# Sparse and Low-Rank Optimization for Dense Wireless Networks Part I: Models

Jun Zhang

HKUST



#### Yuanming Shi

ShanghaiTech University



# **Outline of Part I**

- Motivations
- Two Vignettes
  - Structured Sparse Models
    - Group Sparse Beamforming for Network Power Minimization
    - Sparsity Control for Massive Device Connectivity
  - Generalized Low-Rank Models
    - Low-Rank Matrix Completion for Topological Interference Management
    - Extensions
- Future Directions

#### Motivations: **Dense** Wireless Networks



GLOBECOM 2017 TUTORIAL

## **Challenge: Ultra mobile broadband**

Era of mobile data deluge







429 M

Mobile devices added in 2016

**60**% in 2016

Source: Cisco VNI Mobile, 2017

**GLOBECOM 2017 TUTORIAL** 

**18**x

# **Cooper's Law**

Marty Pens Cooper's Law: Data Over Usable Spectrum Doubles Every 30 Months – 1997



Factor of Capacity Increase since 1950



GLOBECOM 2017 TUTORIAL

### Solution: cloud radio access networks

Dense Cloud-RAN: a cost-effective way for wireless network densification and cooperation



# **Dense Cloud-RAN**

- Higher network capacity
  - Denser deployment
- Scalable connectivity
  - Flexible resource management
- Higher energy efficiency
  - Low-power RRHs, flexible energy management
- Higher cost efficiency
  - Low-cost RRHs, efficient resource utilization



## Intelligent things for smart city

 A smart city highly depends on intelligent technology: connected sensors, intelligent devices and IoT networks become wholly integrated







# **Challenge: Intelligent IoT**



(internet of skills)

#### **Tactile Internet**

Internet of Things

Mobile Internet

#### **People to People**



#### Fundamental shift: from content-

delivery to skillset-delivery networks

- Low Latency
- High Computation Intensity
- Massive Connectivity









## Solution: fog radio access networks

- Dense Fog-RANs: push computation and storage resources to network edge – Overcome the long distance problem
  - Caching at the edge
  - Computing at the edge

share computation, storage, communication resources across the whole network



10

## A new paradigm for wireless networking

Goal: support ultra-low latency, reliable, Gbps communications, massive device connectivity, massive data analytics, edge-Al...



# Difficulties

#### Networking issues:

- Huge network power consumption
- Massive device connectivity
- Severe network interference



Source: Alcatel-Lucent, 2013

#### Computing issues:

- Complicated (non-convex) problem structures
- Limited computational resources



# Sparse and low-rank optimization

#### Successful Stories

- Compressed sensing/matrix completion: Collect random measurements; reconstruct via optimization
- Statistical machine learning: Random data models; fit model via optimization

#### Advantages

- Modeling flexibility: Low-dimensional structures in high-dimensional data
- **Fundamental bounds:** Computational and statistical tradeoffs

# Sparse and low-rank optimization

#### Emerging examples in wireless

- Structured sparse models: Group sparse beamforming, user admission control, massive device connectivity...
- Generalized low-rank models: Topological interference management, mobile edge caching, wireless distributed computing, index coding...

#### Motivations

- Modeling flexibility: Structured models in dense and complex networks
- **Computational scalability:** Convex optimization, manifold optimization...
- Theoretical guarantees: Convex geometry, differential geometry...

#### Vignette A: Structured Sparse Models

Case I: Group Sparse Beamforming for Network Power Minimization Case II: Sparsity Control for Massive Device Connectivity



# Case I: Group Sparse Beamforming for Network Power Minimization

## **Network power consumption**

- **Goal:** Design green dense Cloud-RANs
- Prior works: Physical-layer transmit power consumption
  - Wireless power control: [Chiang, et al., FT 08], [Qian, et al., TWC 09], [Sorooshyari, et al., TON 12], ...
  - Transmit beamforming: [Sidiropoulos and Luo, TSP 2006], [Yu and Lan, TSP 07], [Gershman, et al., SPMag 10],...
- Challenge:
  - Network power consumption:
    - Radio access units, fronthaul links, etc.



