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= |ntroduction

= ThreeVignettes:
=  Sparse optimization for Green Cloud-RAN
= Chance Constrained Optimization for Partially Connected Cloud-RAN

= Large-Scale Convex Optimization for Dense Cloud-RAN

= Summary



Part I: Introduction
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= Ultra-dense networking: Coverage & capacity
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Dense Cloud Radio Access Networks

= Dense Cloud-RAN: A cost-effective way for network densification and
cooperation
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= Networking issues:
"  Huge network power consumption

= Massive channel state information acquisition

= Computing issues:
® Large-scale performance optimizations

®  Limited computational resources




Networking Issues: Power Consumption

" Group sparse optimization [I], [2]: Network power minimization via
network adaptation
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[1] Y. Shi, J. Zhang, and K. B. Letaief, “Group sparse beamforming for green Cloud-RAN,” IEEE Trans.
Wireless Commun., vol. 13, no. 5, pp. 2809-2823, May 2014.

[2] Y. Shi, J. Zhang, and K. B. Letaief, “Robust group sparse beamforming for multicast green Cloud-RAN
with imperfect CSI,” IEEE Trans. Signal Process., vol. 63, no. 17, pp. 4647-4659, Sept. 2015.



Networking Issues: Massive CSI

=  Low-rank matrix completion [3]: Topological interference management

=  Sequential convex optimization [4]: Stochastic coordinated beamforming

transmitter receiver transmitter receiver

path-loss

shadowing

[3] Y. Shi, J. Zhang, and K. B. Letaief, “Low-rank matrix completion via Riemannian pursuit for topological
interference management,” in Proc. IEEE Int. Symp. Inform. Theory (ISIT), Hong Kong, Jun. 2015.

[4] Y. Shi, J. Zhang, and K. B. Letaief, “Optimal stochastic coordinated beamforming for wireless
cooperative networks with CSI uncertainty,” IEEE Trans. Signal Process., vol. 63, no. 4, pp. 960-973, Feb.

2015.



Computing Issues: Scalable Optimization

= Two-stage large-scale convex optimization framework [5], [6]
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' Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato,
and Jonathan Eckstein

[5] Y. Shi, J. Zhang, K. B. Letaief, B. Bai and W. Chen,“Large-scale convex optimization for ultra-dense
Cloud-RAN,” IEEE Wireless Commun. Mag., pp. 84-91, Jun. 2015.

[6] Y. Shi, J. Zhang, B. O’Donoghue, and K. B. Letaief, “Large-scale convex optimization for dense wireless
cooperative networks,” IEEE Trans. Signal Process., vol. 63, no. 18, pp. 4729-4743, Sept. 2015.



Sparse Optimization for Dense Cloud-RAN

= Findings: |) Dense network is well structured; 2) Sparse optimization is
powerful to exploit such structures; 3) Scalable optimization is needed
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Part ll: Three Vignettes
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Group Sparse Beamforming
Network Adaptation in Green Cloud-RAN




Issue A: Network Power Consumption

= Goal: Design a green dense Cloud-RAN

= Prior works: Physical-layer transmit power consumption

" Wireless power control: [Chiang, et al., FT 08], [Qian, et al, TWC 09],
[Sorooshyari, et al, TON 12], ...

®  Transmit beamforming: [Sidiropoulos and Luo, TSP 2006], [Yu and Lan, TSP
07], [Gershman, et al., SPMag 10],...
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= Question: Can we provide a holistic approach for network power
minimization?

= Key observation: Spatial and temporal mobile data traffic variation
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= Approach: Network adaptation

Switch off network entities to save power



Problem Formulation

= Goal: Minimize network power consumption in Cloud-RAN
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minimizes Zz . PEI(Supp(v) NG, # @T“HZ; 1 Zk 17 H lk”

veC  Ssil___ 0 __oe=T S .
t t
fronthaul power transmit power
_ Mixed Integer
NP-hard Nonlinear

Programming
= Many applications: Minimize a combinatorial composite function

m  Base station clustering [Hong, et al.,, JSAC 3], backhaul data assighment
[Zhuang-Lau, TSP 13], user admission [Matskani, et al., TSP 09],...

