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Outline of Part |

= Motivations

= Two Vignettes

m  Structured Sparse Models
= Group Sparse Beamforming for Network Power Minimization
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®  Generalized Low-Rank Models

=  Low-Rank Matrix Completion for Topological Interference Management

=  Extensions

= Future Directions
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Motivations: Dense Wireless Networks
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Challenge: Ultra mobile broadband

= Era of mobile data deluge

429 m
Mobile devices
added in 2016

60 %
in 2016
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Source: Cisco VNI Mobile, 2017



Cooper’s Law

Martlf| Pens Cooper's Law: Data Over
Usable Spectrum Doubles Every 30
Months — 1997

Cooper's Law of Spectral Efficiency
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Solution: cloud radio access networks

" Dense Cloud-RAN: a cost-effective way for wireless network
densification and cooperation

Baseband Unit Pool
@ 50 o op W

Cloud-RAN Fmﬂ(
oua- / \\

Cost and Energy

Centralization
Resource
Pooling

Remote Radio Head \ Cloud
(RRH) |mPf'_0V€3fj » ’ Virtualized
Coordination C’OUd—RAN Functions

Optimization
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Dense Cloud-RAN

. . Baseband Unit Pool
= Higher network capacity @ 50 ¢ o0 W

. Denser deployment Fronthaul Network

Cloud-RAN /
= Scalable connectivity

® Flexible resource management

= Higher energy efficiency
= |Low-power RRHs, flexible energy management
= Higher cost efficiency

m | ow-cost RRHs, efficient resource utilization
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Intelligent things for smart city

= A smart city highly depends on intelligent technology: connected sensors,
intelligent devices and loT networks become wholly integrated

Smart Cities: All you need to know
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Challenge: Intelligent loT

Lkt aii-; g ‘é\/ I &

- g

Jﬂ. (internet of skills)
= Tactile Internet

Internet of Things

Fundamental shift: from content-

delivery to skillset-delivery networks
Low Latency

High Computation Intensity

Massive Connectivity
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Solution: fog radio access networks

" Dense Fog-RANSs: push computation and storage resources to
network edge — Overcome the long distance problem

Grid Power

X

Cloud Center

m  Caching at the edge ‘

= Computing at the edge
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A new paradigm for wireless networking

= Goal: support ultra-low latency, reliable, Gbps communications, massive
device connectivity, massive data analytics, edge-Al...

m ' Cloud Data Center . Q

]
- I °g® N 9 k
Storageali: R ' Computation Unit
t
- Mobilelaulmg thork'
Backhaul Links 1 "\Fronthaul Links
0 i i i

i %’l ); U -
; / s | g

Fog-RAN Macro BS Cloud-RAN
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Difficulties

= Networking issues:

®  Huge network power consumption
m  Massive device connectivity

m  Severe network interference

= Computing issues:

= Complicated (non-convex) problem structures

=  |imited computational resources




Sparse and low-rank optimization

m Successful Stories

= Compressed sensing/matrix  completion:  Collect  random
measurements; reconstruct via optimization

= Statistical machine learning: Random data models; fit model via
optimization

= Advantages
= Modeling flexibility: Low-dimensional structures in high-dimensional data

= Fundamental bounds: Computational and statistical tradeoffs
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Sparse and low-rank optimization

= Emerging examples in wireless

m  Structured sparse models: Group sparse beamforming, user admission
control, massive device connectivity...

= Generalized low-rank models: Topological interference management,
mobile edge caching, wireless distributed computing, index coding...

= Motivations
= Modeling flexibility: Structured models in dense and complex networks
= Computational scalability: Convex optimization, manifold optimization...

= Theoretical guarantees: Convex geometry, differential geometry...
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Structured Sparse Models

Case I: Group Sparse Beamforming for Network Power Minimization

Case ll: Sparsity Control for Massive Device Connectivity
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Group Sparse Beamforming for Network
Power Minimization
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Network power consumption

= Goal: Design green dense Cloud-RANs

= Prior works: Physical-layer transmit power consumption

= Wireless power control: [Chiang, et al., FT 08], [Qian, et al, TWC 09],
[Sorooshyari, et al, TON 12], ...

