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Outline

 Motivations

 Big data, IoT,AI

 Three vignettes:

 Federated machine learning

 Federated model aggregation

 Over-the-air computation

 Joint device selection and beamforming design

 Sparse and low-rank optimization

 Difference-of-convex programming algorithm
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Intelligent IoT ecosystem
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Internet of  Things

Mobile Internet

Tactile Internet

Develop computation, 
communication & AI technologies: 
enable smart IoT applications to make 

low-latency decision on streaming data

(Internet of Skills)



Intelligent IoT applications
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Autonomous vehicles

Smart health Smart agriculture

Smart home Smart city

Smart drones



Challenges

 Retrieve or infer information from high-dimensional/large-scale data
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limited processing ability 
(computation, storage, ...)

2.5 exabytes of data
are generated every day (2012)

exabyte zettabyte      yottabyte...??

We’re interested in the information rather 
than the data

Challenges:
 High computational cost
 Only limited memory is available
 Do NOT want to compromise statistical accuracy



High-dimensional data analysis
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(big) data

Models: (deep) 
machine learning

Methods:
1. Large-scale optimization
2. High-dimensional statistics
3. Device-edge-cloud computing



Deep learning: next wave of AI

7

image 
recognition

speech 
recognition

natural language
processing



Cloud-centric machine learning

8



9

The model lives in the cloud
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We train models in the cloud
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Make predictions in the cloud
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Gather training data in the cloud
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And make the models better



Why edge machine learning?
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Learning on the edge

 The emerging high-stake AI applications: low-latency, privacy,…
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phones drones robots

glasses self driving cars

where to compute?



Mobile edge AI

 Processing at “edge” instead of “cloud”
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Edge computing ecosystem

 “Device-edge-cloud” computing system for mobile AI applications

Grid Power

Local 
Processing

Power Supply 

Discharge

Wireless Network

Active Servers Inactive Servers

Cloud Center

User Devices

Edge 
device

Charge

on-device 
computing

mobile edge 
computing

cloud 
computing

MEC server

Shannon (communication)
meets Turing (computing)
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Edge machine learning

 Edge ML: both ML inference and training processes are pushed down
into the network edge (bottom)
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On-device inference
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Deep model compression

 Layer-wise deep neural network pruning via sparse optimization
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sparse optimization

[Ref] T. Jiang, X. Yang, Y. Shi, and H. Wang, “Layer-wise deep neural network pruning via iteratively reweighted optimization,” 
in Proc. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP), Brighton, UK, May 2019.



Edge distributed inference

 Wireless MapReduce for on-device distributed inference process
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distributed computing modelwireless distributed computing system

[Ref] K. Yang, Y. Shi, and Z. Ding, “Data shuffling in wireless distributed computing via low-rank optimization,” 
IEEE Trans. Signal Process., vol. 67, no. 12, pp. 3087-3099, Jun., 2019.



This talk: On-device training
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Vignettes A: Federated machine learning
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Federated computation and learning

 Goal: imbue mobile devices with state of the art machine learning
systems without centralizing data and with privacy by default

 Federated computation: a server coordinates a fleet of participating
devices to compute aggregations of devices’ private data

 Federated learning: a shared global model is trained via federated
computation
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Federated learning
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7

Federated learning
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Federated learning
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9

Federated learning
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0

Federated learning
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1

Federated learning

31



3
2

Federated learning
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Federated learning: applications

 Applications: where the data is generated at the mobile devices and is 
undesirable/infeasible to be transmitted to centralized servers
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financial services smart retail smart healthcarekeyboard prediction



Federated learning over wireless networks

 Goal: train a shared global model via wireless federated computation
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System challenges
 Massively distributed
 Node heterogeneity

Statistical challenges
 Unbalanced
 Non-IID
 Underlying structure

on-device distributed federated learning system



How to efficiently aggregate models over wireless networks?
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Vignettes B: Over-the-air computation
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Model aggregation via over-the-air computation

