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Outline

= Motivations

>

Issues on computation, storage, nonconvexity,. ..

= Two Vignettes:

>

Large-scale convex optimization

X/

% Motivation:Why convex optimization?
% Large-Scale Convex Optimization Algorithms

Scalable nonconvex optimization on manifolds

X/

< Motivation:Why Nonconvex Optimization?

X/

< Riemannian Optimization Algorithms

= Future Directions
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Motivation: Optimization for Dense Wireless
Networks
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Motivations

m The era of dense wireless networks

> Lead to new issues related to modeling and computing

> Sparse and low-rank modeling frameworks for dense wireless networks
= Part Il: Computational issue
> Excessively large problem dimension, parameter size

> Real-time communication requirements: polynomial-time algorithms often
not fast enough

» Non-convexity in general formulations
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Issue A: Large-scale structured optimization

= Explosion in scale and complexity of the optimization problem in dense
wireless networks

= Questions:

» How to exploit the low-dimensional structures (e.g., sparsity and low-

rankness) to assist efficient algorithms design?
5
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Issue B: Real-time convex optimization

= Polynomial-time algorithms often not fast enough for real-time
communications: parallel computing and approximations are essential

= Questions:

> When is there a gap between polynomial-time and exponential-time algorithms?

» How to reduce computational complexity while retaining optimality and accuracy?
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Issue C: Scalable nonconvex optimization

= Nonconvex optimization may be super scary

Q

- Question: Fig credit: Chen

> How to exploit the geometry of nonconvex programs to guarantee
optimality and enable scalability in computation and storage!?
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Vignettes A: Large-Scale Convex Optimization

|. Motivation:Why Convex Optimization!?
|) Theory |: Convexify sparse functions
2) Theory ll: Geometry of convex relaxation
2. Large-Scale Convex Optimization Algorithms
|) Matrix stuffing for homogeneous self-dual embedding transforming
2) Operator splitting for homogeneous self-dual embedding solving
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Motivation: Why Convex Optimization?
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Convex optimization - classical form

= Convex optimization problem in classical form
minimize fo(z; )
z

subject to fi(z;a) < gi(z;a¢),i=1,...,m

> fi convex, gi; concave, u;,v; affine

= Convex functions: have nonnegative (upward) curvature

fi(0x+ (1= 0)y) < 0f;(x) + (1 —0)fi(y)

@@
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Convex optimization - conic form

= Convex optimization in modern canonical form

minimize c’v
V.1
subject to Av+u=D>b
(v,p) € R" x K.

> K=K; x---xK4s € R™ is a Cartesian product of closed convex cones
< Nonnegative reals: R, = {z € R|z > 0} (LP)
% Second-order cone: Q¢ = {(2,x) € R x R¥1|||x|| < z} (SOCP)
% Positive semidefinite cone: S = {M € R™*"|M = M™*, M ~ 0} (SDP)
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Why?

= Theoretical foundations: Beautiful, nearly complete theory
» Duality, optimality conditions, convex geometry,...

= Effective algorithms: Convex optimization problems can be solved
effectively with global optimality

» Use generic methods for not huge problems: high level language support
(CVX/CVXPY/Convex.jl) makes prototyping easy

> Develop custom methods for huge problems (e.g., stochastic gradient
descent)

= Lots of applications: Machine learning, signal processing, statistics,
wireless communications, ...
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Theory I: Convexify Sparse Functions
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Geometric view: sparsity

= Sparse approximation via convex hull D := conv ({%e;|i € [n]})

|

convex hull: £1-norm
| -sparse vectors of 1

Euclidean norm | ||Z||1 = Z?:l ‘Zz|
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Geometric view: low-rank

" Low-rank approximation via convex hull

PR 4

matrices (normalized) | M| =D, 0i(M)
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Structured sparsity

= {,-regularized combinatorial penalties of the form
Fp(2z) = pF (Supp(2)) + v =}
> Mand v are positive scalar coefficients, p € (1, o]

> Positive-valued set-function F': control the structure of a model with non-
zero patterns

» {,-norm: control the magnitude of the coefficients

= Examples: |) individual sparsity F'(A) = |A|; 2) group sparsity
[C D ( D.j F(A) = 3,21 Liana, 20)
G, G3
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Structure preserved by convex relaxations

= The tightest positively homogeneous lower bound (1/p+1/q = 1)
Fi(2) = (qu)"9(pr)"/*Q(z)
= The convex envelope of Q is given by the norm ), with dual norm as
Q;(S) ‘= MaXACV,A#A)D %