= Transmit beamforming: [Sidiropoulos and Luo, TSP 2006], [Yu and Lan, TSP
07], [Gershman, et al., SPMag 10],...

oooooooooooooooooooooooooooooooooooooooo

Baseband Unit Pool

: W )
= Challenge: : . " ['
E ronthaul
= Network power consumption: ; Cloud-RAN etwor \
m  Radio access units, fronthaul links, etc. 5?5 E} N k
: RRH
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Network adaptation

" Goal: Provide a holistic approach to minimize network power
consumption (including RRHs, fronthaul links, etc.)

= Key observation: Spatial and temporal mobile data traffic variation

This is -.. and the

g W -0
New York City's - - 3 . population =
1
population e 55 S - .
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System model

" The received signal at the k-th MU is given by

Ur = Z i vikse + > Z b viis; + n, Vk

1#£k =1
= hy, € CMi: channel propagation between MU k£ and RRH |

® vy, € CNi:transmit beamforming vector from the (-th RRH to k-th MU
®  Per-RRH transmit power constraint: C = < v : K: visllz < PVl
p k=1 2

= The signal-to-interference-plus-noise ratio (SINR) for MU

SINR L U s i
k= = Tk . AT T T T ~ N
Zi#k hilvi|? 4 o} 7 Vi = [Vigs Voo Vi) €C

N = Zle Nl 19
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Network power consumption

= Continuous function: Transmit power consumption

L K 1
) =3 2, vl

m 7; > 0:Drain inefficiency coefficient of the radio frequency power amplifier
= Combinatorial function: Relative fronthaul link power consumption
FT(v) =Y. PfI(Supp(v) N Vs # 0)

" Y ={KYTIN;+1,..., K N;},vi rapartition of V= {1,..., KN}

m  Pf > 0:relative fronthaul link power consumption, i.e., the static power saving
when both the fronthaul link and the corresponding RRH are switched off

: v — [T T T T 1T
= Aggregative beamformer: v = [yn, REERAV SEEREA S ATERE aVLfg] "

~~ "
T et
Vi VL
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Problem formulation

= Goal: Minimize network power consumption in Cloud-RAN

minimize F(Supp(v)) —+ T(V) combinatorial composite function
vel

hjlvy|?
Zz‘;ék |h2Vi|2 + Ui%

®  Simultaneously control both the combinatorial function F'and the continuous

subject to

function T’
= Challenges: Non-convex, high-dimensional
= Prior algorithms: heuristic or computationally expensive [Philipp, et. al,
TSP 13], [Luo, et. al, JSAC 13], [Quek, et.al, TWC 13],...

21
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Finding structured solutions

" Proposal: group sparse beamforming

m Baseban&Uniiool & . .
: R s T T T 1T
A . Ev_:\117'"7V1I(;7"."7YL17"'7VLI§;]
Fronthau Network T \”:;
: Cloud-RAN \ X IR R 7 "
ff s?( ) E} o 5 5 & : :  Beamforming coefficients of the
RRH &2 = :  first RRH, forming a group

= Switch off the ;-th RRH=>v; = 0 ,i.e., group sparsity structure in v

[Ref] Y. Shi, J. Zhang, and K. B. Letaief,“Group sparse beamforming for green Cloud-RAN,” IEEE Trans.Wireless Commun., vol. | 3,
no. 5, pp. 2809-2823, May 2014.2014. (The 2016 Marconi Prize Paper Award) 22
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Group sparse beamforming algorithm

m  Adaptive RRH selection: Switch off the RRHs with small coefficients in
the aggregative beamformers

Stage | Stage Il Stage Il

m Stage l: The tightest convex positively homogeneous lower bound of the
combinatorial composite objective function (network power)

L
Pc C .
Q(v) =2 Ll minimize (}(v) 0* = [||vrl2]E,

mixed ¢ /{>-norm induce group sparsity RRH ordering
23
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Group sparse beamforming algorithm

m Stage ll: Find the optimal active RRHs via solving a sequence of
following feasibility detection problems (e.g., bi-section search)

3;(.,4[@']) cfind wvq,... y VK Vi = [vii] € CIAIN
[hi v |?