17

#### **Network adaptation**

- Goal: Provide a holistic approach to minimize network power consumption (including RRHs, fronthaul links, etc.)
- Key observation: Spatial and temporal mobile data traffic variation



#### **Network adaptation:** adaptively switch off network entities to save power

# System model

• The received signal at the k-th MU is given by

$$y_k = \sum_{l=1}^{L} \mathbf{h}_{kl}^{\mathsf{H}} \mathbf{v}_{lk} s_k + \sum_{i \neq k} \sum_{l=1}^{L} \mathbf{h}_{kl}^{\mathsf{H}} \mathbf{v}_{li} s_i + n_k, \forall k$$

- $\mathbf{h}_{kl} \in \mathbb{C}^{N_l}$ : channel propagation between MU k and RRH l
- $\mathbf{v}_{lk} \in \mathbb{C}^{N_l}$ : transmit beamforming vector from the l-th RRH to k-th MU
- Per-RRH transmit power constraint:  $C = \left\{ \mathbf{v}_{lk} : \sum_{k=1}^{K} \|\mathbf{v}_{lk}\|_2^2 \le P_l, \forall l \right\}$
- The signal-to-interference-plus-noise ratio (SINR) for MU  $SINR_{k} = \frac{|\mathbf{h}_{k}^{\mathsf{H}}\mathbf{v}_{k}|^{2}}{\sum_{i \neq k} |\mathbf{h}_{k}^{\mathsf{H}}\mathbf{v}_{i}|^{2} + \sigma_{k}^{2}} \geq \gamma_{k}, \forall k.$   $\mathbf{h}_{k} \triangleq [\mathbf{h}_{k1}^{T}, \dots, \mathbf{h}_{kL}^{T}]^{T} \in \mathbb{C}^{N}$   $\mathbf{v}_{k} \triangleq [\mathbf{v}_{1k}^{T}, \mathbf{v}_{2k}^{T}, \dots, \mathbf{v}_{Lk}^{T}]^{T} \in \mathbb{C}^{N}$   $N = \sum_{l=1}^{L} N_{l}$ (19)

## **Network power consumption**

Continuous function: Transmit power consumption

$$T(\mathbf{v}) = \sum_{l=1}^{L} \sum_{k=1}^{K} \frac{1}{\eta_{l}} \|\mathbf{v}_{lk}\|_{2}^{2}$$

- $\eta_l > 0$ : Drain inefficiency coefficient of the radio frequency power amplifier
- Combinatorial function: Relative fronthaul link power consumption  $F(\mathcal{T}(\mathbf{v})) = \sum_{l=1}^{L} P_l^c I(\operatorname{Supp}(\mathbf{v}) \cap \mathcal{V}_{\ell} \neq \emptyset)$ 
  - $\mathcal{V}_l = \{K \sum_{i=1}^{l-1} N_i + 1, \dots, K \sum_{i=1}^{l} N_i\}, \forall l : a \text{ partition of } \mathcal{V} = \{1, \dots, KN\}$
  - $P_l^c \ge 0$ : relative fronthaul link power consumption, i.e., the static power saving when both the fronthaul link and the corresponding RRH are switched off

20

• Aggregative beamformer: 
$$\mathbf{v} = [\underbrace{\mathbf{v}_{11}^T, \dots, \mathbf{v}_{1K}^T}_{\tilde{\mathbf{v}}_1^T}, \dots, \underbrace{\mathbf{v}_{L1}^T, \dots, \mathbf{v}_{LK}^T}_{\tilde{\mathbf{v}}_L}]^T$$
  
GLOBECOM 2017 TUTORIAL

# **Problem formulation**

Goal: Minimize network power consumption in Cloud-RAN

 $\underset{\mathbf{v}\in\mathcal{C}}{\text{minimize}} \quad F(\operatorname{Supp}(\mathbf{v})) + T(\mathbf{v}) \quad \text{combinatorial composite function}$ 

subject to 
$$\frac{|\mathbf{h}_k^{\mathsf{H}} \mathbf{v}_k|^2}{\sum_{i \neq k} |\mathbf{h}_k^{\mathsf{H}} \mathbf{v}_i|^2 + \sigma_k^2} \ge \gamma_k, \forall k.$$

- Simultaneously control both the combinatorial function F and the continuous function T
- Challenges: Non-convex, high-dimensional
- Prior algorithms: heuristic or computationally expensive [Philipp, et. al, TSP 13], [Luo, et. al, JSAC 13], [Quek, et. al, TWC 13],...

