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Outline

 Motivations

 Big data, IoT,AI

 Three vignettes:

 Federated machine learning

 Federated model aggregation

 Over-the-air computation

 Joint device selection and beamforming design

 Sparse and low-rank optimization

 Difference-of-convex programming algorithm
2



Intelligent IoT ecosystem
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Internet of  Things

Mobile Internet

Tactile Internet

Develop computation, 
communication & AI technologies: 
enable smart IoT applications to make 

low-latency decision on streaming data

(Internet of Skills)



Intelligent IoT applications
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Autonomous vehicles

Smart health Smart agriculture

Smart home Smart city

Smart drones



Challenges

 Retrieve or infer information from high-dimensional/large-scale data
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limited processing ability 
(computation, storage, ...)

2.5 exabytes of data
are generated every day (2012)

exabyte zettabyte      yottabyte...??

We’re interested in the information rather 
than the data

Challenges:
 High computational cost
 Only limited memory is available
 Do NOT want to compromise statistical accuracy



High-dimensional data analysis
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(big) data

Models: (deep) 
machine learning

Methods:
1. Large-scale optimization
2. High-dimensional statistics
3. Device-edge-cloud computing



Deep learning: next wave of AI
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image 
recognition

speech 
recognition

natural language
processing



Cloud-centric machine learning
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The model lives in the cloud



10

We train models in the cloud
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Make predictions in the cloud
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Gather training data in the cloud
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And make the models better



Why edge machine learning?
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Learning on the edge

 The emerging high-stake AI applications: low-latency, privacy,…
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phones drones robots

glasses self driving cars

where to compute?



Mobile edge AI

 Processing at “edge” instead of “cloud”
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Edge computing ecosystem

 “Device-edge-cloud” computing system for mobile AI applications

Grid Power

Local 
Processing

Power Supply 

Discharge

Wireless Network

Active Servers Inactive Servers

Cloud Center

User Devices

Edge 
device

Charge

on-device 
computing

mobile edge 
computing

cloud 
computing

MEC server

Shannon (communication)
meets Turing (computing)
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Edge machine learning

 Edge ML: both ML inference and training processes are pushed down
into the network edge (bottom)
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On-device inference
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Deep model compression

 Layer-wise deep neural network pruning via sparse optimization
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sparse optimization

[Ref] T. Jiang, X. Yang, Y. Shi, and H. Wang, “Layer-wise deep neural network pruning via iteratively reweighted optimization,” 
in Proc. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP), Brighton, UK, May 2019.



Edge distributed inference

 Wireless MapReduce for on-device distributed inference process
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distributed computing modelwireless distributed computing system

[Ref] K. Yang, Y. Shi, and Z. Ding, “Data shuffling in wireless distributed computing via low-rank optimization,” 
IEEE Trans. Signal Process., vol. 67, no. 12, pp. 3087-3099, Jun., 2019.



This talk: On-device training
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Vignettes A: Federated machine learning
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Federated computation and learning

 Goal: imbue mobile devices with state of the art machine learning
systems without centralizing data and with privacy by default

 Federated computation: a server coordinates a fleet of participating
devices to compute aggregations of devices’ private data

 Federated learning: a shared global model is trained via federated
computation
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Federated learning
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7

Federated learning
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Federated learning
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Federated learning
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0

Federated learning
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1

Federated learning
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Federated learning
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Federated learning: applications

 Applications: where the data is generated at the mobile devices and is 
undesirable/infeasible to be transmitted to centralized servers
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financial services smart retail smart healthcarekeyboard prediction



Federated learning over wireless networks

 Goal: train a shared global model via wireless federated computation
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System challenges
 Massively distributed
 Node heterogeneity

Statistical challenges
 Unbalanced
 Non-IID
 Underlying structure

on-device distributed federated learning system



How to efficiently aggregate models over wireless networks?
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Vignettes B: Over-the-air computation
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Model aggregation via over-the-air computation