> ik DR Vil* + 0}

= Stage lll: Transmit power minimization via coordinated beamforming

minimize T (v; A= Active
vel RRH set

|hZVkP > L o
D itk hilv;2+ 02 ~ V> VR- hy = [y € C

subject to > v, Vk hy, = [hy] € CAN

Vi = [Vlk] € C"A*lN

subject to

24
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Summary of group sparse beamforming

= SINR constraints can be reformulated as second-order cone constraints

1
fu(v) = \/Zz#k lhjlvi|? +of — \/—,Y—km(hEVk) < 0,Vk. convex

m  Key observation: phases of Vi’s do not change objective and constraints

= Group sparse beamforming via convex programming

Stage | Stage Il Stage Il

= Stage |: Group sparsity inducing via solving one convex program
= Stage ll: A sequence of convex feasibility problems need to be solved

= Stage lll: Coordinated beamforming via solving one convex program

GLOBECOM 2017 TUTORIAL
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The power of group sparse beamforming

" Group spare beamforming for green Cloud-RAN (10 RRHs, 15 MUs)

W. Yu, et. al, TWC 10

Conclusions:
|) Enabling flexible network adaptation;

2) Offering efficient algorithm design via
convex programming
3) Empowering wide applications

s =B Proposed GSBF Algorithm

5 =H - Conventional SP Based Algorithm

' '0' ' Coordinated Beamforming Algorithm
=@ - Branch-and-Bound Algorithm

3 4 5 6 7 8
Target SINR [dB]

Average Network Power Consumption [W]

40 1 L 1

26
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Extension:Wireless cooperative networks

= A comprehensive consideration: |) Active BS selection; 2) Transmit
beamforming; 3) Backhaul data assignment

Caching content

wa =

Centr: lco troller

ﬂ?a
Backhaul links o o . )
Network power consumption:
E " |) Static power consumption at BSs
BSZ

2) Transmit power consumption from BSs
3) Traffic-dependent backhaul power
consumption

27
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Layered group sparse beamforming

" Proposal: A generalized layered group sparse beamforming (LGSBF)
modeling framework

®  To induce the layered sparsity structure in the beamformers

Aggregate Beamformer

Beamformer per BS mmmp Active BS selection

Beamformer per BS .
for % Tlier Grgup mm) Backhaul data assignment

-----------------

-----------------

[Ref] X. Peng,Y. Shi, ). Zhang, and K. B. Letaief,“Layered group sparse beamforming for cache-enabled wireless networks,”

IEEE Trans. Commun., to appear. 28
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Sparsity Control
Connectivity

GLOBECOM 2017 TUTORIAL

Massive Device

29



Motivation

® Downlink transmission with massive devices: user admission control

= Uplink machine-type communication (e.g., loT devices) with sporadic
traffic: massive device connectivity

Header

fraction of potentially large
number of devices are active

u Sporadic traffic: only a small

30
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Downlink user admission control

" Coordinated beamforming for transmission power minimization

minimize ||v||3
vel

hilvy|?
Z %,Vk.
> iz R Vil? + o

= SINR constraints can be reformulated as second-order cone constraints

1
— hiv; 12 + 02 — —R(ht'v,) <0, Vk.
fe(v) \/Z#k| g Vil® + o N (hyvi) <

m  Key observation: phases of Vi’s do not change objective and constraints

subject to

31
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Infeasibility

= Set of convex inequalities:
fiv) €0, f(v) €0, v eC

= Power minimization problem is generally infeasible: large number of
users, unfavorable channel conditions, high data rate requirements,...

= Goal: Maximize the user capacity, i.e., the number of admitted users

= Solution: Choose v to minimize the number of violated inequalities

minimize |sl|g
vel,s

subject to  fi(v) <s;,i=1,...,m

s; >0,0=1,....m .
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Sparse optimization for user admission control

= Average number of admitted mobile users versus target SINR

7 —&— Exhaustive Search
' —8— IR2A with p = 1
—6— IR2A with p = 0.5
MDR

IR2A: iterative reweighted /5-algorithm

Islo = [Isll»(0 <p <1)

MDR: membership deflation by convex
relaxation ( ||s]/o — [|s]|1)

Average Number of Admitted MUs

Target SINR [dB] 33
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Massive device connectivity in uplink

m  Cellular network with a massive number of devices

m  Single-cell uplink with a BS with M antennas; Block-fading channel with
coherence time T ; Total IV single-antenna devices, S C {1,2,..., N} devices
are active (sporadic traffic)

y() =) hia() +n(),L=1,.. . L
= Define diagonal activity matrix A ¢ RY*¥ with|S| non-zero diagonals