21

# **Finding structured solutions**





• Switch off the l-th RRH  $\rightarrow \tilde{\mathbf{v}}_l = \mathbf{0}$ , i.e., group sparsity structure in  $\mathbf{v}$ 

[Ref] Y. Shi, J. Zhang, and K. B. Letaief, "Group sparse beamforming for green Cloud-RAN," *IEEE Trans. Wireless Commun.*, vol. 13, no. 5, pp. 2809-2823, May 2014. 2014. (The 2016 Marconi Prize Paper Award)

GLOBECOM 2017 TUTORIAL

# **Group sparse beamforming algorithm**

 Adaptive RRH selection: Switch off the RRHs with small coefficients in the aggregative beamformers



Stage I: The tightest convex positively homogeneous lower bound of the combinatorial composite objective function (network power)

23

#### Group sparse beamforming algorithm

Stage III: Transmit power minimization via coordinated beamforming

$$\begin{array}{ll} \underset{\mathbf{v}\in\mathcal{C}}{\operatorname{minimize}} & T(\mathbf{v};\mathcal{A}^{\star}) & \underset{\mathsf{RH set}}{\operatorname{Active}} \\ \text{subject to} & \frac{|\mathbf{h}_{k}^{\mathsf{H}}\mathbf{v}_{k}|^{2}}{\sum_{i\neq k}|\mathbf{h}_{k}^{\mathsf{H}}\mathbf{v}_{i}|^{2}+\sigma_{k}^{2}} \geq \gamma_{k}, \forall k. \quad \mathbf{h}_{k} = [\mathbf{h}_{lk}] \in \mathbb{C}^{|\mathcal{A}^{\star}|N} \end{array}$$

# Summary of group sparse beamforming

SINR constraints can be reformulated as second-order cone constraints

$$f_k(\mathbf{v}) = \sqrt{\sum_{i \neq k} |\mathbf{h}_k^{\mathsf{H}} \mathbf{v}_i|^2 + \sigma_k^2 - \frac{1}{\sqrt{\gamma_k}} \Re(\mathbf{h}_k^{\mathsf{H}} \mathbf{v}_k) \le 0, \forall k. \quad \text{convex}}$$

- Key observation: phases of  $\mathbf{v}_k$ 's do not change objective and constraints
- Group sparse beamforming via convex programming



- Stage I: Group sparsity inducing via solving one convex program
- Stage II: A sequence of convex feasibility problems need to be solved
- Stage III: Coordinated beamforming via solving one convex program

# The power of group sparse beamforming

Group spare beamforming for green Cloud-RAN (10 RRHs, 15 MUs)



**Conclusions:** 

 I) Enabling flexible network adaptation;
 Offering efficient algorithm design via convex programming
 Empowering wide applications

## **Extension: Wireless cooperative networks**

 A comprehensive consideration: I) Active BS selection; 2) Transmit beamforming; 3) Backhaul data assignment



Network power consumption:
I) Static power consumption at BSs
2) Transmit power consumption from BSs
3) Traffic-dependent backhaul power consumption

# Layered group sparse beamforming

- Proposal: A generalized layered group sparse beamforming (LGSBF) modeling framework
  - To induce the layered sparsity structure in the beamformers



[Ref] X. Peng, Y. Shi, J. Zhang, and K. B. Letaief, "Layered group sparse beamforming for cache-enabled wireless networks," *IEEE Trans. Commun.*, to appear.

#### GLOBECOM 2017 TUTORIAL

# Case II: Sparsity Control for Massive Device Connectivity

## **Motivation**

- Downlink transmission with massive devices: user admission control
- Uplink machine-type communication (e.g., IoT devices) with sporadic traffic: massive device connectivity



**Sporadic traffic:** only a small fraction of potentially large number of devices are active

## **Downlink user admission control**

Coordinated beamforming for transmission power minimization

$$\begin{array}{ll} \underset{\mathbf{v}\in\mathcal{C}}{\text{minimize}} & \|\mathbf{v}\|_{2}^{2} \\ \text{subject to} & \frac{|\mathbf{h}_{k}^{\mathsf{H}}\mathbf{v}_{k}|^{2}}{\sum_{i\neq k}|\mathbf{h}_{k}^{\mathsf{H}}\mathbf{v}_{i}|^{2}+\sigma_{k}^{2}} \geq \gamma_{k}, \forall k. \end{array}$$

SINR constraints can be reformulated as second-order cone constraints

$$f_k(\mathbf{v}) = \sqrt{\sum_{i \neq k} |\mathbf{h}_k^{\mathsf{H}} \mathbf{v}_i|^2 + \sigma_k^2} - \frac{1}{\sqrt{\gamma_k}} \Re(\mathbf{h}_k^{\mathsf{H}} \mathbf{v}_k) \le 0, \forall k.$$

