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Motivations: Dense Wireless Networks
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Challenge: Ultra mobile broadband

 Era of mobile data deluge
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Cooper’s Law
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Solution: cloud radio access networks

 Dense Cloud-RAN: a cost-effective way for wireless network
densification and cooperation
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Dense Cloud-RAN

 Higher network capacity

 Denser deployment

 Scalable connectivity

 Flexible resource management

 Higher energy efficiency

 Low-power RRHs, flexible energy management

 Higher cost efficiency

 Low-cost RRHs, efficient resource utilization
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Intelligent things for smart city

 A smart city highly depends on intelligent technology: connected sensors,
intelligent devices and IoT networks become wholly integrated
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Challenge: Intelligent IoT
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Solution: fog radio access networks

 Dense Fog-RANs: push computation and storage resources to
network edge – Overcome the long distance problem

 Caching at the edge

 Computing at the edge
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A new paradigm for wireless networking

 Goal: support ultra-low latency, reliable, Gbps communications, massive
device connectivity, massive data analytics, edge-AI…
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Difficulties

 Networking issues:

 Huge network power consumption

 Massive device connectivity

 Severe network interference

 Computing issues:

 Complicated (non-convex) problem structures

 Limited computational resources
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Source: Alcatel-Lucent, 2013



Sparse and low-rank optimization

 Successful Stories

 Compressed sensing/matrix completion: Collect random
measurements; reconstruct via optimization

 Statistical machine learning: Random data models; fit model via
optimization

 Advantages

 Modeling flexibility: Low-dimensional structures in high-dimensional data

 Fundamental bounds: Computational and statistical tradeoffs
13
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Sparse and low-rank optimization

 Emerging examples in wireless

 Structured sparse models: Group sparse beamforming, user admission
control, massive device connectivity…

 Generalized low-rank models: Topological interference management,
mobile edge caching, wireless distributed computing, index coding…

 Motivations

 Modeling flexibility: Structured models in dense and complex networks

 Computational scalability: Convex optimization, manifold optimization…

 Theoretical guarantees: Convex geometry, differential geometry…
14
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Vignette A: Structured Sparse Models
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Case I: Group Sparse Beamforming for Network Power Minimization 

Case II: Sparsity Control for Massive Device Connectivity



Case I: Group Sparse Beamforming for Network 
Power Minimization
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Network power consumption

 Goal: Design green dense Cloud-RANs

 Prior works: Physical-layer transmit power consumption

 Wireless power control: [Chiang, et al., FT 08], [Qian, et al., TWC 09],
[Sorooshyari, et al.,TON 12], …

 Transmit beamforming: [Sidiropoulos and Luo, TSP 2006], [Yu and Lan, TSP
07], [Gershman, et al., SPMag 10],…

 Challenge:

 Network power consumption:

 Radio access units, fronthaul links, etc.
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Network adaptation

 Goal: Provide a holistic approach to minimize network power
consumption (including RRHs, fronthaul links, etc.)

 Key observation: Spatial and temporal mobile data traffic variation

18

Network adaptation: adaptively switch off network entities to save power
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System model

 The received signal at the k-th MU is given by

 : channel propagation between MU and RRH

 : transmit beamforming vector from the -th RRH to -th MU

 Per-RRH transmit power constraint:

 The signal-to-interference-plus-noise ratio (SINR) for MU
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Network power consumption

 Continuous function: Transmit power consumption

 : Drain inefficiency coefficient of the radio frequency power amplifier

 Combinatorial function: Relative fronthaul link power consumption

 : a partition of

 : relative fronthaul link power consumption, i.e., the static power saving
when both the fronthaul link and the corresponding RRH are switched off

 Aggregative beamformer:
20
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Problem formulation

 Goal: Minimize network power consumption in Cloud-RAN

 Simultaneously control both the combinatorial function and the continuous
function

 Challenges: Non-convex, high-dimensional

 Prior algorithms: heuristic or computationally expensive [Philipp, et. al,
TSP 13], [Luo, et. al, JSAC 13], [Quek, et. al,TWC 13],…
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Finding structured solutions

 Proposal: group sparse beamforming

 Switch off the -th RRH , i.e., group sparsity structure in
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[Ref] Y. Shi, J. Zhang, and K. B. Letaief, “Group sparse beamforming for green Cloud-RAN,” IEEE Trans. Wireless Commun., vol. 13, 
no. 5, pp. 2809-2823, May 2014. 2014. (The 2016 Marconi Prize Paper Award)
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Group sparse beamforming algorithm