Y —=QAH + N

Y =[y(1),...,y(L)]T € CL*Mdenotes the received signal across )/ antennas

" H =[hy,...,hy]|T € CNVxM: channel matrix from all devices to the BS

= Q=[g(1),...,q9(L)]" € CE*¥ : known transmit pilot matrix from devices :
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Challenges of massive connectivity

m Sporadic traffic
= User activity detection is a key requirement
m  Massive number of devices mean pilot sequences cannot be orthogonal
®  Device identification is a sparse optimization problem

= Prior works on compressed sensing for massive connectivity: 1) Without
channel estimation [Zhang-Luo-Guo’l3]; 2) Joint user activity detection
and channel estimation [Xu-Rao-Lau’l5]; 3) Approximate Message
Passing (AMP) [VWei'l 6]

" Proposal: User activity detection and channel estimation based on the
compressed sensing techniques (without channel distribution prior)

35
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Group sparsity estimation

Let ®1 = AH < CN*M(unknown): group sparsity in rows @i of matrix @

m  Simultaneous user activity detection and channel estimation
Let Q € CL*N be a known measurement operator (pilot matrix)
Observe Y = QO+ N

Find estimate © by solving a convex program

minimize f(®) subject to |Y —QO|r <ce¢

= f(©) =" |01 is mixed £1/¢>-norm to reflect group sparsity structure
Hope: @ — @
36
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Sparse estimation for massive connectivity

= Normalized MSE versus pilot matrix length L

10°

1 1 1 1 I} 1 1 1
10 20 30 40 50 60 70 80 90 100
Number of random measurements L
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N =100, M =2,|S| = 20
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Summary: structured sparse models

= Generalized structured sparse optimization for dense networks

mineiglize f(z) :=afi(Supp(z)) + Bf2(z) subject to z€C

® Supp(z) is the index set of non-zero coefficients of a vector z
® fi: combinatorial positive-valued set-function to control sparsity in 2
m f,: continuous convex function to represent the system performance

m C:to model system constraints, e.g., QoS constraints

@

group-structured sparsity

Aggregate Beamformer

layered group
sparsity

G;
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Generalized Low-Rank Models

Case I: Low-Rank Matrix Completion for Topological
Interference Management
Case ll: Extensions to Mobile Edge Caching, Distributed
Computing and Index Coding

GLOBECOM 2017 TUTORIAL
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Topological Interference Management
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Interference channel

= Channel model: y; = h;ix; + Zhijﬂﬁj +zj,0=1,...,n
JFi

capacity is unknown

= Degrees-of-freedom: simplify the analysis; lead to physical insights

. C(SNR)
DOF = (i, To5(SNR)

GLOBECOM 2017 TUTORIAL
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Interference alighment

= Assume the channel coefficients change over time:

yi(t) = hi(t +Z t) + z;(t)
= Consider T channel uses: X; = [xi(l),...,xi(T)]T, Zi = [z(1), ..., z(T)]
hij (1)
Yi=HyX; + ZHz’ij + Z; Hij = -
i#] hij (1)

= Transmitter j sends m information symbols S; across T channel uses
X; =V;8, V; € CTx™ represents the precoding matrix

= The i-th interference term 3_,_, Hi;V;S;lives in the range space of matrix
(Ha Vi oo Hyj 1 Vier Hij1Vigr - HinVialrx—1ym *
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Interference alighment

= Interference alignment condition: find precoding matrices and
decoding matrices V; € CTxm U, e CmxT such that

I'aIlk(UZHmV;) = m,Vz — 1, e
Ui[Hz-lVl ce Hz’,i—lVi—l Hz',i—l—l‘/H—l ce . HmVn] = O,VZ = 1, o.M
= Each user can send m symbols: interference free across 7' channel uses
DoF =m

" [ntuition: The interference has aligned onto a 7 —m dimensional
subspace at each receiver.

43
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Interference alighment

= Everyone gets half the cake [Cadambe-Jafar’08]: DoF = n/2

Diagonal H;; are time-varying and generic, 7" — oc , m = T/2 is almost
surely asymptotically achievable

= Remarks:

Require very long block lengths
Require the channels to vary generically over time

Require full knowledge of the channel coefficients of every link in the
network, at each transmitter and for all times!