• Key observation: phases of  $\mathbf{v}_k$ 's do not change objective and constraints

# Infeasibility

Set of convex inequalities:

$$f_1(\mathbf{v}) \le 0, \dots, f_m(\mathbf{v}) \le 0, \quad \mathbf{v} \in \mathcal{C}$$

- Power minimization problem is generally infeasible: large number of users, unfavorable channel conditions, high data rate requirements,...
- Goal: Maximize the user capacity, i.e., the number of admitted users
- Solution: Choose v to minimize the number of violated inequalities  $\begin{array}{l} \underset{\mathbf{v} \in \mathcal{C}, s}{\text{minimize}} \quad \|s\|_{0} \\ \\ \text{subject to} \quad f_{i}(\mathbf{v}) \leq s_{i}, i = 1, \dots, m \end{array}$

$$s_i \ge 0, i = 1, \dots, m$$

32

#### Sparse optimization for user admission control

Average number of admitted mobile users versus target SINR



IR2A: iterative reweighted  $\ell_2$ -algorithm  $\| {m s} \|_0 o \| {m s} \|_p (0$ 

MDR: membership deflation by convex relaxation (  $\|s\|_0 o \|s\|_1$ )

# Massive device connectivity in uplink

- Cellular network with a massive number of devices
  - Single-cell uplink with a BS with M antennas; Block-fading channel with coherence time T; Total N single-antenna devices,  $S \subset \{1, 2, ..., N\}$  devices are active (sporadic traffic)

$$\boldsymbol{y}(\ell) = \sum_{i \in \mathcal{S}} \boldsymbol{h}_i q_i(\ell) + \boldsymbol{n}(\ell), \ell = 1, \dots, L$$

Define diagonal activity matrix  $A \in \mathbb{R}^{N imes N}$  with  $|\mathcal{S}|$  non-zero diagonals
 Y = QAH + N

•  $Y = [y(1), \dots, y(L)]^T \in \mathbb{C}^{L \times M}$  denotes the received signal across M antennas

- $H = [h_1, \dots, h_N]^T \in \mathbb{C}^{N \times M}$ : channel matrix from all devices to the BS
- $\boldsymbol{Q} = [\boldsymbol{q}(1), \dots, \boldsymbol{q}(L)]^T \in \mathbb{C}^{L \times N}$ : known transmit pilot matrix from devices

# **Challenges of massive connectivity**

#### Sporadic traffic

- User activity detection is a key requirement
- Massive number of devices mean pilot sequences cannot be orthogonal
- Device identification is a sparse optimization problem
- Prior works on compressed sensing for massive connectivity: I) Without channel estimation [Zhang-Luo-Guo'13]; 2) Joint user activity detection and channel estimation [Xu-Rao-Lau'15]; 3) Approximate Message Passing (AMP) [Wei'16]
- Proposal: User activity detection and channel estimation based on the compressed sensing techniques (without channel distribution prior)

# **Group sparsity estimation**

- Let  $\Theta^{\natural} = AH \in \mathbb{C}^{N \times M}$  (unknown): group sparsity in rows  $\theta^{[i]}$  of matrix  $\Theta^{\natural}$ 
  - Simultaneous user activity detection and channel estimation
- Let  $Q \in \mathbb{C}^{L \times N}$  be a known measurement operator (pilot matrix)
- Observe  $Y = Q \Theta^{\natural} + N$
- Find estimate  $\hat{\Theta}$  by solving a **convex program**

 $\underset{\boldsymbol{\Theta} \in \mathbb{C}^{N \times M}}{\text{minimize}} \quad f(\boldsymbol{\Theta}) \quad \text{subject to} \quad \|\boldsymbol{Y} - \boldsymbol{Q}\boldsymbol{\Theta}\|_F \leq \epsilon$ 

•  $f(\Theta) = \sum_{i=1}^{N} \|\theta^{[i]}\|_2$  is mixed  $\ell_1/\ell_2$ -norm to reflect group sparsity structure

• Hope:  $\hat{\boldsymbol{\Theta}} = \boldsymbol{\Theta}^{\boldsymbol{\natural}}$ 

