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Part I: Introduction 
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Ultra Mobile Broadband 

 Era of mobile data traffic deluge 
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Source: Cisco VNI Mobile, 2015 
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We Need… 
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Solution? 
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is a dominated theme! 



Network Densification 

 Ultra-dense networking: Coverage & capacity 
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99%  coverage? 

Ultra-high capacity & uniform coverage  



Dense Cloud Radio Access Networks 

 Dense Cloud-RAN: A cost-effective way for network densification and 

cooperation 
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Challenges: Green, Flexibility, Scalability  

 Networking issues: 

 Huge network power consumption 

 Massive channel state information acquisition 

 

 

 

 

 Computing issues:  

 Large-scale performance optimizations 

 Limited computational resources 

9 

Source: Alcatel-Lucent, 2013 



Networking Issues: Power Consumption 

 Group sparse optimization [1], [2]: Network power minimization via 

network adaptation 

 

 

 

 

 

 

 

 

[1] Y. Shi, J. Zhang, and K. B. Letaief, “Group sparse beamforming for green Cloud-RAN,” IEEE Trans. 

Wireless Commun., vol. 13, no. 5, pp. 2809-2823, May 2014. 

[2] Y. Shi, J. Zhang, and K. B. Letaief, “Robust group sparse beamforming for multicast green Cloud-RAN 

with imperfect CSI,” IEEE Trans. Signal Process., vol. 63, no. 17, pp. 4647-4659, Sept. 2015. 
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Networking Issues: Massive CSI 

 Low-rank matrix completion [3]: Topological interference management 

 Sequential convex optimization [4]: Stochastic coordinated beamforming 

 

 

 

 

 

 

 

[3] Y. Shi, J. Zhang, and K. B. Letaief, “Low-rank matrix completion via Riemannian pursuit for topological 

interference management,” in Proc. IEEE Int. Symp. Inform. Theory (ISIT), Hong Kong, Jun. 2015. 

[4] Y. Shi, J. Zhang, and K. B. Letaief, “Optimal stochastic coordinated beamforming for wireless 

cooperative networks with CSI uncertainty,” IEEE Trans. Signal Process., vol. 63, no. 4, pp. 960-973, Feb. 

2015. 
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Computing Issues: Scalable Optimization 

 Two-stage large-scale convex optimization framework [5], [6] 

 

 

 

 

 

 

 

[5] Y. Shi, J. Zhang, K. B. Letaief, B. Bai and W. Chen,“Large-scale convex optimization for ultra-dense 

Cloud-RAN,” IEEE Wireless Commun. Mag., pp. 84-91, Jun. 2015.  

[6] Y. Shi, J. Zhang, B. O’Donoghue, and K. B. Letaief, “Large-scale convex optimization for dense wireless 

cooperative networks,” IEEE Trans. Signal Process., vol. 63, no. 18, pp. 4729-4743, Sept. 2015. 
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Sparse Optimization for Dense Cloud-RAN 

 Findings: 1) Dense network is well structured; 2) Sparse optimization is 

powerful to exploit such structures; 3) Scalable optimization is needed  
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Part II: Three Vignettes 
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Vignette A: Group Sparse Beamforming  

for Network Adaptation in Green Cloud-RAN 
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Issue A: Network Power Consumption 

 Goal: Design a green dense Cloud-RAN 

 

 Prior works: Physical-layer transmit power consumption  

 Wireless power control: [Chiang, et al., FT 08], [Qian, et al., TWC 09], 

[Sorooshyari, et al., TON 12], … 

 Transmit beamforming: [Sidiropoulos and Luo, TSP 2006], [Yu and Lan, TSP 

07], [Gershman, et al., SPMag 10],… 

 

 Unique challenge: 

 Network power consumption: 

 RRHs, fronthaul links, etc. 
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Network Adaptation 

 Question: Can we provide a holistic approach for network power 

minimization? 