= Examples:

» 1) £1-norm (Lasso): If F(A) = [A|, then Q,(2) = [|z]|1, since 2 (s) = [|s]|c

> 2) £y,-norm: If F'(A) = 1axp}, then Q,(2) = ||2]lp, since Q2 (s) = ||s]|q

» 3) 41 /¢,-norm (Group Lasso): If F(A) = 3";_, 1{ang,+0), then 0 (z) =30 llzes

17
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Enhance sparsity via sequential convex programming

= Goal: Provide tight approximation for sparsity function u(x) = 17,0y
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Non-convex approximation:

— P — i |P
Ixllo = lim x]}7 = Lim 3" Jo

At the origin, /¢, function is better
approximated by the log-sum function

(check the slop at the origin)



Iterative reweighted-/; algorithm (I)

= Consider the following (non-convex) sparse optimization problem

minimize |z|lg subjectto z€C,z>=0
zeCn

= Approximate card(z) ~ log(1l + z/¢),where ¢ >0,z € R}

A

Il x|,
lo 1+£
ﬁ I k”x“o g( Sj

= Using this approximation, we get (non-convex) problem

inimi log(1 + z; bject t C,z>=0
minitnize ;Og( + z;/€) subject to z€C,z =
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Iterative reweighted-/; algorithm (lI)

® Find a local solution by linearizing objective at current point
- o\ k) NS E A
; log(1 + 2;/€) ~ ; log(1+ 2" Je) + ; PGl

= Solve resulting convex problem

mn

.. k] :

minimize E 1 w, 'z; subjectto z€C,z>=0
1=

with wz[k] =1/(e+ argk] ), to get next iterate

m Repeat until convergence to get a local solution
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Iterative reweighted-/, algorithm

Adopt || z]|,(0 < p < 1) to approximate||z||o: ||z||o = lim,_¢ || 2|/

Solve the following (non-convex) smoothed £,-minimization problem

n
c e 2 2\p/2 .
minimize 27 + € subject to z €C
nim: Z;( i +e€) ]
1=
= Construct an upper bound for objective function Q(z; w!®) := Zé_l wl[k]ziz
p_1

f(0) 2
k] _ P [k] 2
Wil = [(zz ) +€ ]

bnt £(0,) < F(0n)

majorization-minimization algorithm

Find the local solution via convex iterates z 11l .= arg mingcc Q(z; w[k])
21
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Simulation results: enhanced sparsity

= Network power minimization via group sparse beamforming

Average Network Power Consumption [W]
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——6— Coordinated Beamforming
—8— (1 /£~o-Norm Algorithm
—6— IR2A with p = 1

—a&— IR2A with p = 0.5

—— Exhaustive Search

4 6
Target SINR [dB]
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Group sparse beamforming
for network power
minimization (IR2A: iterative
reweighted /5 -algorithm)
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Geometry of Convex Relaxation
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Linear inverse problems

= Let 7 € RY be a structured, unknown vector

> Group sparsity for user activity detection
= Let f: R? — R be a convex function that reflects structure, e.g., ¢;-norm
= Let A € R™*? be a measurement operator
= Observe z = Az’
= Find estimate & by solving convex program
minimize f(x) subject to Ax =z

= Hope: & = °
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Geometry of linear inverse problems

= Descent cone of a function f at a point @ is

P(f,x):={d: f(x +ed) < f(x), for some e > 0}

Y
~ =+ Dl I2), -

~
~——-

References: Rockafellar 1970 25
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Geometry of linear inverse problems

2t + 9(f,2%) 2t + 9(f, o)

Success! Failure!

References: Candes—Romberg—Tao 2005, Rudelson—Vershynin 2006, Chandrasekaran et al. 2010, Amelunxen et al. 2013
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Linear inverse problems with random data

= Assume
> The vector % € R?is unknown

> The observation z = Az where A ¢ R™*4 is standard normal

» The vector g solves

minimize f(x) subject to Ax ==z
= Then

m = 6(2(f,x%)) = &=z whp.
x

m = 6(2(f,x%)) = &+, whp.

statistical dimension [Amelunxen-McCoy-Tropp’|3]
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Examples for statistical dimension