## **Sparse estimation for massive connectivity**

Normalized MSE versus pilot matrix length L



$$N = 100, M = 2, |\mathcal{S}| = 20$$

GLOBECOM 2017 TUTORIAL

## Summary: structured sparse models

Generalized structured sparse optimization for dense networks

 $\underset{\boldsymbol{z} \in \mathbb{C}^n}{\text{minimize}} \quad f(\boldsymbol{z}) := \alpha f_1(\text{Supp}(\boldsymbol{z})) + \beta f_2(\boldsymbol{z}) \quad \text{subject to} \quad \boldsymbol{z} \in \mathcal{C}$ 

- Supp(z) is the index set of non-zero coefficients of a vector z
- $f_1$ : combinatorial positive-valued set-function to control sparsity in  $\boldsymbol{z}$
- $f_2$ : continuous convex function to represent the system performance
- C: to model system constraints, e.g., QoS constraints



### Vignette B: Generalized Low-Rank Models

Case I: Low-Rank Matrix Completion for Topological Interference Management Case II: Extensions to Mobile Edge Caching, Distributed Computing and Index Coding



#### Case I: Topological Interference Management

#### **Interference channel**

• Channel model:  $y_i = h_{ii}x_i + \sum_{j \neq i} h_{ij}x_j + z_j, i = 1, ..., n$ 



capacity is unknown

Degrees-of-freedom: simplify the analysis; lead to physical insights

$$\mathsf{DoF} = \lim_{\mathsf{SNR} o \infty} rac{C(\mathsf{SNR})}{\log(\mathsf{SNR})}$$

# **Interference** alignment

Assume the channel coefficients change over time:

$$y_i(t) = h_{ii}(t)x_i(t) + \sum_{j \neq i} h_{ij}(t)x_j(t) + z_j(t)$$

• Consider T channel uses:  $X_i = [x_i(1), \dots, x_i(T)]^{\dagger}, Z_i = [z_i(1), \dots, z_i(T)]^{\dagger}$ 

$$Y_i = H_{ii}X_i + \sum_{i \neq j} H_{ij}X_j + Z_i \qquad H_{ij} = \begin{bmatrix} h_{ij}(1) & & \\ & \ddots & \\ & & h_{ij}(T) \end{bmatrix}$$

Transmitter j sends m information symbols  $S_j$  across T channel uses

 $X_j = V_j S_j$   $V_j \in \mathbb{C}^{T imes m}$  represents the precoding matrix

• The *i*-th interference term  $\sum_{j \neq i} H_{ij} V_j S_j$  lives in the range space of matrix  $[H_{i1}V_1 \ldots H_{i,i-1}V_{i-1} H_{i,i+1}V_{i+1} \ldots H_{in}V_n]_{T \times (n-1)m}$ 

# **Interference alignment**

• Interference alignment condition: find precoding matrices and decoding matrices  $V_j \in \mathbb{C}^{T \times m}, U_i \in \mathbb{C}^{m \times T}$  such that

 $\operatorname{rank}(U_{i}H_{ii}V_{i}) = m, \forall i = 1, \dots, n$  $U_{i}[H_{i1}V_{1} \dots H_{i,i-1}V_{i-1} H_{i,i+1}V_{i+1} \dots H_{in}V_{n}] = 0, \forall i = 1, \dots, n$ 

• Each user can send m symbols: interference free across T channel uses

$$\mathsf{DoF} = m$$

• Intuition: The interference has aligned onto a T-m dimensional subspace at each receiver.

# **Interference alignment**

- Everyone gets half the cake [Cadambe-Jafar'08]: DoF = n/2
  - Diagonal  $H_{ij}$  are time-varying and generic,  $T \to \infty$ , m = T/2 is almost surely asymptotically achievable

#### Remarks:

- Require very long block lengths
- Require the channels to vary generically over time
- Require full knowledge of the channel coefficients of every link in the network, at each transmitter and for all times!

Can we exploit the interference alignment principle in practical systems?

## **Practical interference management**

- Goal: Exploit the IA principle under realistic assumptions on CSIT
- Prior works: Abundant CSIT is relaxed CSIT
  - Perfect CSIT [Cadambe and Jafar, TIT 08]
  - Delayed CSIT [Maddah-Ali and Tse, TIT 12]
  - Alternating CSIT [Tandon, et al., TIT 13], partial and imperfect CSIT [Shi, et al., TSP 14],...
- Curses: CSIT is rarely abundant (due to training & feedback overhead)

 Start here?
 Applicable?
 Prior works

 No CSIT
 CSIT -->
 Perfect CSIT

# **Topological interference alignment**

Blessings: partial connectivity in dense wireless networks



- Approach: topological interference management (TIM) [Jafar, TIT 14]
  - Maximize the achievable DoF: only based on the network topology information (no CSIT)

## Index coding approach

Theorem [Jafar, TIT 14]: under linear (vector space) solutions, TIM problem and index coding problem are equivalent



Only a few index coding problems have been solved!