 Adaptive RRH selection: Switch off the RRHs with small coefficients in
the aggregative beamformers

 Stage I: The tightest convex positively homogeneous lower bound of the
combinatorial composite objective function (network power)
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Group sparse beamforming algorithm

 Stage II: Find the optimal active RRHs via solving a sequence of
following feasibility detection problems (e.g., bi-section search)

 Stage III: Transmit power minimization via coordinated beamforming
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Summary of group sparse beamforming

 SINR constraints can be reformulated as second-order cone constraints

 Key observation: phases of ’s do not change objective and constraints

 Group sparse beamforming via convex programming

 Stage I: Group sparsity inducing via solving one convex program

 Stage II: A sequence of convex feasibility problems need to be solved

 Stage III: Coordinated beamforming via solving one convex program
25

GLOBECOM 2017 TUTORIAL

convex



The power of group sparse beamforming

 Group spare beamforming for green Cloud-RAN (10 RRHs, 15 MUs)
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Conclusions: 
1) Enabling flexible network adaptation; 
2) Offering efficient algorithm design via 
convex programming
3) Empowering wide applications
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Extension: Wireless cooperative networks

 A comprehensive consideration: 1) Active BS selection; 2) Transmit
beamforming; 3) Backhaul data assignment

27

GLOBECOM 2017 TUTORIAL

Network power consumption: 
1) Static power consumption at BSs
2) Transmit power consumption from BSs
3) Traffic-dependent backhaul power 

consumption



Layered group sparse beamforming 

 Proposal: A generalized layered group sparse beamforming (LGSBF)
modeling framework

 To induce the layered sparsity structure in the beamformers
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Active BS selection

Backhaul data assignment

[Ref] X. Peng, Y. Shi, J. Zhang, and K. B. Letaief, “Layered group sparse beamforming for cache-enabled wireless networks,” 
IEEE Trans. Commun., to appear.



Case II: Sparsity Control for Massive Device 
Connectivity

29
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Motivation

 Downlink transmission with massive devices: user admission control

 Uplink machine-type communication (e.g., IoT devices) with sporadic
traffic: massive device connectivity
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Sporadic traffic: only a small 
fraction of potentially large 
number of devices are active



Downlink user admission control

 Coordinated beamforming for transmission power minimization

 SINR constraints can be reformulated as second-order cone constraints

 Key observation: phases of ’s do not change objective and constraints
31
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Infeasibility

 Set of convex inequalities:

 Power minimization problem is generally infeasible: large number of
users, unfavorable channel conditions, high data rate requirements,…

 Goal: Maximize the user capacity, i.e., the number of admitted users

 Solution: Choose to minimize the number of violated inequalities
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Sparse optimization for user admission control

 Average number of admitted mobile users versus target SINR
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MDR: membership deflation by convex 
relaxation (                     )

IR2A: iterative reweighted    -algorithm 



Massive device connectivity in uplink

 Cellular network with a massive number of devices

 Single-cell uplink with a BS with antennas; Block-fading channel with
coherence time ; Total single-antenna devices, devices
are active (sporadic traffic)

 Define diagonal activity matrix with non-zero diagonals

 denotes the received signal across antennas

 : channel matrix from all devices to the BS

 : known transmit pilot matrix from devices 34

GLOBECOM 2017 TUTORIAL



Challenges of massive connectivity

 Sporadic traffic
 User activity detection is a key requirement

 Massive number of devices mean pilot sequences cannot be orthogonal

 Device identification is a sparse optimization problem

 Prior works on compressed sensing for massive connectivity: 1) Without
channel estimation [Zhang-Luo-Guo’13]; 2) Joint user activity detection
and channel estimation [Xu-Rao-Lau’15]; 3) Approximate Message
Passing (AMP) [Wei’16]

 Proposal: User activity detection and channel estimation based on the
compressed sensing techniques (without channel distribution prior)

35
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Group sparsity estimation

 Let (unknown): group sparsity in rows of matrix

 Simultaneous user activity detection and channel estimation

 Let be a known measurement operator (pilot matrix)

 Observe

 Find estimate by solving a convex program

 is mixed -norm to reflect group sparsity structure

 Hope:
36
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Sparse estimation for massive connectivity

 Normalized MSE versus pilot matrix length
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Summary: structured sparse models

 Generalized structured sparse optimization for dense networks

 is the index set of non-zero coefficients of a vector

 : combinatorial positive-valued set-function to control sparsity in

 : continuous convex function to represent the system performance

 : to model system constraints, e.g., QoS constraints

38
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Vignette B: Generalized Low-Rank Models
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Case I: Low-Rank Matrix Completion for Topological 
Interference Management