 Key observation: Spatial and temporal mobile data traffic variation 

 

 

 

 

 

 

 Approach: Network adaptation 

 Switch off network entities to save power 
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Problem Formulation 

 Goal: Minimize network power consumption in Cloud-RAN 

 

 

 

 

 

 Many applications: Minimize a combinatorial composite function 

 Base station clustering [Hong, et al., JSAC 13], backhaul data assignment 

[Zhuang-Lau, TSP 13], user admission [Matskani, et al., TSP 09],… 

 Prior algorithms: Heuristic or computationally expensive: 

[Philipp, et. al, TSP 13], [Luo, et. al, JSAC 13], [Quek, et. al, TWC 13],… 
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fronthaul power transmit power 

NP-hard 



Finding Structured Solutions 

 Proposal: Group sparse beamforming framework 

 

 

 

 

 

 Switch off the    -th RRH                   , i.e., group sparsity structure in 

 Proposition [1]: The tightest convex positively homogeneous lower 

bound of the combinatorial composite objective function 
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The Power of Group Sparse Beamforming 

 Example: Group spare beamforming for green Cloud-RAN [1] (10 
RRHs, 15 MUs) 

 

 

 

 

 

 

 

 

[1] Y. Shi, J. Zhang, and K. B. Letaief, “Group sparse beamforming for green Cloud-RAN,” IEEE 
Trans. Wireless Commun., vol. 13, no. 5, pp. 2809-2823, May 2014. 
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Advantages:  

1) Enabling flexible network 

adaptation;  

2) Offering efficient algorithm 

design via convex programming 

3) Empowering wide applications 



Extensions: Multicast Cloud-RAN 

 Multi-group multicast transmission in Cloud-RAN 

 All the users in the same group request the same message 

 

 

 

 Coupled challenges: 

 Non-convex quadratic QoS constraints due to multicast transmission 

 

 

 Combinatorial composite objective function: Network power consumption 
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Multicast Group Sparse Beamforming 

 Semidefinite relaxation: Convexify non-convex quadratic constraints 

 Lifting:  

 

 

 Quadratic variational formulation of non-smooth mixed       -norm: 

Induce group sparsity in the multicast beamforming vector    [2] 

 Smoothing: 

 

 

 

[2] Y. Shi, J. Zhang, and K. B. Letaief, “Robust group sparse beamforming for multicast green Cloud-RAN 

with imperfect CSI,” IEEE Trans. Signal Process., vol. 63, no. 17, pp. 4647-4659, Sept. 2015.  
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Extracts variables 



Conclusions and Extensions (I) 

 Network power minimization: A difficult non-convex mixed 

combinatorial optimization problem 

 

 Key techniques: 

 Convexify the combinatorial composite network power consumption 

function using the mixed        -norm 

 Smoothing the non-smooth group sparsity inducing norm via quadratic 

variational formulation 

 

 Results: Group sparse optimization offers a principled way to 

design a green Cloud-RAN 
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Conclusions and Extensions (II) 

 Extensions: 

 User admission [7]: Smoothed     -minimization 

 Limited fronthaul link capacity, CSI uncertainty… 

 

 Establish the optimality for the group sparse beamforming algorithms 

 More applications in 5G system design, e.g., wireless caching 

 

 

[7] Y. Shi, J. Cheng, J. Zhang, B. Bai, W. Chen and K. B. Letaief, “Smoothed 𝐿𝑝-minimization for green 

Cloud-RAN with user admission control,” submitted to IEEE J. Select. Areas Commun., under second-round 

revision. 
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Vignette B: Chance Constrained Optimization 

for Partially Connected Cloud-RAN 
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Issue B: Massive Channel State Information 

 Goal: Interference coordination in dense Cloud-RAN 

 Prior works: Perfect CSIT [Cadambe and Jafar, TIT 08], delayed CSIT 

[Maddah-Ali and Tse, TIT 12], alternating CSIT [Tandon, et al., TIT 13],… 

 

 Curses: CSIT is rarely abundant (due to training & feedback overhead) 

 Blessings: Partial connectivity in dense wireless networks [Ruan, et al. 

TSP 11], [Jafar, TIT 14] 
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path-loss 
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How to exploit the 

partial connectivity? 



Example: TIM via LRMC 

 Low-rank matrix completion for topological interference management 
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Formal Formulation 

 Goal: Deliver one data stream per user over    time slots 

             : tx. beamformer at the i-th tx. 