Can we exploit the interference alignment principle in practical systems?

44
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Practical interference management

= Goal: Exploit the IA principle under realistic assumptions on CSIT

" Prior works: Abundant CSIT == relaxed CSIT
m  Perfect CSIT [Cadambe and Jafar, TIT 08]
= Delayed CSIT [Maddah-Ali and Tse, TIT 12]

= Alternating CSIT [Tandon, et al,, TIT 13], partial and imperfect CSIT [Shi, et
al., TSP 14],...

®  Curses: CSIT is rarely abundant (due to training & feedback overhead)

Start here? —— Applicable? «<—— Prior works
D

No CSIT CSIT—— Perfect CSIT

45



Topological interference alighment

= Blessings: partial connectivity in dense wireless networks

transmitter receiver tranimi< receiver
path-loss Degrees of Freedom?
i _ . C(SNR)
shadowing DoF = _ lim S&RR)

= Approach: topological interference management (TIM) [Jafar, TIT 4]

= Maximize the achievable DoF: only based on the network topology
information (no CSIT)

46
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Index coding approach

" Theorem [Jafar, TIT 14]: under linear (vector space) solutions, TIM
problem and index coding problem are equivalent

TIM problem

- — I’ffg Weo — 2 : : — W2

Yy — Wy Wy — sgq — Wy

p— Ws W 45 s W,

Bottleneck: the only finite-capacity link

— W W, — ER — W,

W transformations, ws — @R
complements

Only a few index coding problems have been solved!
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Index coding problem

47



Low-rank matrix completion approach

= Goal: Deliver one data stream per user over N time slots

®  Transmitter ¢ transmits v;s;, receiver { receives

= Vih;is; + v;h;;8; +n; §:network connectivity pattern
Yi 1llgr97 Z(i,j)ES,i#j 101999 1 YP
= Receiver decodes symbol s; by projecting ¥; onto the space u; € CV

H H E : H H
lli Yi = uz- Vz'hz‘iSi + (% j)GS it uz- thiij -+ llz- n;

= Topological interference alignment condition
H

My =4 ulv; =0, Vi#j(i,j) €S, ) 1 1
*, otherwise. DoF = —1 __ — L

48
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Generalized low-rank model

= Generalized low-rank optimization with network side information

minimize rank(M)
MECKXK ’—_—"" -----~~\
subject t(z"Mii =1,i=1,..., K\\‘ — topological interference alignment
. — 0.(i. S condition
‘%j —0, (1,]) Eé"/

m rank(M) equals the inverse of achievable degrees-of-freedom (DoF) %

Transmitters

SIOAIO0Y

(a) Topological interference alignment (b) Side information modeling matrix N

GLOBECOM 2017 TUTORIAL
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Nuclear norm fails

= Convex relaxation fails: always returns the identity matrix!

minimize | M.

MeCEXEK
subject to M;; =1,i=1,..., K : Q (; }2) ’

M;; =0,¥(i,5) €S Q =

= Fact: Trace(M) < | M ||«

" Proposal: Solve the nonconvex problems directly with rank adaptivity
c e . o 9
Hﬁg&%%{e f(M) = ||A(M) - z||F Riemannian manifold
subject to ’\féI—ll-{‘(M) ':"‘,r\’ optimization problem

GLOBECOM 2017 TUTORIAL
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Numerical results

—>W1

Provide numerical
insights (optimal/lower-
bound) for the general

TIM problems

Recover all the optimal DoF
results for the special TIM
problems in [Jafar ’ 4]

51
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Phase transitions for topological IA

K=30

The heat map indicates the
empirical probability of success

(blue=0%; yellow=100%)
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Extension to cache networks

= Cache gains: load balancing,

cooperative transmission, ...

interference cancellation/alignment,

= Placement phase: populate caches (prefetching)

= Delivery phase: reveal request, deliver content

Server -; Clients

 J

wired cache network

N Files, K Users, Cache Size M

X\ Y
sie M § =Y+ =Y —
g Ch.
N -'

Server S
\ 5]
e — 7 nd
.
‘f/\ " i
- X gt Al ey V2
—_— H Bl Y(—\li fiaz —,;‘Y —_—
—— S AN
~ ! p) Ed
7 N7
;i b
N Files ,?‘\ gty
o N
.