= Example |: {1-minimization for compressed sensing

> a8 € R? with s non-zero entries

5(2(] - I, =) = irzl% {3(1 +73) + (d — s)\/g/w(z — T)Qezzdz}

= Example 2: ¢, /¢, -minimization for massive device connectivity

> X1 e RVXM \ith s non-zero rows

1-M/2 00 2
5 (2(] - \|2,1,Xh)) = irzlf(; {3(M—|—7‘2) + (N — S)IQ‘(M/Z) / (u — T)QuMleru}
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Numerical phase transition

= Compressed sensing with /;-minimization

Number of random measurements

100

~
9]

&)
(e}

N
&)}

95% success
50% success
5% success
Theory

25 50 75
Number of nonzeros in x
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100

Figure credit: Amelunxen-
McCoy-Tropp’ 13
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Numerical phase transition

= User activity detection via ¢ /{5 -minimization

100
75
<
=
=
=
ER
]
=
B
25
—95% success
—50% success
5% success
Theory
O L
(0] 25 50 75 100

Active devices
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group-structured
sparsity estimation
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Summary of convex optimization

= Theoretical foundations for sparse optimization
» Convex relaxation: convex hull, convex analysis

» Fundamental bounds for convex methods: convex geometry, high-dimensional
statistics

= Computational limits for (convexified) sparse optimization

» Custom methods (e.g., stochastic gradient descent): not generalizable for
complicated problems

> Generic methods (e.g., CVX): not scalable to large problem sizes

Can we design a unified framework for general large-scale convex programs?

31
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Large-Scale Convex Optimization Algorithms

P oricinal P *
7 Matrix Stuffing 0 ADMM Solver ——

f S

w
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Modeling languages

= High level language support for convex optimization
> Stage one: problem description automatically transformed to standard form

> Stage two: solved by standard solver, transformed back to original form

u = ... - - min. c’ x
canonicalize

v o= ... s.t. x e K
problem — ... Ax = b
lsolve
u = (0.59, ... x = (1.58, ...
v=(1.9,... unpack :

= |Implementation: YALMIP CVX (Matlab), CVXPY (Python), Convex.jl
(Julia)
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Modeling languages

= Disciplined convex programming framework [Grant & Boyd ’08]

@Orlgmal 9 cone . . x*
- CVX Interior-Point Solver ——

Y

enable rapid prototyping (for small and medium problems)
widely used for applications with medium scale problems

shifts focus from how to solve to what to solve

YV VWV Y V

Large-scale problems: time consuming in modeling phase & solving phase

®  Goal: Scale to large problem sizes in modeling phase and solving phase

34
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Large-scale convex optimization

= Proposal: Two-stage approach for large-scale convex optimization

P 0riginal

Y

fast homogeneous self-dual

Matrix Stuffing

PusDp

b

large-scale homogeneous self-

embedding (HSD) transformation

> Matrix stuffing: Fast homogeneous self-dual embedding (HSD) transformation

» Operator splitting (ADMM): Large-scale homogeneous self-dual embedding

GLOBECOM 2017 TUTORIAL

ADMM Solver

dual embedding solving




Stage I: Matrix Stuffing
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Smith form reformulation

m Goal: transform the classical form to conic form

minimize fo(z; ) T
z

minimize c¢ v
. v,
subject to  fi(z;a) < gi(2; o), =) subjectto Av -+ u=Db,
ui(z; o) = vi(z; ). (v,pu) € R" x K.

= Key idea: Introduce a new variable for each subexpression in classical
form [Smith "96]

» The Smith form is ready for standard cone programming transformation

37
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Example

=  Coordinated beamforming problem family
POriginal : Minimize ||v||3
subject to || Dyv|l2 < \/Fl , V[, Per-BS power constraint
ICkv + grllz < Brri v, Vk. Qosconstrans (2)
= Smith form reformulation

~—~
—
~—

Lol KN;+1 [ (t6:45) € Q5!
(Y0, y71) € Q™M to—ﬂkrkVER
Gi(): < g =+vVP €R Ga(k) [ th =tk 4+ th € REH
W~ Dy ¢ REN th ~ Gy CRF

L tg =g, € REF!

