more complicated problems, e.g., group sparse beamforming
- Operator splitting for general large-scale SDP problems, e.g., using approximated cone projection
- > More applications: deep neural network compression via sparse optimization

Concluding remarks

Scalable nonconvex optimization algorithms

- Nonconvex statistical optimization may not be that scary: no spurious local optima
- Riemannian optimization is powerful: 1) Exploit the manifold geometry of fixed-rank matrices; 2) Escape saddle points

Future directions:

- Geometry of neural network loss surfaces: saddle points, local/global optima
- More applications: blind deconvolution for IoT, big data analytics (e.g., ranking)

To learn more...

- Web: http://shiyuanming.github.io/sparserank.html
- Papers:
- Y. Shi, J. Zhang, and K. B. Letaief, "Group sparse beamforming for green Cloud-RAN," IEEE Trans. Wireless Commun., vol. 13, no. 5, pp. 2809-2823, May 2014. (The 2016 Marconi Prize Paper Award)
- Y. Shi, J. Zhang, B. O'Donoghue, and K. B. Letaief, "Large-scale convex optimization for dense wireless cooperative networks," *IEEE Trans. Signal Process.*, vol. 63, no. 18, pp. 4729-4743, Sept. 2015. t. 2015. (The 2016 IEEE Signal Processing Society Young Author Best Paper Award)
- Y. Shi, J. Zhang, K. B. Letaief, B. Bai and W. Chen, "Large-scale convex optimization for ultra-dense Cloud-RAN," IEEE Wireless Commun. Mag., pp. 84-91, Jun. 2015.
- Y. Shi, J. Zhang, W. Chen, and K. B. Letaief, "Generalized sparse and low-rank optimization for ultra-dense networks," *IEEE Commun. Mag.*, to appear.

To learn more...

- Y. Shi, J. Zhang, and K. B. Letaief, "Optimal stochastic coordinated beamforming for wireless cooperative networks with CSI uncertainty," IEEE Trans. Signal Process., vol. 63,, no. 4, pp. 960-973, Feb. 2015.
- Y. Shi, J. Zhang, and K. B. Letaief, "Robust group sparse beamforming for multicast green Cloud- RAN with imperfect CSI," IEEE Trans. Signal Process., vol. 63, no. 17, pp. 4647-4659, Sept. 2015.
- Y. Shi, J. Cheng, J. Zhang, B. Bai, W. Chen and K. B. Letaief, "Smoothed L_p-minimization for green Cloud-RAN with user admission control," *IEEE J. Select. Areas Commun.*, vol. 34, no. 4, pp. 1022-1036, Apr. 2016.
- X. Yu, J.-C. Shen, J. Zhang, and K. B. Letaief, "Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems," *IEEE J. Sel. Topics Signal Process.*, vol. 10, no. 3, pp. 485-500, Apr. 2016.
- Y. Shi, J. Zhang, and K. B. Letaief, "Low-rank matrix completion for topological interference management by Riemannian pursuit," *IEEE Trans. Wireless Commun.*, vol. 15, no. 7, pp. 4703-4717, Jul. 2016.
- Y. Shi, B. Mishra, and W. Chen, "Topological interference management with user admission control via Riemannian optimization," *IEEE Trans. Wireless Commun.*, vol. 16, no. 11, pp. 7362-7375, Nov. 2017.
- X. Peng, Y. Shi, J. Zhang, and K. B. Letaief, "Layered group sparse beamforming for cache-enabled wireless networks," *IEEE Trans. Commun.*, to appear.