Nonconvex Demixing from Bilinear Measurements
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Outline

= Motivations

» Blind deconvolution meets blind demixing

= Two Vignettes:
> Implicitly regularized Wirtinger flow
% Why nonconvex optimization?
% Implicitly regularized Wirtinger flow
> Matrix optimization over manifolds
% Why manifold optimization?

% Riemannian optimization for blind demixing



Blind deconvolution
blind demixing




Blind deconvolution

® |[n many science and engineering problems, the observed signal can be
modeled as:

z(t) = f(t) * g(t)

where x is the convolution operator MU

> f(t) is a physical signal of interest
> g(t) is the impulse response of the sensory system

= Applications: astronomy, neuroscience, image processing, computer
vision, wireless communications, microscopy data processing,...

= Blind deconvolution: estimate f(t) and g(t) given z(t)



Image deblurring

" Blurred images due to camera shake can be modeled as a convolution of
the latent sharp image and a kernel capturing the motion of the camera

kernel

Fig. credit: Chi

natural image

How to find the high-resolution image and the blurring kernel simultaneously?
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Microscopy data analysis

= Defects: the electronic structure of the material is contaminated by
randomly and sparsely distributed “defects”

How to determine the locations and characteristic signatures of the defects?
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Blind demixing

" The received measurement consists of the sum of all convolved signals

Z@— fz( )*gz( )

IE!I

low-latency communication for loT convolutional dictionary learning (multi kernel)

fa=Cuzs

= Applications: loT, dictionary learning, neural spike sorting,...

= Blind demixing: estimate {f;(¢)} and {g:(?)} given z(t)



Convolutional dictionary learning

" The observation signal is the superposition of several convolutions

Z@ 1fz( ) * gi(t)

e -
IHI 5

experiment on synthetic image experiment on microscopy image

Fig. credit:Wright

How to recover multiple kernels and the corresponding activation signals?



Low-latency communications for loT

= Packet structure: metadata (preamble (PA) and header (H)) and data

Metadata
/ \

/ \

PA H Data PA H Data

long data packet in current wireless systems short data packet in loT

= Proposal: transmitters just send overhead-free signals, and the receiver
can still extract the information son o

() = X0y filt) % gi(1) e R e

How to detect data without channel estimation in multi-user environments?
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Demixing from bilinear model?

2(t) = 30—y filt) * gi(t)



Bilinear model

® Translate into the frequency domain...

z=>"._ fi®g €Cm

= Subspace assumptions: f; and gilie in some known low-dimensional
subspaces

fi=AaleC™ g, =BhleCm
where A; = [a;1, - , @i, € C"*L, B =1[by,--- b, € C™*Fand L, K < m
ij " eN(0,T) {b,} : partial Fourier basis
= Demixing from bilinear measurements:

find {z;},{h;} subjectto z; = ZS bihixz;a;j, 1<j<m L

=1



An equivalent view: low-rank factorization

= Lifting: introduce M} = h’ 2" to linearize constraints
2= Yo bihizl ay; = Y05, b; (hix]")ay;
N——

ENE BN =N III_IIII = M € CKxL

I [ ] ]
= Low-rank matrix optimization problem
subject to z; = 21:1 b;M;a;,;, j=1,---,m
rank(Mi) — 1, 1= 1, T, S, 12



Convex relaxation

= Ling and Strohmer (TIT°2017) proposed to solve the nuclear norm
minimization problem:

S
minimize || M || « i.i.d.
; a,;cjllv CN(O,I)

-]
subject to z; = Zb;Mkakj, j=1,--,m  {b,}:partial Fourier basis
k=1

> Sample-efficient: m > s?max{K, L} log® m samples for exact recovery if
{b; }is incoherent w.r.t. {h}}

» Computational-expensive: SDP in the lifting space

Can we solve the nonconvex matrix optimization problem directly?



Vignettes A: Implicitly regularized Wirtinger flow
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Why nonconvex optimization?




Nonconvex problems are everywhere

= Empirical risk minimization is usually nonconvex
minimize f(x;0)

low-rank matrix completion

blind deconvolution/demixing

dictionary learning

phase retrieval "
mixture models
deep learning

vV V V V V V V



Nonconvex optimization may be super scary

= Challenges: saddle points, local optima, bumps,...
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= Fact: they are usually solved on a daily basis via simple algorithms like
(stochastic) gradient descent



Statistical models come to rescue

= Blessings: when data are generated by certain statistical models,
problems are often much nicer than worst-case instances

statistical models

benign
landscape

; Fig. credit: Chen
tractable algorithms



First-order stationary points

= Saddle points and local minima:

> (0 local minimum
Amin(VZf(2)) { =0 local minimum or saddle point
< 0 strict saddle point

Local minima Saddle points/local maxima



First-order stationary points

= Applications: PCA, matrix completion, dictionary learning etc.