Smith form for (1) Smith form for (2)

The Smith form is readily to be reformulated as the standard cone program

Reference: Grant-Boyd’08
GLOBECOM 2017 TUTORIAL



Optimality condition

= KKT conditions (necessary and sufficient, assuming strong duality)
» Primal feasibility: Av* + pu*—b =0
» Dual feasibility: ATn* —A* +c=0
» Complementary slackness: c’v* +bTnp* =0  zero duality gap

> Feasibility: (v*, p*, A*,;n*) € R™ x K x {0}" x I*

no solution if primal or dual problem infeasible/unbounded

GLOBECOM 2017 TUTORIAL
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Homogeneous self-dual (HSD) embedding

= HSD embedding of the primal-dual pair of transformed standard cone
program (based on KKT conditions) [Ye et al. 94]

mir;i,IBize clv maﬁi’r){lize —b'n [Z1sp : find (x,y)
subject to Av+pu=D>b + subject to —ATn+ A =c¢ —| subject to y = Qx
(v,p) € R" x K| (A,m) € {0}" x K7 x€C,y €C’
[)\] [ 0 AT ¢ [u]
pl=|—-A 0 b| |[n| findinga nonzero solution
K —cl'-bTo| |7
—— ~ -

y Q X
= This feasibility problem is homogeneous and self-dual

40
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Recovering solution or certificates

= Any HSD solution (v, u, A\, n, 7, k) falls into one of three cases:
» Case I: 7>0,Kk=0,then v =v/7,m =n/7, 1 = p/7 is a solution
> Case2: 7T=0,K>0,implies cTv+bTn <0
< If by < 0,thenn = n/(—b’n) certifies primal infeasibility
@ If f'v <0, thenp = v/(—cT'D) certifies dual infeasibility

» Case 3: 7 = k = 0, nothing can be said about original problem

= HSD embedding: |) obviates need for phase | / phase Il solves to
handle infeasibility/unboundedness; 2) used in all interior-point cone
solvers

41
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Matrix stuffing for fast transformation

= HSD embedding of the primal-dual pair of standard cone program

A 0 AT ¢ v
wl=1—-A 0 b| |n
K —cT' —bT o T

~—— N ~ S~
y Q X

= Matrix stuffing: fast HSD embedding transformation
> Generate and keep the structure Q

» Copy problem instance parameters to update the entries in QQ

GLOBECOM 2017 TUTORIAL
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Operator Splitting
Fusp - find  (x,y)

subject to y = Qx
xelC,yeC”

GLOBECOM 2017 TUTORIAL
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Alternating direction method of multipliers

= ADMM: an operator splitting method solving convex problems in form

PapMM : minimize f(x) 4+ g(z) subject to x =z

> f, g convex, not necessarily smooth, can take infinite values

" The basic ADMM algorithm [Boyd et al,, FTML | 1]
<1 = argmin (f(x) + (p/2)l[x — 21" — Al|3)

21 = argmin (g(2) + (p/2)||x/1 = 2 = AH|3)

AR 3K et 1] e ]

» p > 0is a step size; A is the dual variable associated the constraint

GLOBECOM 2017 TUTORIAL
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Alternating direction method of multipliers

= Convergence of ADMM: Under benign conditions ADMM guarantees
> f(xF) +g(zF) = p*
» Ak — )\*,an optimal dual variable
> xF—2F =0

= Same as many other operator splitting methods for consensus problem,
e.g., Douglas-Rachford method

= Pros: |) with good robustness of method of multipliers; 2) can support
decomposition

45
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Operator splitting

" Transform HSD embedding .%1;9p in ADMM form: Apply the operating

splitting method (ADMM)
QZADMM : minjmize ICXC* (X, y) + IQ (5( S’)
X7X7y’y
subject to (x,y) = (X,y)

= Final algorithm

i = 1+ Q) M(x!! + yll) subspace projection
xH = el — gl parallel cone projection
ylit] ylil — gl+1] 4 [+l computationally trivial

GLOBECOM 2017 TUTORIAL
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Parallel cone projection

= Proximal algorithms for parallel cone projection [Parikn & Boyd, FTO 14]
> Projection onto the second-order cone: Q¢ = {(z,x) € R x R4 !|||x|| < 2}
0, lwllz < =7
HC(""?T) — (w77)7”wH2 <7
(1/2)(A + 7/[|wll2)(w, [|w][2), [lw]]2 = [7]-
% Closed-form, computationally scalable (we mainly focus on SOCP)
> Projection onto positive semidefinite cone: S7 = {M € R"*"|M = M, M - 0}
e (V) = 32im (M) pwiw
% SVD is computationally expensive