¢
s
;
Xa T
L, v

s o o
haa _? ? —s' D

wireless cache network 53
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Caching at receivers

= Cached receivers: topological interference alignment

wv, =1, i=1,--- . K

z

ulv; =0, Vj¢ Vi, (i,5) €8

[
| E—

ng data center _ messages
—

1 2 3 4 5
B i i i
caches

minimize rank(M )
subject to M; =1,i=1,..., K

Mij =0,V7 €V, (’L,j) )

Side information:
|) Cached files V;
2) Network topology S

54
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When index coding meets low-rank matrices

Interference Alignment Network Coding

[Rouayheb et al.’10, ’15]

Index Coding

[Jafar ’14]

[Birk, Kol, INFOCOM'98]

@
X2 i
i %
.'||| e —— . server N files
g i3 . [,
nexke | 2 o

M [Maddah-Ali & Niesen ’13]

. ‘4 H
L el b e RS caches [ ] 14 size M
Reduce

¥y

Low-rank model offers a new way to investigate these problems! 55
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Summary: generalized low-rank models

= Generalized low-rank optimization for dense edge networks
minimize  rank(M) subject to M €D
Me@mxn
® D encodes network side information, e.g., cached files, network topology,
computed intermediate values for data shuffling

Transmitters

Wo—»

SIOATIQOY

Ws—»

Wy—»

Ws—
(a) TIM problem. (b) Cache-aided interference channel. (c) Side information modeling matrix.

56
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Concluding remarks

® Structured sparse models

= Group sparse optimization offers a principled way for network adaptation,
e.g., to minimize network power consumption

m  Sparsity control and estimation is powerful to support massive device
connectivity

= Future directions:

®  More application scenarios: loTs,V2X ...

57



Concluding remarks

m Generalized low-rank models

® | ow-rank matrix completion provides a systematic approach to investigate
the topological interference alighment problem

®  Low-rank model is powerful for performance optimization in mobile edge
caching and distributed computing systems

= Future directions:

®  More applications: blind deconvolution for loT, big data analytics (e.g., ranking)
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To learn more...

= Web: http://shiyuanming.github.io/sparserank.html
= Papers:

= Y. Shi, J. Zhang, and K. B. Letaief, “Group sparse beamforming for green Cloud-RAN,”
IEEE Trans. Wireless Commun., vol. 13, no. 5, pp. 2809-2823, May 2014. (The 2016
Marconi Prize Paper Award)

= Y. Shi, ). Zhang, B. O’Donoghue, and K. B. Letaief, “Large-scale convex optimization for
dense wireless cooperative networks,” I[EEE Trans. Signal Process., vol. 63, no. |8, pp.
4729-4743, Sept. 2015.t.2015. (The 2016 IEEE Signal Processing Society Young Author

Best Paper Award)

= Y. Shi, J. Zhang, K. B. Letaief, B. Bai and W. Chen,“Large-scale convex optimization for
ultra-dense Cloud-RAN,” IEEE Wireless Commun. Mag., pp. 84-91, Jun. 2015.

= Y. Shi,]. Zhang, W. Chen, and K. B. Letaief, “Generalized sparse and low-rank optimization
for ultra-dense networks,” [EEE Commun. Mag., to appear.

59



To learn more...
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cooperative networks with CSI uncertainty,” IEEE Trans. Signal Process., vol. 63,, no. 4, pp. 960-973,
Feb.2015.

Y. Shi, J. Zhang, and K. B. Letaief, “Robust group sparse beamforming for multicast green Cloud-
RAN with imperfect CSI,” [EEE Trans. Signal Process., vol. 63, no. | 7, pp. 4647-4659, Sept. 201 5.

Y. Shi, J. Cheng, ]. Zhang, B. Bai, W. Chen and K. B. Letaief, “Smoothed Lp-minimization for green
Cloud-RAN with user admission control,” IEEE |. Select. Areas Commun., vol. 34, no. 4,Apr. 2016.

Y. Shi, J. Zhang, and K. B. Letaief, “Low-rank matrix completion for topological interference
management by Riemannian pursuit,” IEEE Trans.Wireless Commun., vol. 15, no. 7, Jul. 2016.

Y. Shi, B. Mishra, and W. Chen, “Topological interference management with user admission control
via Riemannian optimization,” IEEE Trans.Wireless Commun., to appear.
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