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Motivations: Blind deconvolution meets 
blind demixing
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Blind deconvolution

 In many science and engineering problems, the observed signal can be
modeled as:

where is the convolution operator

 is a physical signal of interest

 is the impulse response of the sensory system

 Applications: astronomy, neuroscience, image processing, computer
vision, wireless communications, microscopy data processing,…

 Blind deconvolution: estimate and given
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Image deblurring

 Blurred images due to camera shake can be modeled as a convolution of
the latent sharp image and a kernel capturing the motion of the camera
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kernel

natural image 

How to find the high-resolution image and the blurring kernel simultaneously?

Fig. credit: Chi



Microscopy data analysis

 Defects: the electronic structure of the material is contaminated by
randomly and sparsely distributed “defects”
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How to determine the locations and characteristic signatures of the defects?

Doped Graphene

Fig. credit: Wright



Blind demixing

 The received measurement consists of the sum of all convolved signals

 Applications: IoT, dictionary learning, neural spike sorting,…

 Blind demixing: estimate and given
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low-latency communication for IoT convolutional dictionary learning (multi kernel)



 The observation signal is the superposition of several convolutions

Convolutional dictionary learning
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experiment on synthetic image experiment on microscopy image

How to recover multiple kernels and the corresponding activation signals?

Fig. credit: Wright



Low-latency communications for IoT

 Packet structure: metadata (preamble (PA) and header (H)) and data

 Proposal: transmitters just send overhead-free signals, and the receiver
can still extract the information

9

long data packet in current wireless systems short data packet in IoT

How to detect data without channel estimation in multi-user environments?



Demixing from bilinear model?
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Bilinear model

 Translate into the frequency domain…

 Subspace assumptions: and lie in some known low-dimensional
subspaces

where , and

 Demixing from bilinear measurements:
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: partial Fourier basis



An equivalent view: low-rank factorization

 Lifting: introduce to linearize constraints

 Low-rank matrix optimization problem
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Convex relaxation

 Ling and Strohmer (TIT’2017) proposed to solve the nuclear norm
minimization problem:

 Sample-efficient: samples for exact recovery if
is incoherent w.r.t.

 Computational-expensive: SDP in the lifting space
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Can we solve the nonconvex matrix optimization problem directly?

: partial Fourier basis
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Vignettes A: Implicitly regularized Wirtinger flow



Why nonconvex optimization?
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Nonconvex problems are everywhere

 Empirical risk minimization is usually nonconvex

 low-rank matrix completion

 blind deconvolution/demixing

 dictionary learning

 phase retrieval

 mixture models

 deep learning

 …
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Nonconvex optimization may be super scary

 Challenges: saddle points, local optima, bumps,…

 Fact: they are usually solved on a daily basis via simple algorithms like
(stochastic) gradient descent
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Fig. credit: Chen



Statistical models come to rescue

 Blessings: when data are generated by certain statistical models,
problems are often much nicer than worst-case instances
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Fig. credit: Chen



First-order stationary points

 Saddle points and local minima:

19Local minima Saddle points/local maxima



First-order stationary points

 Applications: PCA, matrix completion, dictionary learning etc.

 Local minima: either all local minima are global minima or all local minima
as good as global minima

 Saddle points: very poor compared to global minima; several such points

 Bottomline: local minima much more desirable than saddle points
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How to escape saddle points efficiently?



Statistics meets optimization

 Proposal: separation of landscape analysis and generic algorithm design
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landscape analysis 
(statistics)

generic algorithms 
(optimization)

all local minima are 
global minima 

all the saddle points
can be escaped 

• dictionary learning (Sun et al. ’15)
• phase retrieval (Sun et al. ’16)
• matrix completion (Ge et al. ’16)
• synchronization (Bandeira et al. ’16)
• inverting deep neural nets (Hand et al. ’17)
• ...

• gradient descent (Lee et al. ’16)
• trust region method (Sun et al. ’16)
• perturbed GD (Jin et al. ’17)
• cubic regularization (Agarwal et al. ’17)
• Natasha (Allen-Zhu ’17)
• ...

Issue:  conservative computational guarantees for specific problems 
(e.g., phase retrieval, blind deconvolution, matrix completion)

Fig. credit: Chen



Solution: blending landscape and convergence analysis
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implicitly regularized Wirtinger flow



A natural least-squares formulation

 Goal: demixing from bilinear measurements

 Pros: computational-efficient in the natural parameter space

 Cons: is nonconvex: bilinear constraint, scaling ambiguity
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Given:



Wirtinger flow   

 Least-square minimization via Wirtinger flow (Candes, Li, Soltanolkotabi ’14)

 Spectral initialization by top eigenvector of

 Gradient iterations
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Two-stage approach

 Initialize within local basin sufficiently close to ground-truth (i.e.,
strongly convex, no saddle points/ local minima)

 Iterative refinement via some iterative optimization algorithms
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Fig. credit: Chen



Gradient descent theory

 Two standard conditions that enable geometric convergence of GD

 (local) restricted strong convexity

 (local) smoothness
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Gradient descent theory

 Question: which region enjoys both strong convexity and smoothness?

 is not far away from (convexity)

 is incoherent w.r.t. sampling vectors (incoherence region for smoothness)
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Prior works suggest enforcing regularization (e.g., regularized 
loss [Ling & Strohmer’17]) to promote incoherence



Our finding: WF is implicitly regularized

 WF (GD) implicitly forces iterates to remain incoherent with

 cannot be derived from generic optimization theory

 relies on finer statistical analysis for entire trajectory of GD
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region of local strong 
convexity and smoothness