47
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Numerical results

= Power minimization coordinated beamforming problem

311296

Network Size (L=K) 20 50 100 |50
Modeling Time [sec] 0.7563 44301 AIA N7A_
CVX+SDPT3 Solving Time [sec] 42835 326.2513 (\ N/A N/A
Objective [W] 12.2488 6.5216 “N/A N/A-
Modeling Time [sec] 0.0128 0.2401 24154 94167
Matrix —
Sol T 2
StuffingADMM olving Time [sec] /| ol009 2.4821 23.8088 81.0023
Objective [W] 12.2523 6.5193 2.0689

[Ref] Y. Shi, J. Zhang, B. O’'Donoghue, and K. B. Letaief, “Large-scale convex optimization for dense wireless cooperative
networks,” IEEE Trans. Signal Process., vol. 63, no. |8, pp. 4729-4743, Sept. 2015. (The 2016 IEEE Signal Processing

Matrix stuffing can

speedup 60x over CVX

Society Young Author Best Paper Award)
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ADMM can speedup 130x over
the interior-point method
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Vignette B: Scalable Optimization on Manifolds

|. Motivation:Why Nonconvex Optimization!?
|) Geometry of Nonconvex Optimization
2. Riemannian Optimization Algorithms

Optimization over Riemannian Manifolds (non-Euclidean geometry)

GLOBECOM 2017 TUTORIAL
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Motivation: Why Nonconvex Optimization?
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Low-rank matrix optimization

= Rank-constrained matrix optimization problem

minimize f(A(M)) subject to rank(M)=r
MeRan

> A :R"*" 5 Reis a real linear map on n X n matrices
> f:R? = Ris convex and differentiable
> A prevalent model in signal processing, statistics, and machine learning

= Challenge |:Reliably solve the low-rank matrix problem at scale

= Challenge Il: Develop optimization algorithms with optimal storage ®(rn)

51
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A brief biased history of convex methods

= |990s: Interior-point methods (computationally expensive)

» Storage cost ©(n*) for Hessian

= 2000s: Convex first-order methods
> (Accelerated) proximal gradient, spectral bundle methods, and others

> Store matrix variable ©(n?)

m 2008-Present: Storage-efficient convex first-order methods
» Conditional gradient method (CGM) and extensions

» Store matrix in low-rank form O(tn) after t iterations: no storage guarantees

Interior-point: First-order:
CGM:

GLOBECOM 2017 TUTORIAL
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Convexity: Why bother?

= Convex relaxation fails: always return the identity matrix!

minimize || M ||.

MGCKXK
subject to M;; =1,:=1,..., K : Q (ch y)

M,LJZO,V(Z,])ES Q =

> Fact: Trace(M) < |M||.

" The dilemma: Convex methods have slow memory hogs, high
computational complexity, sometimes fail

Can we solve the nonconvex matrix optimization problem directly?

53
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Recent advances in nonconvex optimization

= 2009-Present: Nonconvex heuristics
» Burer—Monteiro factorization idea + various nonlinear programming methods

> Store low-rank matrix factors @(rn)

= Guaranteed solutions: Global optimality with statistical assumptions

» Matrix completion/recovery: [Sun-Luo’l4], [Chen-Wainwright’|5], [Ge-Lee-
Ma’l6],...

» Phase retrieval: [Candes et al., 5], [Chen-Candes’ |5], [Sun-Qu-Wright’| 6]

» Community detection/phase synchronization [Bandeira-Boumal-
Voroninski’ | 6], [Montanari et al., 17],...

When are nonconvex optimization problems not scary? >
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Geometry

Nonconvex Optimization

GLOBECOM 2017 TUTORIAL
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First-order stationary points

= Saddle points and local minima:

> (0 local minimum
Amin(VZf(2)){ =0 local minimum or saddle point
< 0 strict saddle point

Local minima Saddle points/local maxima

GLOBECOM 2017 TUTORIAL

56



First-order stationary points

= Applications: PCA, matrix completion, dictionary learning etc.

> Local minima: Either all local minima are global minima or all local minima
as good as global minima

> Saddle points:Very poor compared to global minima; Several such points

Strict saddle point Non-strict saddle point

= Bottomline: Local minima much more desirable than saddle points

57
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Summary of motivations

= Convex methods:
» Slow memory hogs
» Convex relaxation fails sometimes, e.g., topological interference alignment
» High computational complexity, e.g., eigenvalue decomposition

= Nonconvex methods: fast, lightweight

» Under certain statistical models with benign global geometry: no spurious
local optima

How to escape saddle points efficiently?

