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Outline
¡ Motivations

Ø Issues on computation, storage, nonconvexity,…

¡ TwoVignettes:
Ø Large-scale convex optimization

v Motivation:Why convex optimization?

v Large-Scale Convex Optimization Algorithms

Ø Scalable nonconvex optimization on manifolds

v Motivation:Why Nonconvex Optimization?

v Riemannian Optimization Algorithms

¡ Future Directions
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Motivation: Optimization for Dense Wireless 
Networks
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Motivations

¡ The era of dense wireless networks
Ø Lead to new issues related to modeling and computing

¡ Part I: Modeling issue
Ø Sparse and low-rank modeling frameworks for dense wireless networks

¡ Part II: Computational issue
Ø Excessively large problem dimension, parameter size

Ø Real-time communication requirements: polynomial-time algorithms often
not fast enough

Ø Non-convexity in general formulations

4



GLOBECOM 2017 TUTORIAL

Issue A: Large-scale structured optimization

¡ Explosion in scale and complexity of the optimization problem in dense
wireless networks

¡ Questions:

Ø How to exploit the low-dimensional structures (e.g., sparsity and low-
rankness) to assist efficient algorithms design?
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Issue B: Real-time convex optimization

¡ Polynomial-time algorithms often not fast enough for real-time
communications: parallel computing and approximations are essential

¡ Questions:
Ø When is there a gap between polynomial-time and exponential-time algorithms?

Ø How to reduce computational complexity while retaining optimality and accuracy?

6
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Issue C: Scalable nonconvex optimization

¡ Nonconvex optimization may be super scary

¡ Question:
Ø How to exploit the geometry of nonconvex programs to guarantee

optimality and enable scalability in computation and storage?
7

Fig credit: Chen
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Vignettes A: Large-Scale Convex Optimization
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1. Motivation: Why Convex Optimization?
1) Theory I: Convexify sparse functions
2) Theory II: Geometry of convex relaxation

2. Large-Scale Convex Optimization Algorithms
1) Matrix stuffing for homogeneous self-dual embedding transforming
2) Operator splitting for homogeneous self-dual embedding solving
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Motivation: Why Convex Optimization?
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Convex optimization – classical form

¡ Convex optimization problem in classical form

Ø convex, concave, affine

¡ Convex functions: have nonnegative (upward) curvature

10
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Convex optimization – conic form

¡ Convex optimization in modern canonical form

Ø is a Cartesian product of closed convex cones

v Nonnegative reals: (LP)

v Second-order cone: (SOCP)

v Positive semidefinite cone: (SDP)

11
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Why?

¡ Theoretical foundations: Beautiful, nearly complete theory

Ø Duality, optimality conditions, convex geometry,…

¡ Effective algorithms: Convex optimization problems can be solved
effectively with global optimality
Ø Use generic methods for not huge problems: high level language support

(CVX/CVXPY/Convex.jl) makes prototyping easy

Ø Develop custom methods for huge problems (e.g., stochastic gradient
descent)

¡ Lots of applications: Machine learning, signal processing, statistics,
wireless communications, …

12
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Theory I: Convexify Sparse Functions
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Geometric view: sparsity

¡ Sparse approximation via convex hull

14

1-sparse vectors of 
Euclidean norm 1

convex hull:     -norm
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Geometric view: low-rank

¡ Low-rank approximation via convex hull

15

2x2 rank 1 symmetric 
matrices (normalized)

convex hull: nuclear norm
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Structured sparsity

¡ -regularized combinatorial penalties of the form

Ø and are positive scalar coefficients,

Ø Positive-valued set-function : control the structure of a model with non-
zero patterns

Ø -norm: control the magnitude of the coefficients

¡ Examples: 1) individual sparsity ; 2) group sparsity

16
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Structure preserved by convex relaxations

¡ The tightest positively homogeneous lower bound ( )

¡ The convex envelope of is given by the norm with dual norm as

¡ Examples:

Ø 1) -norm (Lasso): If , then , since

Ø 2) -norm: If , then , since

Ø 3) -norm (Group Lasso): If , then

17
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Enhance sparsity via sequential convex programming

¡ Goal: Provide tight approximation for sparsity function

18

Non-convex approximation:

At the origin, function is better 
approximated by the log-sum function 

(check the slop at the origin)
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Iterative reweighted- algorithm (I)

