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Outline

= Motivations

>

Big data, loT, Al

= Three vignettes:

>

Federated machine learning

% Federated model aggregation

Over-the-air computation

% Joint device selection and beamforming design
Sparse and low-rank optimization

% Difference-of-convex programming algorithm



Intelligent loT ecosystem

(Internet of Skills)
Tactile Internet

Develop computation,
communication & Al technologies:
enable smart loT applications to make

low-latency decision on streaming data




Intelligent loT applications

Smart health Smart agriculture Smart drones



Challenges

= Retrieve or infer information from high-dimensional/large-scale data

2.5 exabytes of data
are generated every day (2012)

exabyte — zettabyte — yottabyte...??

We’re interested in the information rather
than the data

Challenges:
< High computational cost

Only limited memory is available
limited processing ability <+ Do NOT want to compromise statistical accuracy

(computation, storage, ...) 5



High-dimensional data analysis

statistical models

4
(big) data \‘ ‘J jndscape
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MOdeIS: (d eep) tractable algorithms
machine learning

Methods:
|. Large-scale optimization

2. High-dimensional statistics
3. Device-edge-cloud computing



Deep learning: next wave of Al
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Cloud-centric machine learning




The model lives in the cloud
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We train models in the cloud

training
data







Make predictions in the cloud
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Gather training data in the cloud




And make the models better

training
data



Why edge machine learning?



Learning on the edge

= The emerging high-stake Al applications: low-latency, privacy,...
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robots

where to compute?

glasses self driving cars



Mobile edge Al

" Processing at “edge” instead of “cloud”

t\nﬂ,\) '
Offline Power Sensors

Personalization




Edge computing ecosystem

= “Device-edge-cloud” computing system for mobile Al applications

Shannon (communication)

meets Turing (computing)
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Edge machine learning

= Edge ML: both ML inference and training processes are pushed down
into the network edge (bottom)

training/inference Low-Latency Low-Latency communication
ML for communication
.......... »
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On-device inference

20



Deep model compression

= [ayer-wise deep neural network pruning via sparse optimization

before pruning after pruning sparse optimization

pruning
synapses

minimize  ||W|;
WeR%e—1%dg

subject to || max(W7* X;_1,0) — Xy||p <€

-——>

pruning
neurons

[Ref] T. Jiang, X. Yang, Y. Shi, and H. Wang, “Layer-wise deep neural network pruning via iteratively reweighted optimization,”

in Proc. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP), Brighton, UK, May 2019.
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Edge distributed inference

" Wireless MapReduce for on-device distributed inference process
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[Ref] K. Yang, Y. Shi, and Z. Ding, “Data shuffling in wireless distributed computing via low-rank optimization,”

IEEE Trans. Signal Process., vol. 67, no. 12, pp. 3087-3099, Jun., 2019.
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This talk: On-device training
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Vignettes A: Federated machine learning
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Federated computation and learning

Goal: imbue mobile devices with state of the art machine learning
systems without centralizing data and with privacy by default

Federated computation: a server coordinates a fleet of participating
devices to compute aggregations of devices’ private data

Federated learning: a shared global model is trained via federated
computation

25



Federated learning

w



Federated learning

Many devices will be offline.

T
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Federated learning

Many devices will be offline.

1. Server selects
a sample of e.g.
100 online

devices. @

28



Federated learning

@

2. Selected devices
download the current
model parameters.
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Federated learning
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data
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Federated learning
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Federated learning




Federated learning: applications

= Applications: where the data is generated at the mobile devices and is
undesirable/infeasible to be transmitted to centralized servers
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Federated learning over wireless networks

" Goal:train a shared global model via wireless federated computation

Aggregation
st Ties, il

Base Station

2t

System challenges

» Massively distributed

Global » Node heterogeneity
Model

Statistical challenges

X/

s Unbalanced

s Non-IlID

Device 1 Device 2 Device M .
) e % Underlying structure

on-device distributed federated learning system
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How to efficiently aggregate models over wireless networks?
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Vignettes B: Over-the-air computation
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Model aggregation via over-the-air computation

= Aggregating local updates from
mobile devices

1
z > res | Dkl ZkGS |Dk|zk

> weighted sum of messages

» M mobile devices and one N-antenna
base station

> S CH{l,---, M}is the set of
selected devices

> |Dg| is the data size at device k

Aggregation

Base Station I

Over-the-air computation:
explore signal superposition of

a wireless multiple-access
channel for model aggregation
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Over-the-air computation

" The estimated value before post-processing at the BS

j = LmHy = LpH by 4 MM
g=_smy=_m Zies h;b;z; + Y
> b; is the transmitter scalar, m is the received beamforming vector, nis a
normalizing factor

> target function to be estimated: g = Zieg D |z

> recovered aggregation vector entry via post-processing:Z = ﬁ g
1ES v

= Model aggregation error:
. 20_2 2 2
MSE(g,g9;S,m) = % = %O mMax;cs |Di|2m—,&”2

(m"h)"
[mHh;|?

