Federated Machine Learning via Over-the-Air Computation

Yuanming Shi

ShanghaiTech University

Outline

Motivations

- Big data, IoT, AI
- Three vignettes:
 - Federated machine learning
 - Federated model aggregation
 - Over-the-air computation
 - Joint device selection and beamforming design
 - Sparse and low-rank optimization
 - Difference-of-convex programming algorithm

Intelligent IoT ecosystem

Develop computation, communication & AI technologies: enable smart IoT applications to make low-latency decision on streaming data

Internet of Things

(Internet of Skills) Tactile Internet

Intelligent IoT applications

Autonomous vehicles

Smart health

Smart home

Smart agriculture

Smart city

Smart drones

Challenges

Retrieve or infer information from high-dimensional/large-scale data

limited processing ability (computation, storage, ...)

2.5 exabytes of data are generated every day (2012)

exabyte \rightarrow zettabyte \rightarrow yottabyte...??

We're interested in the *information* rather than the data

Challenges:

- High computational cost
- Only limited memory is available
- ✤ Do NOT want to compromise statistical accuracy

High-dimensional data analysis

Deep learning: next wave of Al

<u>Cloud-centric machine learning</u>

The model lives in the cloud

We train models in the cloud

Make predictions in the cloud

request

prediction

Gather training data in the cloud

training data request

prediction

And make the models better

Why edge machine learning?

Learning on the edge

The emerging high-stake AI applications: low-latency, privacy,...

phones

drones

robots

glasses

self driving cars

where to compute?

Mobile edge Al

Processing at "edge" instead of "cloud"

Edge computing ecosystem

"Device-edge-cloud" computing system for mobile AI applications

Edge machine learning

Edge ML: both ML inference and training processes are pushed down into the network edge (bottom)

On-device inference

Deep model compression

Layer-wise deep neural network pruning via sparse optimization

[**Ref**] T. Jiang, X. Yang, Y. Shi, and H. Wang, "Layer-wise deep neural network pruning via iteratively reweighted optimization," in *Proc. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP)*, Brighton, UK, May 2019.

Edge distributed inference

Wireless MapReduce for on-device distributed inference process

wireless distributed computing system

distributed computing model

[Ref] K. Yang, Y. Shi, and Z. Ding, "Data shuffling in wireless distributed computing via low-rank optimization," *IEEE Trans. Signal Process.*, vol. 67, no. 12, pp. 3087-3099, Jun., 2019.

This talk: On-device training

Vignettes A: Federated machine learning

Federated computation and learning

Goal: imbue mobile devices with state of the art machine learning systems without centralizing data and with privacy by default

 Federated computation: a server coordinates a fleet of participating devices to compute aggregations of devices' private data

Federated learning: a shared global model is trained via federated computation

Federated learning

3. Devices compute an update using local training data

Federated learning: applications

Applications: where the data is generated at the mobile devices and is undesirable/infeasible to be transmitted to centralized servers

Federated learning over wireless networks

• Goal: train a shared global model via wireless federated computation

on-device distributed federated learning system

System challenges

- Massively distributed
- Node heterogeneity

Statistical challenges

- Unbalanced
- Non-IID
- Underlying structure

How to efficiently aggregate models over wireless networks?

Vignettes B: Over-the-air computation

Model aggregation via over-the-air computation

 Aggregating local updates from mobile devices

$$oldsymbol{z} \leftarrow rac{1}{\sum_{k \in \mathcal{S}} |\mathcal{D}_k|} \sum_{k \in \mathcal{S}} |\mathcal{D}_k| oldsymbol{z}_k$$

- weighted sum of messages
- M mobile devices and one N-antenna base station
- $\succ \mathcal{S} \subseteq \{1, \cdots, M\}$ is the set of selected devices
- $\succ |\mathcal{D}_k|$ is the data size at device k

Over-the-air computation: explore signal superposition of a wireless multiple-access channel for model aggregation

Over-the-air computation

The estimated value before post-processing at the BS

$$\hat{g} = \frac{1}{\sqrt{\eta}} \boldsymbol{m}^{\mathsf{H}} \boldsymbol{y} = \frac{1}{\sqrt{\eta}} \boldsymbol{m}^{\mathsf{H}} \sum_{i \in \mathcal{S}} \boldsymbol{h}_i b_i z_i + \frac{\boldsymbol{m}^{\mathsf{H}} \boldsymbol{n}}{\sqrt{\eta}}$$