Fig credit: Sun, Qu & Wright

58
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Riemannian Optimization Algorithms

Escape saddle points via manifold optimization

GLOBECOM 2017 TUTORIAL
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What is manifold optimization?

= Manifold (or manifold-constrained) optimization problem

minimize f(M) subject to M € M
Me(Can

> [ R™*™ — R js a smooth function

» M is a Riemannian manifold: spheres, orthonormal bases (Stiefel), rotations,
positive definite matrices, fixed-rank matrices, Euclidean distance matrices,

semidefinite fixed-rank matrices, linear subspaces (Grassmann), phases,
essential matrices, fixed-rank tensors, Euclidean spaces...

P
,’/
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Escape saddle points via manifold optimization

= Convergence guarantees for Riemannian trust regions
» Global convergence to second-order critical points
» Quadratic convergence rate locally
> Reach e-second order stationary point ||gradf(z)|| < e andV2f(z) = —el

in O(1/¢%)iterations under Lipschitz assumptions |[Cartis & Absil’ | 6]

Escape strict saddle points via finding second-order stationary point

= Other approaches: Gradient descent by adding noise [Ge et al,, 2015],
[Jordan et al, | 7] (slow convergence rate in general)

61
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Recent applications of manifold optimization

= Matrix/tensor completion/recovery: [Vandereycken’l3], [Boumal-
Absil’ 1 5], [Kasai-Mishra’l 6],...

®  Gaussian mixture models: [Hosseini-Sra’l 5], Dictionary learning: [Sun-
Qu-Wright’| 7], Phase retrieval: [Sun-Qu-Wright' | 7],...

= Phase synchronization/community detection: [Boumal’l6], [Bandeira-
Boumal-Voroninski’ | 6],...

= Wireless transceivers design: [Shi-Zhang-Letaief’|6], [Yu-Shen-
Zhang-K. B. Letaief’ 1 6], [Shi-Mishra-Chen’16],...

62
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The power of manifold optimization paradigms

=  Generalize Euclidean gradient (Hessian) to Riemannian gradient (Hessian)

V(X5 VMf,(TX(k)) — PX("‘?) <¥f<X(k)>)
TxM X;;Zzaf; Riemannian Gradient Euclidean Gradient
XHIXA XFD = Ryio (oMW o f (X))
M 0

Retraction Operator

" We need Riemannian geometry: |) linearize search space M into a
tangent space TxM ;2) pick a metric on Tx.M to give intrinsic notions of
gradient and Hessian

63
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An excellent book
Optimization algorithms on matrix manifolds

A Matlab toolbox

R

Manopt A Tutorial @ Forum 2 About = Contact

Download & Get started A

GLOBECOM 2017 TUTORIAL
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Taking A Close Look at Gradient Descent
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Optimization on the manifold: main idea
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Optimization on the manifold: main idea
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Optimization on the manifold: main idea
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Example: Rayleigh quotient

= Optimization over (sphere) manifold S*~! = {z ¢ R" : 2Tz = 1}

T

minimize f(z) = —z’ Az  subject to 2’z =1

» The cost funcxtiefn is smooth on S”~1, symmetric matrix A € R"*"
o Compute the Euclidean gradient in R™
Vf(r)=-2Ax
= Step 2: Compute the Riemannian gradient on §»—1 via projecting V f(x)to
the tangent space using the orthogonal projector Proj_u = (I — z27)u

gradf(x) = Proj, Vf(z) = —2(I — xa®) Ax

GLOBECOM 2017 TUTORIAL



Example: Generalized low-rank optimization

= Generalized low-rank optimization for topological interference
alignment via Riemannian optimization

minimize f(M), subject to rank(M) =r
MG(Can

OPTIMIZATION-RELATED INGREDIENTS FOR PROBLEM &7,

Py - minimizex g, f(X)
Matrix representation of an element X € M, X=(U%2,V)
Computational space M, St(r, M) x GL(r) x St(r, M)
Quotient space St(r, M) x GL(r) x St(r, M)/(O(r) x O(r))
Metric gx (§x, ¢x) for §x, &x € TxM, ex(Ex. tx) = €. Sy ET) + (65, ¢x) + &y, ey 2T )
Riemannian gradient grady f gradx f = (£, &%, 8y) (30)
Riemannian Hessian Hessx f[&x] Hessx f[§x] = g¢yom, (Vgxgradxf) (40)
Retraction Rx (§x) : HxM, — M, (uf(U+&x), X+ &5, uf(V+E&y))
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Convergence rates