= Prior algorithms: Heuristic or computationally expensive:
[Philipp, et. al, TSP 13], [Luo, et. al, JSAC 13], [Quek, et.al, TWC 13],...
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= Switch off the [-th RRH = v; = 0,i.e., group sparsity structure in v

= Proposition [1]: The tightest convex positively homogeneous lower
bound of the combinatorial composite objective function
—22 l||vl||2 minimize (v)

—

mixed 41 /¢s-norm induce group sparsity



= Example: Group spare beamforming for green Cloud-RAN [I] (10

RRHs, |5 MUs)
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Advantages:
|) Enabling flexible network
adaptation;

2) Offering efficient algorithm
design via convex programming
3) Empowering wide applications

[1] Y. Shi, J. Zhang, and K. B. Letaief, “Group sparse beamforming for green Cloud-RAN,” IEEE
Trans. Wireless Commun., vol. 13, no. 5, pp. 2809-2823, May 2014,
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Extensions: Multicast Cloud-RAN

= Multi-group multicast transmission in Cloud-RAN

m  All the users in the same group request the same message

H
v, Orv,
H _ 2

SINR 1 (V) = > ~p., Yk € G

= Coupled challenges:

= Non-convex quadratic QoS constraints due to multicast transmission
Fim(V) = vk (Z#m vilO,v; + ai) — vl ey, <0,Vk € G,

= Combinatorial composite objective function: Network power consumption

P(v) = F(Supp(v)) + T'(v)

21



Multicast Group Sparse Beamforming

= Semidefinite relaxation: Convexify non-convex quadratic constraints

= Lifting: Q,, = vl v,, € CV*¥

Yk (Zi;ém v?@kv@- + J]%) —Vlf-ln@kvm =Yk (; TI‘(@]CQ@') + Ji) —Tr(@ka)

= Quadratic variational formulation of non-smooth mixed ¢; //>-norm:
Induce group sparsity in the multicast beamforming vector v [2]
= Smoothing: Q,, = vilv,, € CV*N

2

L L
= (Z @Hﬁ”z) := inf (Z Tr( Cngm)) Extracts variables Q,,’s
=1

LEX
— M

m=1

[2] Y. Shi, J. Zhang, and K. B. Letaief, “Robust group sparse beamforming for multicast green Cloud-RAN
with imperfect CSI,” IEEE Trans. Signal Process., vol. 63, no. 17, pp. 4647-4659, Sept. 2015.
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Conclusions and Extensions (1)

= Network power minimization: A difficult non-convex mixed
combinatorial optimization problem

= Key techniques:

m  Convexify the combinatorial composite network power consumption
function using the mixed ¢, /¢5-norm

= Smoothing the non-smooth group sparsity inducing norm via quadratic
variational formulation

= Results: Group sparse optimization offers a principled way to
design a green Cloud-RAN

23



Conclusions and Extensions (ll)

m Extensions:

= User admission [7]: Smoothed L,-minimization

®  Limited fronthaul link capacity, CSI uncertainty...

= Establish the optimality for the group sparse beamforming algorithms

®  More applications in 5G system design, e.g., wireless caching

[7] Y. Shi, J. Cheng, J. Zhang, B. Bai, W. Chen and K. B. Letaief, “Smoothed L,-minimization for green

Cloud-RAN with user admission control,” submitted to IEEE J. Select. Areas Commun., under second-round
revision.
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Vignette B: Chance Constrained Optimization
for Partially Connected Cloud-RAN
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Issue B: Massive Channel State Information

m Goal: Interference coordination in dense Cloud-RAN

= Prior works: Perfect CSIT [Cadambe and Jafar, TIT 08], delayed CSIT
[Maddah-Ali and Tse, TIT 12], alternating CSIT [Tandon, et al, TIT 13],...