¡ Consider the following (non-convex) sparse optimization problem

¡ Approximate , where

¡ Using this approximation, we get (non-convex) problem

19
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Iterative reweighted- algorithm (II)

¡ Find a local solution by linearizing objective at current point

¡ Solve resulting convex problem

with , to get next iterate

¡ Repeat until convergence to get a local solution
20



GLOBECOM 2017 TUTORIAL

Iterative reweighted- algorithm
¡ Adopt to approximate :

¡ Solve the following (non-convex) smoothed -minimization problem

¡ Construct an upper bound for objective function

¡ Find the local solution via convex iterates
21

majorization-minimization algorithm
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Simulation results: enhanced sparsity

¡ Network power minimization via group sparse beamforming

22

Group sparse beamforming 
for network power 

minimization (IR2A: iterative 
reweighted    -algorithm)
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Theory II: Geometry of Convex Relaxation
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Linear inverse problems

¡ Let be a structured, unknown vector

Ø Group sparsity for user activity detection

¡ Let be a convex function that reflects structure, e.g., -norm

¡ Let be a measurement operator

¡ Observe

¡ Find estimate by solving convex program

¡ Hope:
24
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Geometry of linear inverse problems

¡ Descent cone of a function at a point is

25References: Rockafellar 1970
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Geometry of linear inverse problems

26

References: Candes–Romberg–Tao 2005, Rudelson–Vershynin 2006, Chandrasekaran et al. 2010, Amelunxen et al. 2013
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Linear inverse problems with random data

¡ Assume

Ø The vector is unknown

Ø The observation where is standard normal

Ø The vector solves

¡ Then

27statistical dimension [Amelunxen-McCoy-Tropp’13]
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Examples for statistical dimension

¡ Example 1: -minimization for compressed sensing

Ø with non-zero entries

¡ Example 2: -minimization for massive device connectivity

Ø with non-zero rows

28
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Numerical phase transition

¡ Compressed sensing with -minimization

29

Figure credit: Amelunxen-
McCoy-Tropp’13
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Numerical phase transition

¡ User activity detection via -minimization

30

group-structured 
sparsity estimation
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Summary of convex optimization

¡ Theoretical foundations for sparse optimization

Ø Convex relaxation: convex hull, convex analysis

Ø Fundamental bounds for convex methods: convex geometry, high-dimensional
statistics

¡ Computational limits for (convexified) sparse optimization

Ø Custom methods (e.g., stochastic gradient descent): not generalizable for
complicated problems

Ø Generic methods (e.g., CVX): not scalable to large problem sizes

31

Can we design a unified framework for general large-scale convex programs?
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Large-Scale Convex Optimization Algorithms

32
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Modeling languages

¡ High level language support for convex optimization

Ø Stage one: problem description automatically transformed to standard form

Ø Stage two: solved by standard solver, transformed back to original form

¡ Implementation: YALMIP, CVX (Matlab), CVXPY (Python), Convex.jl
(Julia)

33
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Modeling languages

¡ Disciplined convex programming framework [Grant & Boyd ’08]

Ø enable rapid prototyping (for small and medium problems)

Ø widely used for applications with medium scale problems

Ø shifts focus from how to solve to what to solve

Ø Large-scale problems: time consuming in modeling phase & solving phase

¡ Goal: Scale to large problem sizes in modeling phase and solving phase

34
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Large-scale convex optimization

¡ Proposal: Two-stage approach for large-scale convex optimization

Ø Matrix stuffing: Fast homogeneous self-dual embedding (HSD) transformation

Ø Operator splitting (ADMM): Large-scale homogeneous self-dual embedding

35

fast homogeneous self-dual 
embedding (HSD) transformation

large-scale homogeneous self-
dual embedding solving
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Stage I: Matrix Stuffing

36
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Smith form reformulation

¡ Goal: transform the classical form to conic form

¡ Key idea: Introduce a new variable for each subexpression in classical
form [Smith ’96]

Ø The Smith form is ready for standard cone programming transformation

37
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Example

¡ Coordinated beamforming problem family

¡ Smith form reformulation

38

Reference: Grant-Boyd’08

Smith form for (1) Smith form for (2)

QoS constraints

Per-BS power constraint

The Smith form is readily to be reformulated as the standard cone program
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Optimality condition

¡ KKT conditions (necessary and sufficient, assuming strong duality)

Ø Primal feasibility:

Ø Dual feasibility:

Ø Complementary slackness:

Ø Feasibility:

39

zero duality gap

no solution if primal or dual problem infeasible/unbounded
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Homogeneous self-dual (HSD) embedding

¡ HSD embedding of the primal-dual pair of transformed standard cone
program (based on KKT conditions) [Ye et al. 94]

¡ This feasibility problem is homogeneous and self-dual

40

+ ⟹

finding a nonzero solution
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Recovering solution or certificates

¡ Any HSD solution falls into one of three cases:

Ø Case 1: , then is a solution

Ø Case 2: , implies

v If , then certifies primal infeasibility

v If , then certifies dual infeasibility

Ø Case 3: , nothing can be said about original problem

¡ HSD embedding: 1) obviates need for phase I / phase II solves to
handle infeasibility/unboundedness; 2) used in all interior-point cone
solvers

41
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Matrix stuffing for fast transformation

¡ HSD embedding of the primal-dual pair of standard cone program

¡ Matrix stuffing: fast HSD embedding transformation

Ø Generate and keep the structure

Ø Copy problem instance parameters to update the entries in
42
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Stage II: Operator Splitting

43
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Alternating direction method of multipliers

¡ ADMM: an operator splitting method solving convex problems in form

Ø , convex, not necessarily smooth, can take infinite values

¡ The basic ADMM algorithm [Boyd et al., FTML 11]

Ø is a step size; is the dual variable associated the constraint
44
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Alternating direction method of multipliers

¡ Convergence of ADMM: Under benign conditions ADMM guarantees

Ø

Ø , an optimal dual variable

Ø

¡ Same as many other operator splitting methods for consensus problem,
e.g., Douglas-Rachford method

¡ Pros: 1) with good robustness of method of multipliers; 2) can support
decomposition

45
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Operator splitting

¡ Transform HSD embedding in ADMM form: Apply the operating
splitting method (ADMM)

¡ Final algorithm

46

subspace projection
parallel cone projection 

computationally trivial
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Parallel cone projection

¡ Proximal algorithms for parallel cone projection [Parikn & Boyd, FTO 14]

Ø Projection onto the second-order cone:

v Closed-form, computationally scalable (we mainly focus on SOCP)

Ø Projection onto positive semidefinite cone:

v SVD is computationally expensive

47
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Numerical results

¡ Power minimization coordinated beamforming problem

48

[Ref] Y. Shi, J. Zhang, B. O’Donoghue, and K. B. Letaief, “Large-scale convex optimization for dense wireless cooperative 
networks,” IEEE Trans. Signal Process., vol. 63, no. 18, pp. 4729-4743, Sept. 2015. (The 2016 IEEE Signal Processing 
Society Young Author Best Paper Award)
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Vignette B: Scalable Optimization on Manifolds

49

Optimization over Riemannian Manifolds (non-Euclidean geometry)

1. Motivation: Why Nonconvex Optimization?
1) Geometry of Nonconvex Optimization

2. Riemannian Optimization Algorithms
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Motivation: Why Nonconvex Optimization?

50
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Low-rank matrix optimization

¡ Rank-constrained matrix optimization problem

Ø is a real linear map on matrices

Ø is convex and differentiable

Ø A prevalent model in signal processing, statistics, and machine learning

¡ Challenge 1: Reliably solve the low-rank matrix problem at scale

¡ Challenge II: Develop optimization algorithms with optimal storage
51
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A brief biased history of convex methods

¡ 1990s: Interior-point methods (computationally expensive)

Ø Storage cost for Hessian

¡ 2000s: Convex first-order methods

Ø (Accelerated) proximal gradient, spectral bundle methods, and others

Ø Store matrix variable

¡ 2008-Present: Storage-efficient convex first-order methods

Ø Conditional gradient method (CGM) and extensions

Ø Store matrix in low-rank form after iterations: no storage guarantees

52Interior-point: Nemirovski & Nesterov 1994; ... First-order: Rockafellar 1976; Helmberg & Rendl
1997; Auslender & Teboulle 2006; ... CGM: Frank & Wolfe 1956; Levitin & Poljak 1967; Jaggi 2013; ... 
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Convexity: Why bother?

¡ Convex relaxation fails: always return the identity matrix!