#### GLOBECOM 2017 TUTORIAL

#### Low-rank matrix completion approach

- **Goal:** Deliver one data stream per user over N time slots
  - Transmitter i transmits  $\mathbf{v}_i s_i$ , receiver i receives

 $\mathbf{y}_i = \mathbf{v}_i h_{ii} s_i + \sum_{(i,j) \in S, i \neq j} \mathbf{v}_j h_{ij} s_j + \mathbf{n}_i \quad S:$  network connectivity pattern

• Receiver decodes symbol  $s_i$  by projecting  $\mathbf{y}_i$  onto the space  $\mathbf{u}_i \in \mathbb{C}^N$ 

$$\mathbf{u}_{i}^{\mathsf{H}}\mathbf{y}_{i} = \mathbf{u}_{i}^{\mathsf{H}}\mathbf{v}_{i}h_{ii}s_{i} + \sum_{(i,j)\in\mathcal{S}, i\neq j}\mathbf{u}_{i}^{\mathsf{H}}\mathbf{v}_{j}h_{ij}s_{j} + \mathbf{u}_{i}^{\mathsf{H}}\mathbf{n}_{i}$$

Topological interference alignment condition

$$M_{ij} = \begin{cases} \mathbf{u}_i^{\mathsf{H}} \mathbf{v}_i = 1, & \forall i, \\ \mathbf{u}_i^{\mathsf{H}} \mathbf{v}_j = 0, & \forall i \neq j, (i, j) \in \mathcal{S}, \\ \star, & \text{otherwise.} \end{cases} \longrightarrow \begin{cases} \mathbf{u}_i^{\mathsf{H}} \mathbf{y}_i = h_{ii} s_i + \mathbf{u}_i^{\mathsf{H}} \mathbf{n}_i \\ \mathsf{DoF} = \frac{1}{\mathrm{rank}(\mathbf{M})} = \frac{1}{N} \end{cases}$$

#### **Generalized low-rank model**

Generalized low-rank optimization with network side information



• rank(M) equals the inverse of achievable degrees-of-freedom (DoF)  $\frac{1}{N}$ 



(a) Topological interference alignment



#### side information $\ensuremath{\mathcal{S}}$

(b) Side information modeling matrix  $\boldsymbol{M}$ 

#### GLOBECOM 2017 TUTORIAL

## **Nuclear norm fails**

Convex relaxation fails: always returns the identity matrix!

 $\begin{array}{ll} \underset{\boldsymbol{M} \in \mathbb{C}^{K \times K}}{\text{minimize}} & \|\boldsymbol{M}\|_{*} \\ \text{subject to} & M_{ii} = 1, i = 1, \dots, K \\ & M_{ij} = 0, \forall (i,j) \in \mathcal{S} \end{array}$ 



• Fact:  $Trace(M) \le \|M\|_*$ 

Proposal: Solve the nonconvex problems directly with rank adaptivity

# **Numerical results**





Recover all the optimal DoF results for the special TIM problems in []afar '14]





Provide numerical insights (optimal/lowerbound) for the general TIM problems

#### Phase transitions for topological IA



The heat map indicates the empirical probability of success (blue=0%; yellow=100%)

#### **Extension to cache networks**

- Cache gains: load balancing, interference cancellation/alignment, cooperative transmission, ...
- Placement phase: populate caches (prefetching)
- Delivery phase: reveal request, deliver content



53

# **Caching at receivers**

Cached receivers: topological interference alignment

$$\mathbf{u}_{i}^{\mathsf{H}} \mathbf{v}_{i} = 1, \quad i = 1, \cdots, K$$
  

$$\mathbf{u}_{i}^{\mathsf{H}} \mathbf{v}_{j} = 0, \quad \forall j \notin \mathcal{V}_{i}, (i, j) \in \mathcal{S}$$

$$\overset{\text{fog data center}}{\overset{\text{shared link}}{\overset{\text{tog data center}}{\overset{\text{tog data data data}}{\overset{\text{tog data data}}{\overset{\text{tog data data}}{\overset{\text{tog data data}}{\overset{\text{tog data}}}{\overset{\text{tog data}}{\overset{\text{tog data}}{\overset{\text{tog data}}{\overset{\text{tog data}}{\overset{\text{tog data}}{\overset{\text{tog data}}{\overset{\text{tog data}}}{\overset{\text{tog data}}{\overset{\text{tog data}}{\overset{\text{tog data}}{\overset{\text{tog data}}{\overset{tog data}}{\overset{tog data}}{\overset{tog data}}{\overset{\overset{tog$$

## When index coding meets low-rank matrices



Low-rank model offers a new way to investigate these problems!