= Curses: CSIT is rarely abundant (due to training & feedback overhead)

= Blessings: Partial connectivity in dense wireless networks [Ruan, et al.
TSP 1 1], [Jafar, TIT 14]

transmitter receiver transmitter receiver

How to exploit the

path-loss . . .
—_—> partial connectivity?

shadowing

26




Example:TIM via LRMC

" | ow-rank matrix completion for topological interference management

transmitters receivers transmitters

WH\/ o
Wy — 2—>W2

W3—>

SJ9AI9D3U

3—>W3

W, — — W4

W5 — W5

TIM [Jafar, TIT 14]: Maximize

the achievable DoF only based on

the network topology information
(no CSIT)
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Formal Formulation

= Goal: Deliver one data stream per user over N time slots
m v, € CN:tx. beamformer at the i-th tx.

= u; € CV:rx.beamformer at the j-th rx.
Align interference

qu- =1 Y1 rewrite .
i Vi ; ; w Po(X) =1
= Weneed: X;; =< ulflv; =0, Vi#j (i,j) €, 2(X) K
*, otherwise. l
1/N DoF
= Approach: Low-rank matrix completion (LRMC) [3]
minimize rank(X) Key conclusion: DoF = 1/rank(X)

subject to  Pq(X) = Ik Any network topology:

[3] Y. Shi, J. Zhang, and K. B. Letaief, “Low-rank matrix completion via Riemannian pursuit for topological
interference management,” in Proc. IEEE Int. Symp. Inform. Theory (ISIT), Hong Kong, Jun. 2015.
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CSI Uncertainty

= Uncertainty in the available CSI

®  Downlink training based channel estimation

= Uplink limited feedback How to deal with the

m  Hardware deficiencies CSl uncertainty?

= Example: Compressive CSI acquisition [8]

-
-

-

—> Obtain instantaneous CSI (imperfect)
= = = » Statistical CSl is available

-="
-
-

- -
.-

[8] Y. Shi, J. Zhang, and K. B. Letaief, “CSI overhead reduction with stochastic beamforming for
cloud radio access networks,” in Proc. IEEE Int. Conf. Commun. (ICC), Sydney, Australia, Jun. 2014,

29



Stochastic vs. Robust

= Stochastic optimization: Probabilistic QoS constraints [Lau, et al.,, TSP |3]

vy |?
Pr > v, Vkp > 1—¢€
{ Dizk MV o T b B

Modeling flexibility: Only distribution

information of uncertainty is required

=  Robust optimization: Worst-case QoS constraints [Ottersten, et al.,, TSP 12]

X |(flk + ek:)HVk|2
min

= > Vi, Vk
ell¥ e, <1 Zi;ék: |(h;1C —+ ek)HVi|2 -+ J,%

Uncertainty set modeling is

challenging; over conservative

30



Stochastic Coordinated Beamforming

= Chance constrained programming:

L

K
Ce . 2
minimize Z Z vk ||
=1 k=1
subject to Pr{SINRy(v,hg) > v, Vk} > 1 —¢

= Challenge: Non-convex chance constraint

f(v) = 1—Pr{SINRL(v,hy) >, Vk} :Pr{( max dk(v,hk)> > 0}

1<k<K
E (@%{ dk(v,hk))]

= Related works: Find feasible but sub-optimal solutions

m  Bernstein approximation method (convex relaxation) ([Win, et al., TSP 10],
[Lau, et al, TSP 13]):exp(z) > 1(0,+00)(2)

31



Sequential Convex Programming

= Novel approach: DC (difference-of-convex) function to approximate
the indicator function [Hong, et al.,, OR | [] f

$(z) = [+ 2)* =7

P(z,v) = %[(1/+z)+ — 2T,y >0

\

y 0

= DC approximation: :
convex functions

f(v,v)=E |¢ ( max dk(v,hk),u)] — %[u(v,i) —\r;(v’())],u > 0

1<k<K

= Sequential convex approximations: Linearize (v, 0)
I(v;vUD) = u(v,v) — u(vl,0) — 2(Vyeu(vl 0), v — v
= Stochastic DC programming algorithm: Converge to a KKT point
inf,~g f(v,l/) = f(v)

32



= Conservativeness of approximating probability constraints in the SCB
problem (5 RRHs and 3 MUs)
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Simulation Results (lI)

= Total transmit power versus different target SINR requirements

= 5 RRHs and 3 MUSs, instantaneous CSI| 9 out of |5 channel links are obtained

22 ; ; ;
—O— Bernstein Approximation Method D O (’n,4 5 log( ]_/E) )
1| —B— Stochastic DC Programming Algorithm

—®— Benchmark: Full CSI

O(n35M Jlog(1/e))
O(n’*log(1/e))

Insights: CSl acquisition overhead
can be scalable to large-scale

Total Transmit Power [dBm]

networks due to the partial
connectivity of wireless networks.