- > b_i is the transmitter scalar, $m{m}$ is the received beamforming vector, η is a normalizing factor
- \succ target function to be estimated: $g = \sum_{i \in S} |\mathcal{D}_i| z_i$
- > recovered aggregation vector entry via post-processing: $\hat{z} = \frac{1}{\sum_{i \in S} |\mathcal{D}_i|} \hat{g}$
- Model aggregation error:

$$\mathsf{MSE}(\hat{g}, g; \mathcal{S}, \boldsymbol{m}) = \frac{\|\boldsymbol{m}\|^2 \sigma^2}{\eta} = \frac{\sigma^2}{P_0} \max_{i \in \mathcal{S}} |\mathcal{D}_i|^2 \frac{\|\boldsymbol{m}\|^2}{\|\boldsymbol{m}^{\mathsf{H}} \boldsymbol{h}_i\|^2}$$

> Optimal transmitter scalar: $b_i = \sqrt{\eta} |\mathcal{D}_i| \frac{(\mathbf{m}^{\mathsf{H}} \mathbf{h}_i)^{\mathsf{H}}}{\|\mathbf{m}^{\mathsf{H}} \mathbf{h}_i\|^2}$

Problem formulation

• Key observations:

- More selected devices yield fast convergence rate of the training process
- > Aggregation error leads to the deterioration of model prediction accuracy

Problem formulation

Goal: maximize the number of selected devices under target MSE constraint

$$\underset{\mathcal{S}, \boldsymbol{m} \in \mathbb{C}^{N}}{\operatorname{maximize}} |\mathcal{S}| \quad \text{subject to } \left(\max_{i \in \mathcal{S}} |\mathcal{D}_{i}|^{2} \frac{\|\boldsymbol{m}\|^{2}}{\|\boldsymbol{m}^{\mathsf{H}}\boldsymbol{h}_{i}\|^{2}} \right) \leq \gamma$$

- Joint device selection and received beamforming vector design
- Improve convergence rate in the training process, guarantee prediction accuracy in the inference process
- Mixed combinatorial optimization problem

Vignettes C: Sparse and low-rank optimization

Sparse and low-rank optimization

Sparse and low-rank optimization for on-device federated learning

$$\begin{array}{c|c} \underset{\mathcal{S}, m \in \mathbb{C}^{N}}{\operatorname{maximize}} & |\mathcal{S}| \\ \text{subject to} & \left(\underset{i \in \mathcal{S}}{\max} |\mathcal{D}_{i}|^{2} \frac{\|\boldsymbol{m}\|^{2}}{\|\boldsymbol{m}^{\mathsf{H}}\boldsymbol{h}_{i}\|^{2}} \right) \leq \gamma \end{array} \xrightarrow{\mathsf{multicasting}} \begin{array}{c} \underset{\mathcal{S}, m \in \mathbb{C}^{N}}{\operatorname{maximize}} & |\mathcal{S}| \\ \text{subject to} & \|\boldsymbol{m}\|^{2} - \gamma_{i}\|\boldsymbol{m}^{\mathsf{H}}\boldsymbol{h}_{i}\|^{2} \leq 0, i \in \mathcal{S} \\ & \|\boldsymbol{m}\|^{2} \geq 1 \end{array} \\ \begin{array}{c} \mathcal{S}, m \in \mathbb{C}^{N} \\ \text{subject to} & \|\boldsymbol{m}\|^{2} \geq 1 \end{array} \end{array}$$

