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Motivations: Blind deconvolution meets 
blind demixing
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Blind deconvolution

 In many science and engineering problems, the observed signal can be
modeled as:

where is the convolution operator

 is a physical signal of interest

 is the impulse response of the sensory system

 Applications: astronomy, neuroscience, image processing, computer
vision, wireless communications, microscopy data processing,…

 Blind deconvolution: estimate and given
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Image deblurring

 Blurred images due to camera shake can be modeled as a convolution of
the latent sharp image and a kernel capturing the motion of the camera
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kernel

natural image 

How to find the high-resolution image and the blurring kernel simultaneously?

Fig. credit: Chi



Microscopy data analysis

 Defects: the electronic structure of the material is contaminated by
randomly and sparsely distributed “defects”
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How to determine the locations and characteristic signatures of the defects?

Doped Graphene

Fig. credit: Wright



Blind demixing

 The received measurement consists of the sum of all convolved signals

 Applications: IoT, dictionary learning, neural spike sorting,…

 Blind demixing: estimate and given
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low-latency communication for IoT convolutional dictionary learning (multi kernel)



 The observation signal is the superposition of several convolutions

Convolutional dictionary learning
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experiment on synthetic image experiment on microscopy image

How to recover multiple kernels and the corresponding activation signals?

Fig. credit: Wright



Low-latency communications for IoT

 Packet structure: metadata (preamble (PA) and header (H)) and data

 Proposal: transmitters just send overhead-free signals, and the receiver
can still extract the information
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long data packet in current wireless systems short data packet in IoT

How to detect data without channel estimation in multi-user environments?



Demixing from bilinear model?
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Bilinear model

 Translate into the frequency domain…

 Subspace assumptions: and lie in some known low-dimensional
subspaces

where , and

 Demixing from bilinear measurements:
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: partial Fourier basis



An equivalent view: low-rank factorization

 Lifting: introduce to linearize constraints

 Low-rank matrix optimization problem
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Convex relaxation

 Ling and Strohmer (TIT’2017) proposed to solve the nuclear norm
minimization problem:

 Sample-efficient: samples for exact recovery if
is incoherent w.r.t.

 Computational-expensive: SDP in the lifting space
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Can we solve the nonconvex matrix optimization problem directly?

: partial Fourier basis
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Vignettes A: Implicitly regularized Wirtinger flow



Why nonconvex optimization?
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Nonconvex problems are everywhere

 Empirical risk minimization is usually nonconvex

 low-rank matrix completion

 blind deconvolution/demixing

 dictionary learning

 phase retrieval

 mixture models

 deep learning

 …
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Nonconvex optimization may be super scary

 Challenges: saddle points, local optima, bumps,…

 Fact: they are usually solved on a daily basis via simple algorithms like
(stochastic) gradient descent
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Fig. credit: Chen



Statistical models come to rescue

 Blessings: when data are generated by certain statistical models,
problems are often much nicer than worst-case instances
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Fig. credit: Chen



First-order stationary points

 Saddle points and local minima:

19Local minima Saddle points/local maxima



First-order stationary points

 Applications: PCA, matrix completion, dictionary learning etc.

 Local minima: either all local minima are global minima or all local minima
as good as global minima

 Saddle points: very poor compared to global minima; several such points

 Bottomline: local minima much more desirable than saddle points
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How to escape saddle points efficiently?



Statistics meets optimization

 Proposal: separation of landscape analysis and generic algorithm design
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landscape analysis 
(statistics)

generic algorithms 
(optimization)

all local minima are 
global minima 

all the saddle points
can be escaped 

• dictionary learning (Sun et al. ’15)
• phase retrieval (Sun et al. ’16)
• matrix completion (Ge et al. ’16)
• synchronization (Bandeira et al. ’16)
• inverting deep neural nets (Hand et al. ’17)
• ...

• gradient descent (Lee et al. ’16)
• trust region method (Sun et al. ’16)
• perturbed GD (Jin et al. ’17)
• cubic regularization (Agarwal et al. ’17)
• Natasha (Allen-Zhu ’17)
• ...

Issue:  conservative computational guarantees for specific problems 
(e.g., phase retrieval, blind deconvolution, matrix completion)

Fig. credit: Chen



Solution: blending landscape and convergence analysis
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implicitly regularized Wirtinger flow



A natural least-squares formulation

 Goal: demixing from bilinear measurements

 Pros: computational-efficient in the natural parameter space

 Cons: is nonconvex: bilinear constraint, scaling ambiguity
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Given:



Wirtinger flow   

 Least-square minimization via Wirtinger flow (Candes, Li, Soltanolkotabi ’14)

 Spectral initialization by top eigenvector of

 Gradient iterations
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Two-stage approach

 Initialize within local basin sufficiently close to ground-truth (i.e.,
strongly convex, no saddle points/ local minima)

 Iterative refinement via some iterative optimization algorithms
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Fig. credit: Chen



Gradient descent theory

 Two standard conditions that enable geometric convergence of GD

 (local) restricted strong convexity

 (local) smoothness
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Gradient descent theory

 Question: which region enjoys both strong convexity and smoothness?

 is not far away from (convexity)

 is incoherent w.r.t. sampling vectors (incoherence region for smoothness)
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Prior works suggest enforcing regularization (e.g., regularized 
loss [Ling & Strohmer’17]) to promote incoherence



Our finding: WF is implicitly regularized

 WF (GD) implicitly forces iterates to remain incoherent with

 cannot be derived from generic optimization theory

 relies on finer statistical analysis for entire trajectory of GD
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region of local strong 
convexity and smoothness