Case II: Extensions to Mobile Edge Caching, Distributed 
Computing and Index Coding



Case I: Topological Interference Management
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Interference channel

 Channel model:

 Degrees-of-freedom: simplify the analysis; lead to physical insights

41

GLOBECOM 2017 TUTORIAL

capacity is unknown



Interference alignment

 Assume the channel coefficients change over time:

 Consider channel uses:

 Transmitter sends information symbols across channel uses

 The -th interference term lives in the range space of matrix
42
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represents the precoding matrix



Interference alignment

 Interference alignment condition: find precoding matrices and
decoding matrices such that

 Each user can send symbols: interference free across channel uses

 Intuition: The interference has aligned onto a dimensional
subspace at each receiver.

43
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Interference alignment

 Everyone gets half the cake [Cadambe-Jafar’08]:

 Diagonal are time-varying and generic, , is almost
surely asymptotically achievable

 Remarks:

 Require very long block lengths

 Require the channels to vary generically over time

 Require full knowledge of the channel coefficients of every link in the
network, at each transmitter and for all times!

44
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Can we exploit the interference alignment principle in practical systems?



Practical interference management

 Goal: Exploit the IA principle under realistic assumptions on CSIT

 Prior works: Abundant CSIT relaxed CSIT

 Perfect CSIT [Cadambe and Jafar,TIT 08]

 Delayed CSIT [Maddah-Ali and Tse,TIT 12]

 Alternating CSIT [Tandon, et al., TIT 13], partial and imperfect CSIT [Shi, et
al.,TSP 14],…

 Curses: CSIT is rarely abundant (due to training & feedback overhead)

45
No CSIT Perfect CSITCSIT

Prior worksApplicable?Start here?



Topological interference alignment
 Blessings: partial connectivity in dense wireless networks

 Approach: topological interference management (TIM) [Jafar,TIT 14]
 Maximize the achievable DoF: only based on the network topology

information (no CSIT)
46
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Index coding approach

 Theorem [Jafar, TIT 14]: under linear (vector space) solutions, TIM
problem and index coding problem are equivalent
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Low-rank matrix completion approach

 Goal: Deliver one data stream per user over time slots

 Transmitter transmits , receiver receives

 Receiver decodes symbol by projecting onto the space

 Topological interference alignment condition

48
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Generalized low-rank model

 Generalized low-rank optimization with network side information

 : precoding vectors and decoding vectors

 equals the inverse of achievable degrees-of-freedom (DoF)
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Nuclear norm fails

 Convex relaxation fails: always returns the identity matrix!

 Fact:

 Proposal: Solve the nonconvex problems directly with rank adaptivity
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Riemannian manifold 
optimization problem

manifold constraint
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Numerical results
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Phase transitions for topological IA
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Extension to cache networks

 Cache gains: load balancing, interference cancellation/alignment,
cooperative transmission, …

 Placement phase: populate caches (prefetching)

 Delivery phase: reveal request, deliver content

53wired cache network wireless cache network
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Caching at receivers

 Cached receivers: topological interference alignment
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Side information:
1) Cached files 
2) Network topology
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When index coding meets low-rank matrices
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Index Coding
[Birk, Kol, INFOCOM’98]

[Maddah-Ali & Niesen ’13]

[Jafar ’14] [Rouayheb et al. ’10, ’15]

Li-Maddah-Ali-Avestimehr’14

Caching

Network CodingInterference Alignment

Distributed Computing

Low-rank model offers a new way to investigate these problems!



Summary: generalized low-rank models

 Generalized low-rank optimization for dense edge networks

 encodes network side information, e.g., cached files, network topology,
computed intermediate values for data shuffling
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Concluding remarks

 Structured sparse models

 Group sparse optimization offers a principled way for network adaptation,
e.g., to minimize network power consumption

 Sparsity control and estimation is powerful to support massive device
connectivity

 Future directions:

 More application scenarios: IoTs,V2X …
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Concluding remarks

 Generalized low-rank models

 Low-rank matrix completion provides a systematic approach to investigate
the topological interference alignment problem

 Low-rank model is powerful for performance optimization in mobile edge
caching and distributed computing systems

 Future directions:

 More applications: blind deconvolution for IoT, big data analytics (e.g., ranking)
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To learn more...
 Web: http://shiyuanming.github.io/sparserank.html
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