 Aggregating local updates from 
mobile devices

 weighted sum of messages

 mobile devices and one     antenna 
base station

 is the set of 
selected devices

 is the data size at device 37

Over-the-air computation: 
explore signal superposition of 

a wireless multiple-access 
channel for model aggregation



Over-the-air computation

 The estimated value before post-processing at the BS

 is the transmitter scalar,      is the received beamforming vector,    is a 
normalizing factor

 target function to be estimated: 

 recovered aggregation vector entry via post-processing:                  

 Model aggregation error:

 Optimal transmitter scalar: 
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Problem formulation

 Key observations:

 More selected devices yield fast convergence rate of the training process

 Aggregation error leads to the deterioration of model prediction accuracy
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Problem formulation

 Goal: maximize the number of selected devices under target MSE 
constraint

 Joint device selection and received beamforming vector design

 Improve convergence rate in the training process, guarantee prediction 
accuracy in the inference process

 Mixed combinatorial optimization problem
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Vignettes C: Sparse and low-rank optimization
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Sparse and low-rank optimization

 Sparse and low-rank optimization for on-device federated learning
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multicasting 
duality

sum of feasibilities

matrix lifting



Problem analysis

 Goal: induce sparsity while satisfying fixed-rank constraint

 Limitations of existing methods

 Sparse optimization: iterative reweighted algorithms are parameters sensitive

 Low-rank optimization: semidefinite relaxation (SDR) approach (i.e., drop
rank-one constraint) has the poor capability of returning rank-one solution
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Difference-of-convex functions representation

 Ky Fan norm [Fan, PNAS’1951]: the sum of largest- absolute values

 is a permutation of ,where

44

PNAS’1951

convex function 



Difference-of-convex functions representation

 DC representation for sparsity function

 DC representation for rank-one positive semidefinite matrix

 where

[Ref] J.-y. Gotoh, A. Takeda, and K. Tono, “DC formulations and algorithms for sparse optimization
problems,” Math. Program., vol. 169, pp. 141– 176, May 2018.

45

algorithmic 
advantages?



A DC representation framework

 A two-step framework for device selection

 Step 1: obtain the sparse solution such that the objective value achieves
zero through increasing from to
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zero?



A DC representation framework

 Step II: feasibility detection

 Ordering in descending order as

 Increasing from to , choosing as

 Feasibility detection via DC programming
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zero?



DC algorithm with convergence guarantees

 and : minimize the difference of two strongly convex functions

 e.g., and

 The DC algorithm via linearizing the concave part

 converge to a critical point with speed
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Numerical results

 Convergence of the proposed DC algorithm for problem
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Numerical results

 Probability of feasibility with different algorithms
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Numerical results

 Average number of selected devices with different algorithms
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Numerical results

 Performance of proposed fast model aggregation in federated learning

 Training an SVM classifier on CIFAR-10 dataset
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Concluding remarks

 Wireless communication meets machine learning

 Over-the-air computation for fast model aggregation

 Sparse and low-rank optimization framework

 Joint device selection and beamforming design

 A unified DC programming framework

 DC representation for sparse and low-rank functions
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Future directions

 Federated learning

 security, provable guarantees, …

 Over-the-air computation

 channel uncertainty, synchronization,…

 Sparse and low-rank optimization via DC programming

 optimality, scalability,…
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To learn more…

 Papers:

 K. Yang, T. Jiang, Y. Shi, and Z. Ding, “Federated learning via over-the-air
computation,” IEEE Trans. Wireless Commun.,
DOI10.1109/TWC.2019.2961673, Jan. 2020.

 K. Yang, T. Jiang, Y. Shi, and Z. Ding, “Federated learning based on over-the-
air computation,” in Proc. IEEE Int. Conf. Commun. (ICC), Shanghai, China,
May 2019.
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http://shiyuanming.github.io/home.html
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