» Local minima: either all local minima are global minima or all local minima
as good as global minima

> Saddle points: very poor compared to global minima; several such points

Strict saddle point Non-strict saddle point

= Bottomline:local minima much more desirable than saddle points

: )
How to escape saddle points efficiently: .




Statistics meets optimization

= Proposal: separation of landscape analysis and generic algorithm design

landscape analysis [RE—_rG_—_y; SN ccneric algorithms

(statistics) B R (optimization)

all the saddle points
can be escaped

all local minima are
global minima

dictionary learning (Sun et al. ’15)

phase retrieval (Sun et al. ’16)

matrix completion (Ge et al. ’16)
synchronization (Bandeira et al. ’1 6)
inverting deep neural nets (Hand et al. ’17)

gradient descent (Lee et al. ’[6)

trust region method (Sun et al. ’16)
perturbed GD (Jin et al. ’17)

cubic regularization (Agarwal et al. ’17)
Natasha (Allen-Zhu ’17)

Issue: conservative computational guarantees for specific problems
(e.g., phase retrieval, blind deconvolution, matrix completion)
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Solution: blending landscape and convergence analysis

initial guess "
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basin o} attraction basin of attraction

implicitly regularized Wirtinger flow
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A natural least-squares formulation

= Goal: demixing from bilinear measurements

Given: Y; = ijhgmf*a@jj 1<7<m

m S
2
minimize f b Bk Qs — 1.
{hk:},{mk;} Z kL @k y;)

j=1 k=1
» Pros: computational-efficient in the natural parameter space

» Cons: f(-) is nonconvex: bilinear constraint, scaling ambiguity
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Wirtinger flow

= | east-square minimization viaWirtinger flow (Candes, Li, Soltanolkotabi

ZZ (b5 haapar; - y;)°

1=1 k=1

minimize f(h,x)
{hri{zr}

> Spectral initialization by top eigenvector of

//,-"—‘w\
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Two-stage approach
= [nitialize within local basin sufficiently close to ground-truth (i.e.,
strongly convex, no saddle points/ local minima)

= |terative refinement via some iterative optimization algorithms
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Gradient descent theory

= Two standard conditions that enable geometric convergence of GD
> (local) restricted strong convexity

> (local) smoothness

26



Gradient descent theory

= Question: which region enjoys both strong convexity and smoothness!?

> xis not far away from xF (convexity)
» x is incoherent w.r.t. sampling vectors (incoherence region for smoothness)

Prior works suggest enforcing regularization (e.g., regularized

loss [Ling & Strohmer’|7]) to promote incoherence

27



Our finding: WF is implicitly regularized

= WF (GD) implicitly forces iterates to remain incoherent with {a;; }

% t ot f 1 y
Max1<i<s,1<j<m ‘a’ij (aimi — $Z)| S Zerogrrmm i l2

» cannot be derived from generic optimization theory

> relies on finer statistical analysis for entire trajectory of GD

region of local strong
convexity and smoothness

28



Key proof idea: leave-one-out analysis

f. {’\ —— a‘%!‘
{7} N
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war.t. ay

® introduce leave-one-out iterates a:ﬁ’(l) by running WF without I-th sample

= |eave-one-out iterate $f=(”is independent of ai

(1)

. t .
= |eave-one-outiteratex,'’ ~ true iterate x!

= z! is nearly independent of (i.e., nearly orthogonal to) a;
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Theoretical guarantees

= With i.i.d. Gaussian design, WF (regularization-free) achieves
> Incoherence

a;; (affﬂi - Q’E)| N \/510;3/2 mHmEHQ

> Near-linear convergence rate

_— = =

. t
dlSt(Zt,Zh) S—/ (1 o lgn) loglzm

= Summary:

» Sample size: m 2> s?max{K, L}poly logm

_ —1
> Stepsize: 71 X S Lys. n 2 (sm) [Ling & Strohmer’17]

» Computational complexity: O(slog %) vs. O(smlog %) [Ling & Strohmer’17]

30



Numerical results

= stepsize: 77 = 0.1 10~
= number of users: s = 10 o
= sample size: m, = 50K < B
Ej 10
o
10—10
—13 | | |
10 0 200 400 600 800

Tteration count

linear convergence:

WEF attains - accuracy within O(slog!) iterations

31



Is carefully-designed initialization necessary? |

-~
Fas L -
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Numerical results of randomly initialized WF

i=1,---,8 (K=1L) 10-

. 100
= stepsize: 77 = 0.1
= number of users: s = 10 102 i
3 i
= sample size: ', = 50K © 104 i
= jnitial point: R

Stage 11

0 100 200 300 400 500

Tteration count

Randomly initialized WF enters local basin within O(slog/') iterations




Analysis: population dynamics

1? X
“

Population level (infinite sample)