             : rx. beamformer at the j-th rx.  

 

 We need: 

  

 Approach: Low-rank matrix completion (LRMC) [3] 

 

 

[3] Y. Shi, J. Zhang, and K. B. Letaief, “Low-rank matrix completion via Riemannian pursuit for topological 

interference management,” in Proc. IEEE Int. Symp. Inform. Theory (ISIT), Hong Kong, Jun. 2015. 
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Align interference 

Key conclusion:  

1/N DoF 

Any network topology:  

rewrite 



CSI Uncertainty 

 Uncertainty in the available CSI 

 Downlink training based channel estimation 

 Uplink limited feedback 

 Hardware deficiencies 

 Example: Compressive CSI acquisition [8] 

 

 

 

 

[8] Y. Shi, J. Zhang, and K. B. Letaief, “CSI overhead reduction with stochastic beamforming for 

cloud radio access networks,” in Proc. IEEE Int. Conf. Commun. (ICC), Sydney, Australia, Jun. 2014. 
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How to deal with the 

CSI uncertainty? 

Obtain instantaneous CSI (imperfect) 

Statistical  CSI is available 



Stochastic vs. Robust 

 Stochastic optimization: Probabilistic QoS constraints [Lau, et al., TSP 13] 

 

 

 

 

 

 Robust optimization: Worst-case QoS constraints [Ottersten, et al., TSP 12] 
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Modeling flexibility: Only distribution 

information of uncertainty is required 

Uncertainty set modeling is 

challenging; over conservative 



Stochastic Coordinated Beamforming 

 Chance constrained programming: 

 

 

 

 Challenge: Non-convex chance constraint  

 

 

 

 Related works: Find feasible but sub-optimal solutions 

 Bernstein approximation method (convex relaxation) ([Win, et al., TSP 10], 

[Lau, et al., TSP 13]): 
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Sequential Convex Programming 

 Novel approach: DC (difference-of-convex) function to approximate 

the indicator function [Hong, et al., OR 11] 

 

 

 DC approximation: 

 

 

 Sequential convex approximations: Linearize 

 

 Stochastic DC programming algorithm: Converge to a KKT point 
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convex functions 



Simulation Results (I) 

 Conservativeness of approximating probability constraints in the SCB 

problem (5 RRHs and 3 MUs) 

Conservative approximations 

to the probability constraint 

Become tight for the 

probability constraint 
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Simulation Results (II) 

 Total transmit power versus different target SINR requirements  

 5 RRHs and 3 MUs, instantaneous CSI 9 out of 15 channel links are obtained 
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Insights: CSI acquisition overhead 

can be scalable to large-scale 

networks due to the partial 

connectivity of wireless networks. 



Conclusions and Extensions (I) 

 Partial connectivity provides great opportunities for massive CSI 

overhead reduction 

 New optimization method is needed to exploit channel structures 

 

 Key techniques: 

 Low-rank matrix completion for topological interference management 

 Sequential convex programming for stochastic coordinated beamforming 

 

 Results:  

 LRMC investigates the TIM problem for any network topology  

 SCB provides modeling flexibility in the channel knowledge uncertainty 
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Conclusions and Extensions (II) 

 Extensions: 

 TIM for partially connected MIMO interference channels 

 

 Channel estimation by exploiting the channel partial connectivity 

 

 Improve the computational efficiency for the low-rank matrix completion and 

stochastic coordinated beamforming problems 

36 



Vignette C: Large-Scale Convex Optimization  

for Dense Cloud-RAN 
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Issue C: Large-Scale Convex Optimization 

 Large-scale convex optimization: A powerful tool for system design 

in dense wireless networks 

 

 

 

 Prior works: Mainly focus on small-size networks or well-structured 

problems  

 Limitations: scalability [Luo, et al., SPMag 10], parallelization [Yu and Lan, TWC 

10], infeasibility detection [Liao, et al., TSP 14], … 

 Unique challenges in dense Cloud-RAN:  

 Design problems: 1) A high dimension; 2) a large number of constraints; 3) 

complicated structures 
38 

Group sparse beamforming, 

stochastic beamforming, etc. 