Key proof idea: leave-one-out analysis

 introduce leave-one-out iterates by runningWF without l-th sample

 leave-one-out iterate is independent of

 leave-one-out iterate true iterate

 is nearly independent of (i.e., nearly orthogonal to)
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Theoretical guarantees

 With i.i.d. Gaussian design,WF (regularization-free) achieves

 Incoherence

 Near-linear convergence rate

 Summary:
 Sample size:

 Stepsize: vs. [Ling & Strohmer’17]

 Computational complexity: vs. [Ling & Strohmer’17]
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Numerical results

 stepsize:

 number of users:

 sample size:
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linear convergence:
WF attains    - accuracy within             iterations



Is carefully-designed initialization necessary?
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Numerical results of randomly initialized WF
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Randomly initialized WF enters local basin within iterations

 stepsize:

 number of users:

 sample size:

 initial point:



Analysis: population dynamics

 Signal strength: , is the alignment parameter

 Size of residual component:

 State evolution
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Population level (infinite sample)

local basin 



Analysis: population dynamics

 Signal strength:

 Size of residual component:

 State evolution
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, is the alignment parameter

Population level (infinite sample)

local basin 



Analysis: finite-sample analysis

 Population-level analysis holds approximately if

 is well-controlled if is independent of

 Key analysis ingredient: show is “nearly
independent” of each

36

Fig. credit: Chen

is well-controlled
in this region



Theoretical guarantees

 With i.i.d. Gaussian design,WF with random initialization achieves

Summary:

 Stepsize:

 Sample size:

 Stage I: reach local basin within iterations

 Stage II: linear convergence

 Computational complexity:
37



Vignettes B: Matrix optimization over manifolds
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Optimization over Riemannian Manifolds (non-Euclidean geometry)



Why manifold optimization?
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What is manifold optimization?

 Manifold (or manifold-constrained) optimization problem

 is a smooth function

 is a Riemannian manifold: spheres, orthonormal bases (Stiefel), rotations,
positive definite matrices, fixed-rank matrices, Euclidean distance matrices,
semidefinite fixed-rank matrices, linear subspaces (Grassmann), phases,
essential matrices, fixed-rank tensors, Euclidean spaces...
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Convergence results of manifold optimization 

 Convergence guarantees for Riemannian trust regions

 Global convergence to second-order critical points

 Quadratic convergence rate locally

 Reach -second order stationary point and

in iterations under Lipschitz assumptions [Cartis & Absil’16]
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Escape strict saddle points via finding second-order stationary point



Recent applications of manifold optimization

 High-dimensional data analysis: matrix/tensor completion/recovery:
[Vandereycken’13], [Boumal-Absil’15], [Kasai-Mishra’16]; phase retrieval:
[Sun-Qu-Wright’17]; community detection: [Boumal’16], [Bandeira-
Boumal-Voroninski’16],…

 Machine and deep learning: Gaussian mixture models: [Hosseini-
Sra’15]; dictionary learning: [Sun-Qu-Wright’17]; deep metric learning:
[Roy-Mhammedi-Harandi’18],…

 Wireless transceivers design: [Shi-Zhang-Letaief’16], [Yu-Shen-Zhang-K.
B. Letaief’16], [Shi-Mishra-Chen’17],…
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Exploit manifold geometry to address non-convex problems



The power of manifold optimization paradigms

 Generalize Euclidean gradient (Hessian) to Riemannian gradient (Hessian)

 We need Riemannian geometry: 1) linearize search space into a
tangent space ; 2) pick a metric on to give intrinsic notions of
gradient and Hessian
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Riemannian Gradient Euclidean Gradient

Retraction Operator



44

An excellent book
Optimization algorithms on matrix manifolds

A Matlab toolbox



Taking a close look at gradient descent
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Optimization on the manifold: main idea
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Optimization on the manifold: main idea
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Optimization on the manifold: main idea
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Optimization on the manifold: main idea

49



Example: Rayleigh quotient

 Optimization over (sphere) manifold

 The cost function is smooth on , symmetric matrix

 Step 1: Compute the Euclidean gradient in

 Step 2: Compute the Riemannian gradient on via projecting to

the tangent space using the orthogonal projector
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Riemannian optimization for blind demixing
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Blind demixing via low-rank optimization

 Linear mapping: from bilinear model to linear model





 Proposal: (non-convex) low-rank optimization problem

 Challenges: nonconvex constraints, complex asymmetric matrices
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Blind demixing via Riemannian optimization

 Handle complex asymmetric matrices

 Define linear map as

 Matrix optimization over the product manifolds

 Key observations: rank-one Hermitian positive semidefinite matrices is a
manifold; multiple rank-one constraints construct a manifold
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Riemannian optimization over product manifolds

 Elementwise extension principles

 The manifold topology of the product manifold is equivalent to the product
topology
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Element-wise optimization-related ingredients

 Riemannian optimization for blind demixing
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Numerical results

 Optimize over the product of multiple rank-one Hermitian positive
semidefinite matrices
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Riemannian algorithms: 1) exploit the rank structure in a principled way; 2) 
develop second-order algorithms systematically; 3) scalable, SVD-free



Concluding remarks
 Implicitly regularized Wirtinger flow
 Implicit regularization: vanilla gradient descent automatically forces iterates to

stay incoherent

 Even simplest nonconvex methods are remarkably efficient under suitable
statistical models

 Matrix optimization over manifolds
 Exploit the manifold geometry of multiple rank-one Hermitian positive

semidefinite matrices

 Develop second-order algorithms systematically: escape saddle points, quadratic
convergence rate

 Future works: sparse blind demixing, convolutional dictionary learning
[Wright, CVPR’17], convolutional neural network [Papyan, et al., SPM’18],…
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