Ø Fact:

¡ The dilemma: Convex methods have slow memory hogs, high
computational complexity, sometimes fail

53

Can we solve the nonconvex matrix optimization problem directly?
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Recent advances in nonconvex optimization

¡ 2009–Present: Nonconvex heuristics

Ø Burer–Monteiro factorization idea + various nonlinear programming methods

Ø Store low-rank matrix factors

¡ Guaranteed solutions: Global optimality with statistical assumptions

Ø Matrix completion/recovery: [Sun-Luo’14], [Chen-Wainwright’15], [Ge-Lee-
Ma’16],…

Ø Phase retrieval: [Candes et al., 15], [Chen-Candes’ 15], [Sun-Qu-Wright’16]

Ø Community detection/phase synchronization [Bandeira-Boumal-
Voroninski’16], [Montanari et al., 17],…

54When are nonconvex optimization problems not scary?
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Geometry of Nonconvex Optimization

55
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First-order stationary points

¡ Saddle points and local minima:

56Local minima Saddle points/local maxima
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First-order stationary points

¡ Applications: PCA, matrix completion, dictionary learning etc.

Ø Local minima: Either all local minima are global minima or all local minima
as good as global minima

Ø Saddle points:Very poor compared to global minima; Several such points

¡ Bottomline: Local minima much more desirable than saddle points

57
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Summary of motivations

¡ Convex methods:

Ø Slow memory hogs

Ø Convex relaxation fails sometimes, e.g., topological interference alignment

Ø High computational complexity, e.g., eigenvalue decomposition

¡ Nonconvex methods: fast, lightweight

Ø Under certain statistical models with benign global geometry: no spurious
local optima

58

How to escape saddle points efficiently? Fig credit: Sun, Qu & Wright
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Riemannian Optimization Algorithms

59

Escape saddle points via manifold optimization 
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What is manifold optimization?

¡ Manifold (or manifold-constrained) optimization problem

Ø is a smooth function

Ø is a Riemannian manifold: spheres, orthonormal bases (Stiefel), rotations,
positive definite matrices, fixed-rank matrices, Euclidean distance matrices,
semidefinite fixed-rank matrices, linear subspaces (Grassmann), phases,
essential matrices, fixed-rank tensors, Euclidean spaces...

60
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Escape saddle points via manifold optimization 

¡ Convergence guarantees for Riemannian trust regions

Ø Global convergence to second-order critical points

Ø Quadratic convergence rate locally

Ø Reach -second order stationary point and

in iterations under Lipschitz assumptions [Cartis & Absil’16]

¡ Other approaches: Gradient descent by adding noise [Ge et al., 2015],
[Jordan et al., 17] (slow convergence rate in general)

61

Escape strict saddle points via finding second-order stationary point
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Recent applications of manifold optimization

¡ Matrix/tensor completion/recovery: [Vandereycken’13], [Boumal-
Absil’15], [Kasai-Mishra’16],…

¡ Gaussian mixture models: [Hosseini-Sra’15], Dictionary learning: [Sun-
Qu-Wright’17], Phase retrieval: [Sun-Qu-Wright’17],…

¡ Phase synchronization/community detection: [Boumal’16], [Bandeira-
Boumal-Voroninski’16],…

¡ Wireless transceivers design: [Shi-Zhang-Letaief’16], [Yu-Shen-
Zhang-K. B. Letaief’16], [Shi-Mishra-Chen’16],…

62
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The power of manifold optimization paradigms

¡ Generalize Euclidean gradient (Hessian) to Riemannian gradient (Hessian)

¡ We need Riemannian geometry: 1) linearize search space into a
tangent space ; 2) pick a metric on to give intrinsic notions of
gradient and Hessian

63

Riemannian Gradient Euclidean Gradient

Retraction Operator
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64

An excellent book
Optimization algorithms on matrix manifolds

A Matlab toolbox
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Taking A Close Look at Gradient Descent

65
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Optimization on the manifold: main idea

66
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Optimization on the manifold: main idea

67
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Optimization on the manifold: main idea

68
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Optimization on the manifold: main idea

69
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Example: Rayleigh quotient

¡ Optimization over (sphere) manifold

Ø The cost function is smooth on , symmetric matrix

¡ Step 1: Compute the Euclidean gradient in

¡ Step 2: Compute the Riemannian gradient on via projecting to

the tangent space using the orthogonal projector

70
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Example: Generalized low-rank optimization

¡ Generalized low-rank optimization for topological interference
alignment via Riemannian optimization

71
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Convergence rates

¡ Optimize over fixed-rank matrices (quotient matrix manifold)

72
[Ref] Y. Shi, J. Zhang, and K. B. Letaief, “Low-rank matrix completion for topological interference management by

Riemannian pursuit,” IEEETrans.Wireless Commun., vol. 15, no. 7, Jul. 2016.