Matrix Stuffing and Operator Splitting 

 Goal: Design a unified framework for general large-scale convex 

optimization problem              ? 

 Disciplined convex programming framework [Grant & Boyd ’08] 

 

 

 

 Proposal: Two-stage approach for large-scale convex optimization 

 

 

 Matrix stuffing: Fast homogeneous self-dual embedding (HSD) transformation 

 Operator splitting (ADMM): Large-scale homogeneous self-dual embedding 
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Time consuming: modeling phase & solving phase 



Stage One: Fast Transformation 

 Example: Coordinated beamforming problem family (with transmit 

power constraints and QoS constraints) 

 

 

 

 Smith form reformulation [Smith ’96] 

 Key idea: Introduce a new variable for each subexpression in 

 

 

 

 

 

Smith form for (1) 
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Linear constraint 

Second-order cone 

The Smith form is ready for standard cone programming transformation 



Stage One: Fast Transformation 

 HSD embedding of the primal-dual pair of transformed standard 

cone program (based on KKT conditions) 

 

 

 

 

 

 

 Matrix stuffing for fast transformation: 

 Generate and keep the structure      

 Copy problem instance parameters to the pre-stored structure     

 

 

41 

+ ⟹ 

Certificate of infeasibility: 



Stage Two: Parallel and Scalable Computing 

 HSD embedding in consensus form: 

 

 

 Final algorithm: Apply the operating splitting method (ADMM) 

[Donoghue, Chu, Parikh, and Boyd ’13] 

 

 

 Proximal algorithms for parallel cone projection [Parikn & Boyd, FTO 14] 

 E.g., Projection onto the second-order cone 
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subspace projection 

computationally trivial 

parallel cone projection  



Numerical Results (I) 

 Example: Power minimization coordinated beamforming problem [6]  

 

 

 

 

 

 

 

 

[6] Y. Shi, J. Zhang, B. O’Donoghue, and K. B. Letaief, “Large-scale convex optimization for 

dense wireless cooperative networks,” IEEE Trans. Signal Process., vol. 63, no. 18, pp. 4729-

4743, Sept. 2015. 

Network Size (L=K) 20 50 100 150 
 

 
CVX+SDPT3 

Modeling Time [sec] 0.7563 4.4301 N/A N/A 

Solving Time [sec] 4.2835 326.2513 N/A N/A 

Objective [W] 12.2488 6.5216 N/A N/A 

 
Matrix 

Stuffing+ADMM 

Modeling Time [sec] 0.0128 0.2401 2.4154 9.4167 

Solving Time [sec] 0.1009 2.4821 23.8088 81.0023 

Objective [W] 12.2523 6.5193 3.1296 2.0689 

ADMM can speedup 130x over 

the interior-point method 

Matrix stuffing can 

speedup 60x over CVX 
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Numerical Results (II) 

 Coordinated beamforming for max-min fairness rate optimization [6] 
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Large-scale optimal coordinated beamforming is needed for dense Cloud-RAN 



Conclusions and Extensions 

 Large-scale convex optimization is essential to enable scalability and 

flexibility in dense Cloud-RAN 

 Key techniques: 

 Matrix stuffing: Fast transformation 

 Operator splitting method (ADMM): Large-scale HSD embedding 

 Results: Two-stage large-scale optimization framework provides 

a unified way to solve general large-scale convex programs in parallel 

 

 Extensions: 

 Parallel and distributed implementations (Hadoop, Spark) 

 Randomized algorithms for the semidefinite cone projection (SDP problems) 
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Summary (I) 

 The following interaction becomes more and more important: 
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Computing Side Information 

Acquisition/Analysis 

Communication 



Summary (II) 

 Cloud radio access network is an enabling architecture that allows  

 Joint signal processing across the network 

 Advanced network-wide optimization in the cloud 

 

 Summary of results: 

 Group sparse optimization enables flexible network adaptation 

 Partial connectivity provides opportunities for CSI overhead reduction 

 LRMC and stochastic optimization are powerful to exploit channel structures 

 Large-scale convex optimization plays a key role in network optimization 
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Future network design: Dense, cooperative, scalable, unified 
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