0 0.5 1 1.5 2 2.5 3 3.5 4
Target SINR [dB]
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Partial connectivity provides great opportunities for massive CSI
overhead reduction

New optimization method is needed to exploit channel structures

Key techniques:
®  |Low-rank matrix completion for topological interference management

m  Sequential convex programming for stochastic coordinated beamforming

Results:
= LRMC investigates the TIM problem for any network topology

= SCB provides modeling flexibility in the channel knowledge uncertainty

35



Conclusions and Extensions (ll)

m Extensions:

= TIM for partially connected MIMO interference channels

m  Channel estimation by exploiting the channel partial connectivity

®  |Improve the computational efficiency for the low-rank matrix completion and
stochastic coordinated beamforming problems

36



Vignette C: Large-Scale Convex Optimization
for Dense Cloud-RAN

P 0riginal % *
"™ | Matrix Stuffing|—— >~ ADMM Solver

GQAL

f S

”~

o
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Issue C: Large-Scale Convex Optimization

= Large-scale convex optimization: A powerful tool for system design
in dense wireless networks

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 18, SEPTEMBER 15, 2015

Group sparse beamforming, Large-Sc'ale Convex Opt@mization for Dense
Wireless Cooperative Networks

Yuanming Shi, Student Member, IEEE, Jun Zhang, Member, IEEE, Brendan O’Donoghue, and
Khaled B. Letaief, Fellow, IEEE

stochastic beamforming, etc.

= Prior works: Mainly focus on small-size networks or well-structured
problems

= Limitations: scalability [Luo, et al., SPMag 10], parallelization [Yu and Lan, TWC
| 0], infeasibility detection [Liao, et al., TSP 14], ...

= Unique challenges in dense Cloud-RAN:

®  Design problems: |) A high dimension; 2) a large number of constraints; 3)

complicated structures
38



Matrix Stuffing and Operator Splitting

" Goal: Design a unified framework for general large-scale convex

optimization problem Zouiginal ?

= Disciplined convex programming framework [Grant & Boyd '08]

POriginal

‘—@CODG

- CVX

¥

X*
Interior-Point Solver cvx
Time consuming: modeling phase & solving phase

RESEARCH

= Proposal: Two-stage approach for large-scale convex optimization

P original

A

Matrix Stuffing

Pusp

x*
ADMM Solver ———

m  Matrix stuffing: Fast homogeneous self-dual embedding (HSD) transformation

m  Operator splitting (ADMM): Large-scale homogeneous self-dual embedding

39



Stage One: Fast Transformation

= Example: Coordinated beamforming problem family (with transmit
power constraints and QoS constraints)

POriginal : Minimize ||v||3
subject to |[|[Dyv|e <+ PB,l=1,...,L, (1)
ICkv + gkll2 < Brriv.k=1,..., K. (2)
= Smith form reformulation [Smith ’96]

= Key idea: Introduce a new variable for each subexpression in 2q,.ina1

(yé)a yll) e Qi Second-order cone
Smith form for (1) G1(I) : { b =+VP €R
Vll — D,v ¢ REN Linear constraint

The Smith form is ready for standard cone programming transformation

40



Stage One: Fast Transformation

= HSD embedding of the primal-dual pair of transformed standard

cone program (based on KKT conditions)

minimize ¢! v
| ZNT

subject to Av+u=D>b

maximize —b’ 7
7,

subject to —ATn+ A =c

Zusp : find (x,y)
subject to y = Qx

(v,p) € R™ x K| (A, ) € {0} x K x€C,y e C

A 0 AT ¢ v
Certificate of infeasibility: 7 =0,k > 0 p| = —AT OT bl |n
K —c' —b" 0 T