$$\begin{array}{c} \mathcal{S}, m \in \mathbb{C}^{N} \\ \|\boldsymbol{m}\|^{2} \geq 1 \end{array} \\ \begin{array}{c} \mathcal{S}, m \in \mathbb{C}^{N} \\ \|\boldsymbol{m}\|^{2} \geq 1 \end{array} \\ \begin{array}{c} \mathcal{S}, m \in \mathbb{C}^{N} \\ \|\boldsymbol{m}\|^{2} \geq 1 \end{array} \\ \begin{array}{c} \mathcal{S}, m \in \mathbb{C}^{N} \\ \|\boldsymbol{m}\|^{2} \geq 1 \end{array} \\ \begin{array}{c} \mathcal{S}, m \in \mathbb{C}^{N} \\ \|\boldsymbol{m}\|^{2} \geq 1 \end{array} \\ \begin{array}{c} \mathcal{S}, m \in \mathbb{C}^{N} \\ \|\boldsymbol{m}\|^{2} \geq 1 \end{array} \\ \begin{array}{c} \mathcal{S}, m \in \mathbb{C}^{N} \\ \|\boldsymbol{m}\|^{2} \leq x_{i}, \forall i \end{array} \\ \begin{array}{c} \mathcal{S}, m \in \mathbb{C}^{N} \\ \|\boldsymbol{m}\|^{2} \geq 1 \end{array} \\ \begin{array}{c} \mathcal{S}, m \in \mathbb{C}^{N} \\ \|\boldsymbol{m}\|^{2} \geq 1 \end{array} \\ \begin{array}{c} \mathcal{S}, m \in \mathbb{C}^{N} \\ \|\boldsymbol{m}\|^{2} \geq 1 \end{array} \\ \begin{array}{c} \mathcal{S}, m \in \mathbb{C}^{N} \\ \|\boldsymbol{m}\|^{2} \geq 1 \end{array} \\ \begin{array}{c} \mathcal{S}, m \in \mathbb{C}^{N} \\ \|\boldsymbol{m}\|^{2} \geq 1 \end{array} \\ \begin{array}{c} \mathcal{S}, m \in \mathbb{C}^{N} \\ \|\boldsymbol{m}\|^{2} \geq 1 \end{array} \\ \begin{array}{c} \mathcal{S}, m \in \mathbb{C}^{N} \\ \|\boldsymbol{m}\|^{2} \geq 1 \end{array} \\ \begin{array}{c} \mathcal{S}, m \in \mathbb{C}^{N} \\ \|\boldsymbol{m}\|^{2} \geq 1 \end{array} \\ \begin{array}{c} \mathcal{S}, m \in \mathbb{C}^{N} \\ \|\boldsymbol{m}\|^{2} \geq 1 \end{array} \\ \begin{array}{c} \mathcal{S}, m \in \mathbb{C}^{N} \\ \|\boldsymbol{m}\|^{2} \geq 1 \end{array} \\ \begin{array}{c} \mathcal{S}, m \in \mathbb{C}^{N} \\ \|\boldsymbol{m}\|^{2} \geq 1 \end{array} \\ \begin{array}{c} \mathcal{S}, m \in \mathbb{C}^{N} \\ \|\boldsymbol{m}\|^{2} \geq 1 \end{array} \\ \begin{array}{c} \mathcal{S}, m \in \mathbb{C}^{N} \\ \|\boldsymbol{m}\|^{2} \geq 1 \end{array} \\ \begin{array}{c} \mathcal{S}, m \in \mathbb{C}^{N} \\ \|\boldsymbol{m}\|^{2} \geq 1 \end{array} \\ \begin{array}{c} \mathcal{S}, m \in \mathbb{C}^{N} \\ \|\boldsymbol{m}\|^{2} \geq 1 \end{array} \\ \begin{array}{c} \mathcal{S}, m \in \mathbb{C}^{N} \\ \|\boldsymbol{m}\|^{2} \geq 1 \end{array} \\ \begin{array}{c} \mathcal{S}, m \in \mathbb{C}^{N} \\ \|\boldsymbol{m}\|^{2} \geq 1 \end{array} \\ \begin{array}{c} \mathcal{S}, m \in \mathbb{C}^{N} \\ \|\boldsymbol{m}\|^{2} \geq 1 \end{array} \\ \begin{array}{c} \mathcal{S}, m \in \mathbb{C}^{N} \\ \|\boldsymbol{m}\|^{2} \geq 1 \end{array} \\ \begin{array}{c} \mathcal{S}, m \in \mathbb{C}^{N} \\ \|\boldsymbol{m}\|^{2} \geq 1 \end{array} \\ \begin{array}{c} \mathcal{S}, m \in \mathbb{C}^{N} \\ \|\boldsymbol{m}\|^{2} \geq 1 \end{array} \\ \begin{array}{c} \mathcal{S}, m \in \mathbb{C}^{N} \\ \|\boldsymbol{m}\|^{2} \geq 1 \end{array} \\ \begin{array}{c} \mathcal{S}, m \in \mathbb{C}^{N} \\ \|\boldsymbol{m}\|^{2} \geq 1 \end{array} \\ \begin{array}{c} \mathcal{S}, m \in \mathbb{C}^{N} \\ \|\boldsymbol{m}\|^{2} \geq 1 \end{array} \\ \begin{array}{c} \mathcal{S}, m \in \mathbb{C}^{N} \\ \|\boldsymbol{m}\|^{2} \geq 1 \end{array} \\ \begin{array}{c} \mathcal{S}, m \in \mathbb{C}^{N} \\ \|\boldsymbol{m}\|^{2} \geq 1 \end{array} \\ \begin{array}{c} \mathcal{S}, m \in \mathbb{C}^{N} \\ \|\boldsymbol{m}\|^{2} \geq 1 \end{array} \\ \begin{array}{c} \mathcal{S}, m \in \mathbb{C}^{N} \\ \|\boldsymbol{m}\|^{2} \geq 1 \end{array} \\ \begin{array}{c} \mathcal{S}, m \in \mathbb{C}^{N} \\ \|\boldsymbol{m}\|^{2} \geq 1 \end{array} \\ \begin{array}{c} \mathcal{S}, m \in \mathbb{C}^{N} \\ \|\boldsymbol{m}\|^$$