 Aggregating local updates from 
mobile devices

 weighted sum of messages

 mobile devices and one     antenna 
base station

 is the set of 
selected devices

 is the data size at device 37

Over-the-air computation: 
explore signal superposition of 

a wireless multiple-access 
channel for model aggregation



Over-the-air computation

 The estimated value before post-processing at the BS

 is the transmitter scalar,      is the received beamforming vector,    is a 
normalizing factor

 target function to be estimated: 

 recovered aggregation vector entry via post-processing:                  

 Model aggregation error:

 Optimal transmitter scalar: 
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Problem formulation

 Key observations:

 More selected devices yield fast convergence rate of the training process

 Aggregation error leads to the deterioration of model prediction accuracy
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Problem formulation

 Goal: maximize the number of selected devices under target MSE 
constraint

 Joint device selection and received beamforming vector design

 Improve convergence rate in the training process, guarantee prediction 
accuracy in the inference process

 Mixed combinatorial optimization problem
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Vignettes C: Sparse and low-rank optimization
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Sparse and low-rank optimization

 Sparse and low-rank optimization for on-device federated learning
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multicasting 
duality

sum of feasibilities

matrix lifting



Problem analysis

 Goal: induce sparsity while satisfying fixed-rank constraint

 Limitations of existing methods

 Sparse optimization: iterative reweighted algorithms are parameters sensitive

 Low-rank optimization: semidefinite relaxation (SDR) approach (i.e., drop
rank-one constraint) has the poor capability of returning rank-one solution
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Difference-of-convex functions representation

 Ky Fan norm [Fan, PNAS’1951]: the sum of largest- absolute values

 is a permutation of ,where
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PNAS’1951

convex function 



Difference-of-convex functions representation

 DC representation for sparsity function

 DC representation for rank-one positive semidefinite matrix

 where

[Ref] J.-y. Gotoh, A. Takeda, and K. Tono, “DC formulations and algorithms for sparse optimization
problems,” Math. Program., vol. 169, pp. 141– 176, May 2018.
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algorithmic 
advantages?



A DC representation framework

 A two-step framework for device selection

 Step 1: obtain the sparse solution such that the objective value achieves
zero through increasing from to
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zero?



A DC representation framework

 Step II: feasibility detection

 Ordering in descending order as

 Increasing from to , choosing as

 Feasibility detection via DC programming
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zero?



DC algorithm with convergence guarantees

 and : minimize the difference of two strongly convex functions

 e.g., and

 The DC algorithm via linearizing the concave part

 converge to a critical point with speed
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Numerical results

 Convergence of the proposed DC algorithm for problem
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Numerical results

 Probability of feasibility with different algorithms
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Numerical results

 Average number of selected devices with different algorithms
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Numerical results

 Performance of proposed fast model aggregation in federated learning

 Training an SVM classifier on CIFAR-10 dataset
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Concluding remarks

 Wireless communication meets machine learning

 Over-the-air computation for fast model aggregation

 Sparse and low-rank optimization framework

 Joint device selection and beamforming design

 A unified DC programming framework

 DC representation for sparse and low-rank functions
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Future directions

 Federated learning

 security, provable guarantees, …

 Over-the-air computation

 channel uncertainty, synchronization,…

 Sparse and low-rank optimization via DC programming

 optimality, scalability,…

54



To learn more…

 Papers:

 K. Yang, T. Jiang, Y. Shi, and Z. Ding, “Federated learning via over-the-air
computation,” IEEE Trans. Wireless Commun.,
DOI10.1109/TWC.2019.2961673, Jan. 2020.

 K. Yang, T. Jiang, Y. Shi, and Z. Ding, “Federated learning based on over-the-
air computation,” in Proc. IEEE Int. Conf. Commun. (ICC), Shanghai, China,
May 2019.
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http://shiyuanming.github.io/home.html
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