= hi™' =h! -
O PAE

R Vi, F(h,x) := E[Va, f(h,x)] = ||&]|2h; — (€7 x;)h},

20 10 G0 80

VhiF(ht, :;ct)

10"

Iteration count

= Signal strength: oy, = (hf, l/w_fhf)HhEHQ, w! is the alighment parameter

= Size of residual component: By := Hhi — (h%,1/wiht)R] ,

m State evolution
Qpttt = (I =n)ap: + T?ng/(aig + Big) } - T, = O(slog K)

T, local basin
Bpger = (L =m)Pn; dist(h, ", hi) <7
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Analysis: population dynamics

10° b —

Population level (infinite sample)

1
;™ =zl —n—5V,, F(h', z")
niIE

Ve, F(h, ) := E[Vy, f(h,z)] = ||hi|3z; — (h*h;)z:

10-4
30

1 wiat )||a:h||2, w! is the alignment parameter

zt — (zf, wlat)a!

= Signal strength: oy == (z;,

= Size of residual component: 3, := ‘
B 2

m State evolution
Ofmz,+1 — (1 - 77)0%3 + nah:/(ai: + 18121,:) T’Y — O(s log K)
—)
JB;BE‘H — (1 — 7?)/6:3:

- local basin
diSt(Gci 7, :JEE) <7z 35



Analysis: finite-sample analysis

S [ hi* ] _ [ h% —n/l|lzfll2 - Vi, F (2) } N [ AEH PR (Vhiﬁgig - gh.,-.g(Z))

’i ;" z; —n/l|lzill2 - Vo, F (2) n/IIhillz - (Va (2)) |
=m(z}) =r(z})
Fig. credit: Chen “‘ | " = Population-level analysis holds approximately if
T, % :
L rEh<m(e

= 7(z])is well-controlled if z!is independent of {a;;}

= Key analysis ingredient: show z!is “nearly
independent” of each {a,;,}
A J
r(z;)is well-controlled
in this region 36



Theoretical guarantees

= With i.i.d. Gaussian design, WF with random initialization achieves

. t—T
dist(zt,20) S 7 (1= 1) 7 28], t> T,

Summary:

> Stepsize: 71 < st
> Sample size: m > s’max{K, L}polylogm

> Stage l: reach local basin dist(2¢, 2%) < within T, = O(slog K )iterations
> Stage ll: linear convergence O(slog 1)

» Computational complexity: O(slog K + slog %)
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Vignettes B: Matrix optimization over manifolds

Optimization over Riemannian Manifolds (non-Euclidean geometry)

38



Why manifold optimization?
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What is manifold optimization?

= Manifold (or manifold-constrained) optimization problem

minimize f(M) subject to M € M
MeCmxn

> f:R™*™ — R is a smooth function

> M is a Riemannian manifold: spheres, orthonormal bases (Stiefel), rotations,
positive definite matrices, fixed-rank matrices, Euclidean distance matrices,
semidefinite fixed-rank matrices, linear subspaces (Grassmann), phases,
essential matrices, fixed-rank tensors, Euclidean spaces...

)

T
(i)

A
W
Tl i
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Convergence results of manifold optimization

= Convergence guarantees for Riemannian trust regions
» Global convergence to second-order critical points
» Quadratic convergence rate locally
> Reach e-second order stationary point ||gradf(z)|| < e andV?2f(z) = —eI

in O(1/¢3)iterations under Lipschitz assumptions [Cartis & Absil’ | 6]

Escape strict saddle points via finding second-order stationary point

41



Recent applications of manifold optimization

= High-dimensional data analysis: matrix/tensor completion/recovery:
[Vandereycken’| 3], [Boumal-Absil’|5], [Kasai-Mishra’| 6]; phase retrieval:
[Sun-Qu-Wright'l 7]; community detection: [Boumal’l6], [Bandeira-
Boumal-Voroninski’l 6],...

= Machine and deep learning: Gaussian mixture models: [Hosseini-
Sra’l5]; dictionary learning: [Sun-Qu-Wright'|7]; deep metric learning:
[Roy-Mhammedi-Harandi’ [ 8],...

" Wireless transceivers design: [Shi-Zhang-Letaief’| 6], [ Yu-Shen-Zhang-K.
B. Letaief’ 1 6], [Shi-Mishra-Chen’17],...