Problem analysis

Goal: induce sparsity while satisfying fixed-rank constraint

$$\begin{split} \mathscr{P}_{\substack{\boldsymbol{x} \in \mathbb{R}^{M}_{+}, \boldsymbol{M} \in \mathbb{C}^{N \times N} \\ \text{subject to}} & \|\boldsymbol{x}\|_{0} \\ \text{subject to} & \operatorname{Tr}(\boldsymbol{M}) - \gamma_{i} \boldsymbol{h}_{i}^{\mathsf{H}} \boldsymbol{M} \boldsymbol{h}_{i} \leq x_{i}, \forall i \\ & \boldsymbol{M} \succeq \boldsymbol{0}, \operatorname{Tr}(\boldsymbol{M}) \geq 1 \\ & \operatorname{rank}(\boldsymbol{M}) = 1 \end{split}$$

- Limitations of existing methods
 - > Sparse optimization: iterative reweighted algorithms are parameters sensitive
 - Low-rank optimization: semidefinite relaxation (SDR) approach (i.e., drop rank-one constraint) has the poor capability of returning rank-one solution

Difference-of-convex functions representation

• Ky Fan *k*-norm [Fan, PNAS'1951]: the sum of largest-*k* absolute values

 $\| \boldsymbol{x} \|_k = \sum_{i=1}^k |x_{\pi(i)}|$ convex function

 $\succ \pi$ is a permutation of $\{1, \dots, M\}$, where $|x_{\pi(1)}| \geq \dots \geq |x_{\pi(M)}|$

MAXIMUM PROPERTIES AND INEQUALITIES FOR THE EIGENVALUES OF COMPLETELY CONTINUOUS OPERATORS*

By Ky Fan

PNAS'1951

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NOTRE DAME

Communicated by John von Neumann, September 8, 1951

Difference-of-convex functions representation

DC representation for sparsity function

$$\|\boldsymbol{x}\|_{0} = \min\{k : \|\boldsymbol{x}\|_{1} - \|\boldsymbol{x}\|_{k} = 0, 0 \le k \le M\}$$

 DC representation for rank-one positive semidefinite matrix rank(M) = 1 ⇔ Tr(M) - ||M||₂ = 0
 > where Tr(M) = ∑^N_{i=1} σ_i(M) and ||M||₂ = σ₁(M) algorithmic advantages?

[**Ref**] J.-y. Gotoh, A. Takeda, and K. Tono, "DC formulations and algorithms for sparse optimization problems," *Math. Program.*, vol. 169, pp. 141–176, May 2018.

A DC representation framework

A two-step framework for device selection

Step 1: obtain the sparse solution such that the objective value achieves zero through increasing k from 0 to M

$$\begin{aligned} \mathscr{P}_{\mathrm{S1}} &: \underset{\boldsymbol{x}, \boldsymbol{M}}{\operatorname{minimize}} \quad \|\boldsymbol{x}\|_{1} - \|\boldsymbol{x}\|_{k} + \operatorname{Tr}(\boldsymbol{M}) - \|\boldsymbol{M}\|_{2} \quad \text{zero?} \\ &\text{subject to} \quad \operatorname{Tr}(\boldsymbol{M}) - \gamma_{i} \boldsymbol{h}_{i}^{\mathsf{H}} \boldsymbol{M} \boldsymbol{h}_{i} \leq x_{i}, \forall i = 1, \cdots, M \\ & \boldsymbol{M} \succeq \boldsymbol{0}, \quad \operatorname{Tr}(\boldsymbol{M}) \geq 1, \boldsymbol{x} \succeq \boldsymbol{0} \end{aligned}$$