#### GLOBECOM 2017 TUTORIAL

## Summary: generalized low-rank models

Generalized low-rank optimization for dense edge networks

 $\min_{\boldsymbol{M} \in \mathbb{C}^{m \times n}} \quad \operatorname{rank}(\boldsymbol{M}) \quad \text{subject to} \ \boldsymbol{M} \in \mathcal{D}$ 

 D encodes network side information, e.g., cached files, network topology, computed intermediate values for data shuffling



(a) TIM problem.



(b) Cache-aided interference channel.



(c) Side information modeling matrix.

#### GLOBECOM 2017 TUTORIAL

# **Concluding remarks**

#### Structured sparse models

- Group sparse optimization offers a principled way for network adaptation, e.g., to minimize network power consumption
- Sparsity control and estimation is powerful to support massive device connectivity

#### Future directions:

More application scenarios: IoTs,V2X ...

# **Concluding remarks**

#### Generalized low-rank models

- Low-rank matrix completion provides a systematic approach to investigate the topological interference alignment problem
- Low-rank model is powerful for performance optimization in mobile edge caching and distributed computing systems

#### Future directions:

More applications: blind deconvolution for IoT, big data analytics (e.g., ranking)

# **To learn more...**

- Web: http://shiyuanming.github.io/sparserank.html
- Papers:
- Y. Shi, J. Zhang, and K. B. Letaief, "Group sparse beamforming for green Cloud-RAN," IEEE Trans. Wireless Commun., vol. 13, no. 5, pp. 2809-2823, May 2014. (The 2016 Marconi Prize Paper Award)
- Y. Shi, J. Zhang, B. O'Donoghue, and K. B. Letaief, "Large-scale convex optimization for dense wireless cooperative networks," *IEEE Trans. Signal Process.*, vol. 63, no. 18, pp. 4729-4743, Sept. 2015. t. 2015. (The 2016 IEEE Signal Processing Society Young Author Best Paper Award)
- Y. Shi, J. Zhang, K. B. Letaief, B. Bai and W. Chen, "Large-scale convex optimization for ultra-dense Cloud-RAN," IEEE Wireless Commun. Mag., pp. 84-91, Jun. 2015.
- Y. Shi, J. Zhang, W. Chen, and K. B. Letaief, "Generalized sparse and low-rank optimization for ultra-dense networks," *IEEE Commun. Mag.*, to appear.

## To learn more...

- Y. Shi, J. Zhang, and K. B. Letaief, "Optimal stochastic coordinated beamforming for wireless cooperative networks with CSI uncertainty," IEEE Trans. Signal Process., vol. 63,, no. 4, pp. 960-973, Feb. 2015.
- Y. Shi, J. Zhang, and K. B. Letaief, "Robust group sparse beamforming for multicast green Cloud-RAN with imperfect CSI," IEEE Trans. Signal Process., vol. 63, no. 17, pp. 4647-4659, Sept. 2015.
- Y. Shi, J. Cheng, J. Zhang, B. Bai, W. Chen and K. B. Letaief, "Smoothed  $L_p$ -minimization for green Cloud-RAN with user admission control," IEEE J. Select. Areas Commun., vol. 34, no. 4, Apr. 2016.
- Y. Shi, J. Zhang, and K. B. Letaief, "Low-rank matrix completion for topological interference management by Riemannian pursuit," IEEE Trans. Wireless Commun., vol. 15, no. 7, Jul. 2016.
- Y. Shi, B. Mishra, and W. Chen, "Topological interference management with user admission control via Riemannian optimization," IEEE Trans. Wireless Commun., to appear.
- X. Peng, Y. Shi, J. Zhang, and K. B. Letaief, "Layered group sparse beamforming for cache-enabled wireless networks," IEEE Trans. Commun., to appear. 60