Riemannian algorithms:
1. Exploit the rank structure 

in a principled way
2. Develop second-order 

algorithms systematically
3. Scalable, SVD-free
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Concluding remarks

¡ Large-scale convex optimization
Ø Convex geometry and analysis provide optimality guarantees

Ø Matrix stuffing for fast HSD embedding transformation

Ø Operator splitting for solving large-scale HSD embedding

¡ Future directions:
Ø Optimality guarantees for more complicated problems, e.g., group sparse

beamforming

Ø Operator splitting for general large-scale SDP problems, e.g., using
approximated cone projection

Ø More applications: deep neural network compression via sparse optimization
73
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Concluding remarks

¡ Scalable nonconvex optimization algorithms

Ø Nonconvex statistical optimization may not be that scary: no spurious local
optima

Ø Riemannian optimization is powerful: 1) Exploit the manifold geometry of
fixed-rank matrices; 2) Escape saddle points

¡ Future directions:

Ø Geometry of neural network loss surfaces: saddle points, local/global optima

Ø More applications: blind deconvolution for IoT, big data analytics (e.g., ranking)
74



GLOBECOM 2017 TUTORIAL

To learn more...
¡ Web: http://shiyuanming.github.io/sparserank.html

¡ Papers:
¡ Y. Shi, J. Zhang, and K. B. Letaief, “Group sparse beamforming for green Cloud-RAN,”

IEEE Trans. Wireless Commun., vol. 13, no. 5, pp. 2809-2823, May 2014. (The 2016
Marconi Prize Paper Award)

¡ Y. Shi, J. Zhang, B. O’Donoghue, and K. B. Letaief, “Large-scale convex optimization for
dense wireless cooperative networks,” IEEE Trans. Signal Process., vol. 63, no. 18, pp.
4729-4743, Sept. 2015. t. 2015. (The 2016 IEEE Signal Processing Society Young Author
Best Paper Award)

¡ Y. Shi, J. Zhang, K. B. Letaief, B. Bai and W. Chen,“Large-scale convex optimization for
ultra-dense Cloud-RAN,” IEEEWireless Commun. Mag., pp. 84-91, Jun. 2015.

¡ Y. Shi, J. Zhang, W. Chen, and K. B. Letaief, “Generalized sparse and low-rank optimization
for ultra-dense networks,” IEEE Commun. Mag., to appear.
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To learn more...
¡ Y. Shi, J. Zhang, and K. B. Letaief, “Optimal stochastic coordinated beamforming for wireless cooperative

networks with CSI uncertainty,” IEEETrans. Signal Process., vol. 63,, no. 4, pp. 960-973, Feb. 2015.

¡ Y. Shi, J. Zhang, and K. B. Letaief, “Robust group sparse beamforming for multicast green Cloud- RAN
with imperfect CSI,” IEEETrans. Signal Process., vol. 63, no. 17, pp. 4647-4659, Sept. 2015.

¡ Y. Shi, J. Cheng, J. Zhang, B. Bai, W. Chen and K. B. Letaief, “Smoothed 𝐿$-minimization for green Cloud-
RAN with user admission control,” IEEE J. Select.Areas Commun., vol. 34, no. 4, pp. 1022-1036,Apr. 2016.

¡ X. Yu, J.-C. Shen, J. Zhang, and K. B. Letaief, "Alternating minimization algorithms for hybrid precoding in
millimeter wave MIMO systems," IEEE J. Sel.Topics Signal Process., vol. 10, no. 3, pp. 485-500,Apr. 2016.

¡ Y. Shi, J. Zhang, and K. B. Letaief, “Low-rank matrix completion for topological interference management
by Riemannian pursuit,” IEEETrans.Wireless Commun., vol. 15, no. 7, pp. 4703-4717, Jul. 2016.

¡ Y. Shi, B. Mishra, and W. Chen, “Topological interference management with user admission control via
Riemannian optimization,” IEEETrans.Wireless Commun., vol. 16, no. 11, pp. 7362-7375, Nov. 2017.

¡ X. Peng, Y. Shi, J. Zhang, and K. B. Letaief, “Layered group sparse beamforming for cache-enabled wireless
networks,” IEEETrans. Commun., to appear. 76