= Optimize over fixed-rank matrices (quotient matrix manifold)
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Riemannian algorithms:
|. Exploit the rank structure
in a principled way

2. Develop second-order

algorithms systematically
Scalable, SVD-free

[Ref] Y. Shi, J. Zhang, and K. B. Letaief, “Low-rank matrix completion for topological interference management by

Riemannian pursuit,” IEEE Trans.Wireless Commun., vol. |5, no. 7, Jul. 2016.
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Concluding remarks

= Large-scale convex optimization
» Convex geometry and analysis provide optimality guarantees
» Matrix stuffing for fast HSD embedding transformation
> Operator splitting for solving large-scale HSD embedding

= Future directions:

» Optimality guarantees for more complicated problems, e.g., group sparse
beamforming

» Operator splitting for general large-scale SDP problems, e.g., using
approximated cone projection

» More applications: deep neural network compression via sparse optimization
73
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Concluding remarks

= Scalable nonconvex optimization algorithms

» Nonconvex statistical optimization may not be that scary: no spurious local
optima

> Riemannian optimization is powerful: 1) Exploit the manifold geometry of
fixed-rank matrices; 2) Escape saddle points

= Future directions:
» Geometry of neural network loss surfaces: saddle points, local/global optima

» More applications: blind deconvolution for loT, big data analytics (e.g., ranking)
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To learn more...

= Web: http://shiyuanming.github.io/sparserank.html
= Papers:

= Y. Shi, ). Zhang, and K. B. Letaief, “Group sparse beamforming for green Cloud-RAN,’
IEEE Trans. Wireless Commun., vol. 13, no. 5, pp. 2809-2823, May 2014. (The 2016
Marconi Prize Paper Award)

= Y. Shi, J. Zhang, B. O’Donoghue, and K. B. Letaief, “Large-scale convex optimization for
dense wireless cooperative networks,” IEEE Trans. Signal Process., vol. 63, no. 18, pp.
4729-4743, Sept. 2015.t.2015. (The 2016 IEEE Signal Processing Society Young Author

Best Paper Award)

= Y. Shi, J. Zhang, K. B. Letaief, B. Bai and W. Chen,“Large-scale convex optimization for
ultra-dense Cloud-RAN,” I[EEE Wireless Commun. Mag., pp. 84-91, Jun.2015.

= Y. Shi, ). Zhang, W. Chen, and K. B. Letaief, “Generalized sparse and low-rank optimization
for ultra-dense networks,” IEEE Commun. Mag., to appear.
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To learn more...

= Y. Shi,J. Zhang, and K. B. Letaief, “Optimal stochastic coordinated beamforming for wireless cooperative
networks with CSI uncertainty,” IEEE Trans. Signal Process., vol. 63,, no. 4, pp. 960-973, Feb. 2015.

= Y. Shi, J. Zhang, and K. B. Letaief, “Robust group sparse beamforming for multicast green Cloud- RAN
with imperfect CSI,” IEEE Trans. Signal Process., vol. 63, no. | 7, pp. 4647-4659, Sept. 201 5.

= Y. Shi, J. Cheng, J. Zhang, B. Bai, W. Chen and K. B. Letaief, “Smoothed L,,-minimization for green Cloud-
RAN with user admission control,” IEEE |. Select. Areas Commun., vol. 34, no. 4, pp. 1022-1036,Apr. 2016.

= X. Yu,J.-C. Shen, J. Zhang, and K. B. Letaief, "Alternating minimization algorithms for hybrid precoding in
millimeter wave MIMO systems," IEEE |. Sel. Topics Signal Process., vol. 10, no. 3, pp. 485-500,Apr. 201 6.

= Y. Shi,]. Zhang, and K. B. Letaief, “Low-rank matrix completion for topological interference management
by Riemannian pursuit,” IEEE Trans.Wireless Commun., vol. |5, no. 7, pp. 4703-4717, Jul. 201 6.

= Y. Shi, B. Mishra, and W. Chen, “Topological interference management with user admission control via
Riemannian optimization,” IEEE Trans.Wireless Commun., vol. 16, no. | |, pp. 7362-7375,Nov. 2017.

®  X.Peng, Y.Shi, ). Zhang, and K. B. Letaief, “Layered group sparse beamforming for cache-enabled wireless
networks,” IEEE Trans. Commun., to appear. 76
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