Exploit manifold geometry to address non-convex problems

42



The power of manifold optimization paradigms

= Generalize Euclidean gradient (Hessian) to Riemannian gradient (Hessian)

Vamf(X®) = Py (Yf(x(k)))
t

Riemannian Gradient Euclidean Gradient

X(k—i—l) _ %X(M (_a(k:)va(X(k)))

Retraction Operator

" We need Riemannian geometry: |) linearize search space M into a

tangent space TxM ;?2) pick a metric on TxM to give intrinsic notions of
gradient and Hessian

43



An excellent book
Optimization algorithms on matrix manifolds

A Matlab toolbox

Manopt _ A Tuterial & Forum L Apout B Contact
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Taking a close loolk at gradient descent
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Optimization on the manifold: main idea
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Optimization on the manifold: main idea
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Optimization on the manifold: main idea
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Optimization on the manifold: main idea
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Example: Rayleigh quotient

= Optimization over (sphere) manifold S*~1 = {z ¢ R” : 272 = 1}
miarjleilré}}ze f(zx) = —a2T Az subject to z’2z =1
» The cost function is smooth on S*~1, symmetric matrix A € R"*"
o Compute the Euclidean gradient in R™
Vf(xr) =—-2Ax
= Step 2: Compute the Riemannian gradient on §»—1 via projecting V f(z)to

the tangent space using the orthogonal projector Proj_u = (I — z27)u

gradf(z) = Proj,Vf(z) = —2(I — zaT)Ax

50



Riemannian optimization for blind demixing

51



Blind demixing via low-rank optimization

= Linear mapping: from bilinear model to linear model
S .
Yi = Z,,. 1b3hh$h a;j, 1<j<m
> bihixia;; = (bja;;, hix;)

’LJ’

> Ai(X3) = {(bjai; hiai) oy = {(Ay, Xi)} oy, X = hix]

133 3_1?

= Proposal: (non-convex) low-rank optimization problem

5 2
22 : minimize H ZkzlAk(sz) — ’!JH

Wke(CNXK
subject to rank(Wy)=1, k=1,---,s

» Challenges: nonconvex constraints, complex asymmetric matrices

52



Blind demixing via Riemannian optimization

= Handle complex asymmetric matrices

> Define linear map 7, : S{V XN +K) _, ¢Las

Onxn Ak
NARDY) (Jrir Yi), Yie € Y § Orxn Ok

= Matrix optimization over the product manifolds
o s 2
mintmize || 32,70 -9
subject to rank(My) =1, k=1,---,s

> Key observations: rank-one Hermitian positive semidefinite matrices is a
manifold; multiple rank-one constraints construct a manifold
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Riemannian optimization over product manifolds

= Elementwise extension principles

» The manifold topology of the product manifold is equivalent to the product
topology

optimization over individual manifolds M
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Element-wise optimization-related ingredients

= Riemannian optimization for blind demixing

minimize
(N+K)
M, €S+

|3t o

subject to rank(My) =1, k=1,---,s

minimize o, e || Yo ney T (wiwt!) — yl?

Computational space M

Quotient space M/ ~

Riemannian metric ¢y,

Horizontal space H,,, M
Horizontal space projection
Riemannian gradient grad,, f
Riemannian Hessian Hessq, [[1w, ]
Retraction Ry, @ T M — M

(C*\ + K

CN+K/SU(1)

G (G- Thor) = Tr(Cop g Mo g + M. Cuore)

Nw, € CNTE T}ﬂ,k’wg. = wf?}wk

H‘Hw,‘\M(Tiw;\-) = M), — AW}, 4 = (w}jnw,\, — T,Jﬂ,kwg.)/‘zw}"w
graclwf — Hﬂwkuu(%v‘lﬂk‘r(v))

IIL‘ﬁHwk.f.[wak] — H'Hwkﬁ/[(%vak.r(v)[nwk])

Rw&- (nwk) = W} + N,
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Numerical results

= Optimize over the product of multiple rank-one Hermitian positive
semidefinite matrices

107 ¢

—_— PRTR
r[:f "LE‘ — PRTR
HI—II'I‘ 1:;'-1 === RCD
a_ 108 . w FIHT
%;.- ‘\ b;{ ]_|:||2 \‘\I“
=< 10! ‘.. s -
0 - .
[T] 10~ [ 10 <
- |
= . £
10~ - 10-2
0 20 40 60 80 0 5 10 15 20 25 30

number of iterations time (s)

Riemannian algorithms: |) exploit the rank structure in a principled way; 2)
develop second-order algorithms systematically; 3) scalable, SVD-free



Concluding remarks

= Implicitly regularized Wirtinger flow

> Implicit regularization: vanilla gradient descent automatically forces iterates to
stay incoherent

> Even simplest nonconvex methods are remarkably efficient under suitable
statistical models

= Matrix optimization over manifolds

> Exploit the manifold geometry of multiple rank-one Hermitian positive
semidefinite matrices

> Develop second-order algorithms systematically: escape saddle points, quadratic
convergence rate

= Future works: sparse blind demixing, convolutional dictionary learning
[Wright, CVPR’| 7], convolutional neural network [Papyan, et al., SPM"18],...
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