» Optimal transmitter scalar: b; = \/7|D;|
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Problem formulation

= Key observations:
> More selected devices yield fast convergence rate of the training process

> Aggregation error leads to the deterioration of model prediction accuracy

&~
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Problem formulation

= Goal: maximize the number of selected devices under target MSE
constraint

2
e |S|  subject to (I?Ea§<|D¢2 HJLW!;HQ) =7

> Joint device selection and received beamforming vector design

> Improve convergence rate in the training process, guarantee prediction
accuracy in the inference process

» Mixed combinatorial optimization problem

40



Vignettes C: Sparse and low-rank optimization
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Sparse and low-rank optimization

®  Sparse and low-rank optimization for on-device federated learning

multicasting Maximize S|

maximize |S]| X1

Smect dualit
4 subject to ||m||? — v;||lm"h;||> <0,ie S

. m|*
aubiect t D. 2“7 <
subject to (I:]:ﬂeag‘ il ||mHhi“2 =7 - H'mH2 >1

sum of feasibilities

7 : minimize x o
aamimize . Ielo M — it e
: H
subject to  Tr(M) — vy;h; Mh; < x;. _ subject to [|m||2 — yillm"h||? < a2, Vi

M =0, Tr(M) > 1 matrix lifting [m|* > 1
rank(M) =1
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Problem analysis

"  Goal:induce sparsity while satisfying fixed-rank constraint

2 : minimize llz||o
zERY MeCNXN

subject to Tr(M) — %-h!thz. < z;, Vi
M >0,Tr(M) >1
rank(M) =1

= Limitations of existing methods
> Sparse optimization: iterative reweighted algorithms are parameters sensitive

» Low-rank optimization: semidefinite relaxation (SDR) approach (i.e., drop
rank-one constraint) has the poor capability of returning rank-one solution
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Difference-of-convex functions representation

® Ky Fan k-norm [Fan, PNAS I951]: the sum of largest-£ absolute values

|”€E|”k — Zle \xﬁ(iﬂ convex function

> T is a permutation of {1,--- , M},where |z 1)| > -+ > |z (an)

MAXIMUM PROPERTIES AND INEQUALITIES FOR THE
EIGENVALUES OF COMPLETELY CONTINUOUS OPERATORS*

BY Ky Fan PNAS’1951

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NOTRE DAME

Communicated by John von Neumann, September 8, 1951
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Difference-of-convex functions representation

= DC representation for sparsity function
|l=llo = min{k : |[[y — [|z[lx = 0,0 <k < M}
= DC representation for rank-one positive semidefinite matrix

rank(M) =1« Tr(M) — || M|l =0

N algorithmic %% J
» where Tr(M) = (M d||M|s=01(M \
w r(M) Zi:l 0i(M) and || M|z = o1 (M) advantages! \J

[Ref] J.-y. Gotoh, A. Takeda, and K. Tono, “DC formulations and algorithms for sparse optimization
problems,” Math. Program., vol. 169, pp. 141- 176, May 2018.
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A DC representation framework

= A two-step framework for device selection

Induce sparsity structure Check the feasibility of

of vector « via solving selected devices via
problem g, solving problem #¢,

= Step |:obtain the sparse solution such that the objective value achieves
zero through increasing k from0to M

Ps1 migiﬂn}ize lz|: — |||z + Te(M) — | M|,  zero!

subject to Tr(M) —v;h'Mh; < z;,Vi=1,--- | M
M>=0, Tr(M)>1,z>0
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A DC representation framework

= Step ll:feasibility detection
» Ordering x in descending order as T (1) = - 2 Tx (M)
» Increasing k from 1to M, choosing Sl*! as{n(k),n(k+1),--- ,7(M)}

= Feasibility detection via DC programming

find M
subject to Tr(M) — v;hHMh; <0,Vi € SW
M > 0,Tr(M) > 1,rank(M) = 1

Psa - minli\ffnize Tr(M) — | M|, zerol

subject to Tr(M) — ;b Mh; <0,Vi € S

M =0, Tr(M)=>1
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DC algorithm with convergence guarantees

" Pg1and Pso: minimize the difference of two strongly convex functions

minimize f(X) = g(X) — h(X)

> €. g=Te(M) + Io,(M) + 2| M]|2% and h = | M + 2| M]3

® The DC algorithm via linearizing the concave part
Xt = arginfxcx ¢(X) — [R(XH) + (X — XM 05101 h)]

» converge to a critical point with speed O(1/t)
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Numerical results

= Convergence of the proposed DC algorithm for problem Zq,

o 107
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Numerical results

= Probability of feasibility with different algorithms

1 ISDR T v ' v ! v T li
—6— Global Optimization
Proposed DC
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Numerical results

= Average number of selected devices with different algorithms

20
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Numerical results

= Performance of proposed fast model aggregation in federated learning

> Training an SVM classifier on CIFAR-10 dataset

Training loss

14
L

4

I —&— Benchmark
—a— /| +58DR
Reweighted+SDR
~—e— Proposed DC

Prediction accuracy

—&— Benchmark
1 —a— £,+5DR
Reweighted+SDR
| —#— Proposed DC

0 5 10 15 20 25
Epoch Epoch

(a) Training loss (b) Relative prediction accuracy
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Concluding remarks

= Wireless communication meets machine learning

» Over-the-air computation for fast model aggregation

= Sparse and low-rank optimization framework

> Joint device selection and beamforming design

= A unified DC programming framework

» DC representation for sparse and low-rank functions
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Future directions

= Federated learning

> security, provable guaranteses, ...

= Over-the-air computation

> channel uncertainty, synchronization,...

= Sparse and low-rank optimization via DC programming

> optimality, scalability,...
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To learn more...

= Papers:

= K. Yang, T. Jiang, Y. Shi, and Z. Ding, “Federated learning via over-the-air
computation,’ IEEE Trans. Wireless Commun.,

DOI10.1109/TWC.2019.2961673, Jan. 2020.

= K.Yang, T Jiang, Y. Shi,and Z. Ding, “Federated learning based on over-the-
air computation,” in Proc. IEEE Int. Conf. Commun. (ICC), Shanghai, China,

May 2019.

http://shiyuanming.github.io/home.html
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