— ~ ~~ N~
y Q X

= Matrix stuffing for fast transformation:

= Generate and keep the structure Q

Copy problem instance parameters to the pre-stored structure Q

41



Stage Two: Parallel and Scalable Computing

HSD embedding in consensus form:

LQZ-HSD . ﬁnd (xa Y) @ADMM : mln;lmlze IC)(C* (X, y) _|_ IQi:y (5{, S/
subject to y = Qx — %y o
X € C, y € C* SU‘bJeCt to (XJ Y) — (Xa y)

= Final algorithm: Apply the operating splitting method (ADMM)

[Donoghue, Chu, Parikh, and Boyd ’13]

1 = (T4 Q) 'x" +yl)  subspace projection
xH = T — yli)y parallel cone projection
y[H'l] = y[i] — x4 xlit1] computationally trivial

Proximal algorithms for parallel cone projection [Parikn & Boyd, FTO 14]

= E.g,Projection onto the second-order cone C; = {(y,x) € R x RP~1|||x|| < y}
0, flwllz < =7

e, (w,7) = ¢ (@,7), [wll2 <7
(1/2)(1 + 7/||wll2)(w, [[w]l2), [lw][2 = |7.
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Numerical Results (I)

= Example: Power minimization coordinated beamforming problem [6]

Network Size (L=K) 20 50 100 |50
Modeling Time [sec] 0.7563 4430 NI - NI

s Solving Time [sec] 42835 3262513, | N/A N/A
Objective [W] 12.2488 6.5216 N NIA-*
Modeling Time [sec] 0.0128 0.2401 24154 9.4167

Matrix N -
Sol T )

SeuffingbADMM olving Time [sec] 0.1009 2.4821 23.8088 81.0023
Objective [W] 12.2523 6.5193 311296 2.0689

ADMM can speedup 130x over
the interior-point method

Matrix stuffing can
speedup 60x over CVX

[6] Y. Shi, J. Zhang, B. O’Donoghue, and K. B. Letaief, “Large-scale convex optimization for
dense wireless cooperative networks,” IEEE Trans. Signal Process., vol. 63, no. 18, pp. 4729-

4743, Sept. 2015.
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= Coordinated beamforming for max-min fairness rate optimization [6]

7

T T

Optimal Coordinated Beamforming
:X:Hegularized Zero-forcing Beamforming
—8—Zero-forcing Beamforming
—©—Maximum Ratio Transmission

w

I

w

n

55 single-antenna RRHs
and 50 single-antenna
mobile users.

Maximum Network-wide Achievable Rate [bps/Hz]

Large-scale optimal coordinated beamforming is needed for dense Cloud-RAN

-
-
1

15 20 25 30

10
SNR [dB]
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Large-scale convex optimization is essential to enable scalability and
flexibility in dense Cloud-RAN

Key techniques:
= Matrix stuffing: Fast transformation

= Operator splitting method (ADMM): Large-scale HSD embedding

Results: Two-stage large-scale optimization framework provides
a unified way to solve general large-scale convex programs in parallel

Extensions:
®  Parallel and distributed implementations (Hadoop, Spark)

®=  Randomized algorithms for the semidefinite cone projection (SDP problems)
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Summary (1)

= The following interaction becomes more and more important:

B ———

“ Communication

SCALABLE

SPARSE
OPTIMIZATION

——

Acquisition/Analysis

e rim———

Computing

=4
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Summary (1)

= Cloud radio access networlk is an enabling architecture that allows
®  Joint signal processing across the network

®  Advanced network-wide optimization in the cloud

= Summary of results:
®  Group sparse optimization enables flexible network adaptation
®  Partial connectivity provides opportunities for CSIl overhead reduction
m | RMC and stochastic optimization are powerful to exploit channel structures

m  |Large-scale convex optimization plays a key role in network optimization

Future network design: Dense, cooperative, scalable, unified

47
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