A DC representation framework

Step II: feasibility detection

- > Ordering \boldsymbol{x} in descending order as $x_{\pi(1)} \geq \cdots \geq x_{\pi(M)}$
- ▶ Increasing k from 1 to M, choosing $S^{[k]}$ as $\{\pi(k), \pi(k+1), \cdots, \pi(M)\}$
- Feasibility detection via DC programming

find
$$M$$

subject to $\operatorname{Tr}(M) - \gamma_i h_i^{\mathsf{H}} M h_i \leq 0, \forall i \in \mathcal{S}^{[k]}$
 $M \succeq \mathbf{0}, \operatorname{Tr}(M) \geq 1, \operatorname{rank}(M) = 1$
 $\mathscr{P}_{S2} : \operatorname{minimize}_{M} \frac{\operatorname{Tr}(M) - \|M\|_2}{\operatorname{Tero}!} \frac{\operatorname{zero}!}{\operatorname{subject to}}$
subject to $\operatorname{Tr}(M) - \gamma_i h_i^{\mathsf{H}} M h_i \leq 0, \forall i \in \mathcal{S}^{[k]}$
 $M \succeq \mathbf{0}, \quad \operatorname{Tr}(M) \geq 1$

DC algorithm with convergence guarantees

• \mathscr{P}_{S1} and \mathscr{P}_{S2} : minimize the difference of two strongly convex functions $\begin{array}{l} \min_{\mathbf{X} \in \mathbb{C}^{m \times n}} \quad f(\mathbf{X}) = g(\mathbf{X}) - h(\mathbf{X}) \end{array}$

 $\blacktriangleright \text{ e.g., } g = \operatorname{Tr}(\boldsymbol{M}) + I_{\mathcal{C}_2}(\boldsymbol{M}) + \frac{\alpha}{2} \|\boldsymbol{M}\|_F^2 \text{ and } h = \|\boldsymbol{M}\|_2 + \frac{\alpha}{2} \|\boldsymbol{M}\|_F^2$

• The DC algorithm via linearizing the concave part $X^{[t+1]} = \operatorname{arg\,inf}_{X \in \mathcal{X}} g(X) - [h(X^{[t]}) + \langle X - X^{[t]}, \partial_{X^{[t]}}h \rangle]$

 \triangleright converge to a critical point with speed $\mathcal{O}(1/t)$

• Convergence of the proposed DC algorithm for problem \mathscr{P}_{S2}

$$\begin{split} \mathscr{P}_{S2} &: \underset{\boldsymbol{M}}{\operatorname{minimize}} \quad \operatorname{Tr}(\boldsymbol{M}) - \|\boldsymbol{M}\|_{2} \\ &\text{subject to} \quad \operatorname{Tr}(\boldsymbol{M}) - \gamma_{i} \boldsymbol{h}_{i}^{\mathsf{H}} \boldsymbol{M} \boldsymbol{h}_{i} \leq 0, \\ &\boldsymbol{M} \succeq \boldsymbol{0}, \quad \operatorname{Tr}(\boldsymbol{M}) \geq 1 \end{split}$$

Probability of feasibility with different algorithms

Average number of selected devices with different algorithms

- Performance of proposed fast model aggregation in federated learning
 - Training an SVM classifier on CIFAR-10 dataset

Concluding remarks

- Wireless communication meets machine learning
 - Over-the-air computation for fast model aggregation

Sparse and low-rank optimization framework

Joint device selection and beamforming design

- A unified DC programming framework
 - DC representation for sparse and low-rank functions

Future directions

Federated learning

security, provable guarantees, …

Over-the-air computation

channel uncertainty, synchronization,...

Sparse and low-rank optimization via DC programming

> optimality, scalability,...

To learn more...

- Papers:
- K. Yang, T. Jiang, Y. Shi, and Z. Ding, "Federated learning via over-the-air computation," *IEEE Trans. Wireless Commun.*, DOI10.1109/TWC.2019.2961673, Jan. 2020.
- K. Yang, T. Jiang, Y. Shi, and Z. Ding, "Federated learning based on over-theair computation," in *Proc. IEEE Int. Conf. Commun. (ICC)*, Shanghai, China, May 2019.

http://shiyuanming.github.io/home.html