Key proof idea: leave-one-out analysis

 introduce leave-one-out iterates by runningWF without l-th sample

 leave-one-out iterate is independent of

 leave-one-out iterate true iterate

 is nearly independent of (i.e., nearly orthogonal to)
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Theoretical guarantees

 With i.i.d. Gaussian design,WF (regularization-free) achieves

 Incoherence

 Near-linear convergence rate

 Summary:
 Sample size:

 Stepsize: vs. [Ling & Strohmer’17]

 Computational complexity: vs. [Ling & Strohmer’17]
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Numerical results

 stepsize:

 number of users:

 sample size:
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linear convergence:
WF attains    - accuracy within             iterations



Is carefully-designed initialization necessary?
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Numerical results of randomly initialized WF
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Randomly initialized WF enters local basin within iterations

 stepsize:

 number of users:

 sample size:

 initial point:



Analysis: population dynamics

 Signal strength: , is the alignment parameter

 Size of residual component:

 State evolution
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Population level (infinite sample)

local basin 



Analysis: population dynamics

 Signal strength:

 Size of residual component:

 State evolution
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, is the alignment parameter

Population level (infinite sample)

local basin 



Analysis: finite-sample analysis

 Population-level analysis holds approximately if

 is well-controlled if is independent of

 Key analysis ingredient: show is “nearly
independent” of each
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Fig. credit: Chen

is well-controlled
in this region



Theoretical guarantees

 With i.i.d. Gaussian design,WF with random initialization achieves

Summary:

 Stepsize:

 Sample size:

 Stage I: reach local basin within iterations

 Stage II: linear convergence

 Computational complexity:
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Vignettes B: Matrix optimization over manifolds
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Optimization over Riemannian Manifolds (non-Euclidean geometry)



Why manifold optimization?
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What is manifold optimization?

 Manifold (or manifold-constrained) optimization problem

 is a smooth function

 is a Riemannian manifold: spheres, orthonormal bases (Stiefel), rotations,
positive definite matrices, fixed-rank matrices, Euclidean distance matrices,
semidefinite fixed-rank matrices, linear subspaces (Grassmann), phases,
essential matrices, fixed-rank tensors, Euclidean spaces...
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Convergence results of manifold optimization 

 Convergence guarantees for Riemannian trust regions

 Global convergence to second-order critical points

 Quadratic convergence rate locally

 Reach -second order stationary point and

in iterations under Lipschitz assumptions [Cartis & Absil’16]
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Escape strict saddle points via finding second-order stationary point



Recent applications of manifold optimization

 High-dimensional data analysis: matrix/tensor completion/recovery:
[Vandereycken’13], [Boumal-Absil’15], [Kasai-Mishra’16]; phase retrieval:
[Sun-Qu-Wright’17]; community detection: [Boumal’16], [Bandeira-
Boumal-Voroninski’16],…

 Machine and deep learning: Gaussian mixture models: [Hosseini-
Sra’15]; dictionary learning: [Sun-Qu-Wright’17]; deep metric learning:
[Roy-Mhammedi-Harandi’18],…

 Wireless transceivers design: [Shi-Zhang-Letaief’16], [Yu-Shen-Zhang-K.
B. Letaief’16], [Shi-Mishra-Chen’17],…
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Exploit manifold geometry to address non-convex problems



The power of manifold optimization paradigms

 Generalize Euclidean gradient (Hessian) to Riemannian gradient (Hessian)

 We need Riemannian geometry: 1) linearize search space into a
tangent space ; 2) pick a metric on to give intrinsic notions of
gradient and Hessian
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Riemannian Gradient Euclidean Gradient

Retraction Operator
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An excellent book
Optimization algorithms on matrix manifolds

A Matlab toolbox



Taking a close look at gradient descent
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Optimization on the manifold: main idea
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Optimization on the manifold: main idea
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Optimization on the manifold: main idea
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Optimization on the manifold: main idea
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Example: Rayleigh quotient

 Optimization over (sphere) manifold

 The cost function is smooth on , symmetric matrix

 Step 1: Compute the Euclidean gradient in

 Step 2: Compute the Riemannian gradient on via projecting to

the tangent space using the orthogonal projector
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Riemannian optimization for blind demixing
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Blind demixing via low-rank optimization

 Linear mapping: from bilinear model to linear model





 Proposal: (non-convex) low-rank optimization problem

 Challenges: nonconvex constraints, complex asymmetric matrices
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Blind demixing via Riemannian optimization

 Handle complex asymmetric matrices

 Define linear map as

 Matrix optimization over the product manifolds

 Key observations: rank-one Hermitian positive semidefinite matrices is a
manifold; multiple rank-one constraints construct a manifold

53



54

Riemannian optimization over product manifolds

 Elementwise extension principles

 The manifold topology of the product manifold is equivalent to the product
topology
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Element-wise optimization-related ingredients

 Riemannian optimization for blind demixing
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Numerical results

 Optimize over the product of multiple rank-one Hermitian positive
semidefinite matrices
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Riemannian algorithms: 1) exploit the rank structure in a principled way; 2) 
develop second-order algorithms systematically; 3) scalable, SVD-free



Concluding remarks
 Implicitly regularized Wirtinger flow
 Implicit regularization: vanilla gradient descent automatically forces iterates to

stay incoherent

 Even simplest nonconvex methods are remarkably efficient under suitable
statistical models

 Matrix optimization over manifolds
 Exploit the manifold geometry of multiple rank-one Hermitian positive

semidefinite matrices

 Develop second-order algorithms systematically: escape saddle points, quadratic
convergence rate

 Future works: sparse blind demixing, convolutional dictionary learning
[Wright, CVPR’17], convolutional neural network [Papyan, et al., SPM’18],…
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