Mobile Edge Artificial Intelligence: Opportunities and Challenges Motivations

Yuanming Shi

ShanghaiTech University

上海科技大学 ShanghaiTech University

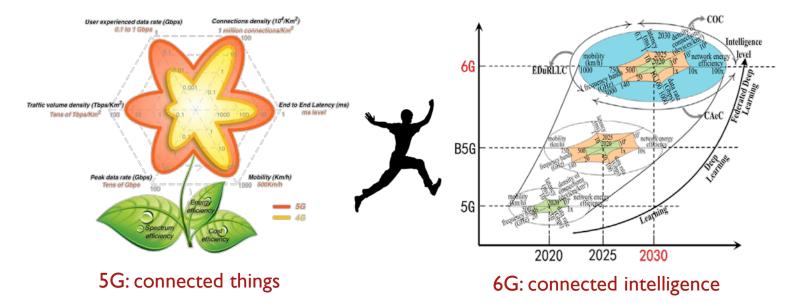
6G: Driving Applications

6G: Enabling Technologies

Fig. credit: Walid

What will 6G be?

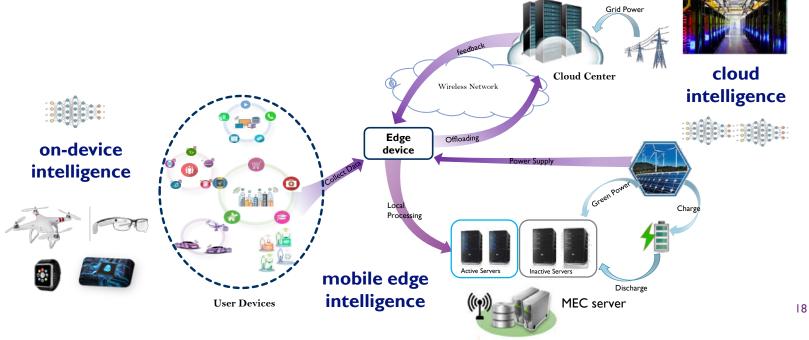
• **6G networks:** from "connected things" to "connected intelligence"



[Ref] K. B. Letaief, W. Chen, Y. Shi, J. Zhang, and Y. Zhang, "The roadmap to 6G - AI empowered₄ wireless networks," *IEEE Commun. Mag.*, vol. 57, no. 8, pp. 84-90, Aug. 2019.

Connected intelligence via Al

Make networks full of AI: embed intelligence across whole network to provide greater level of automation and adaptiveness



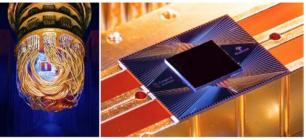
Success of modern Al

- Two secrets of AI's success: computing power and big data
 - Computing power: Intel i386, Intel i486, Intel Pentium Intel Core, Nvidia GPU,

Google TPU, Google quantum supremacy,...

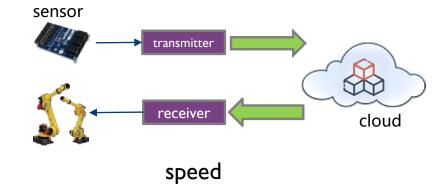
Big data: the world's most valuable resource

is no longer oil, but data



Challenges of modern Al

model size



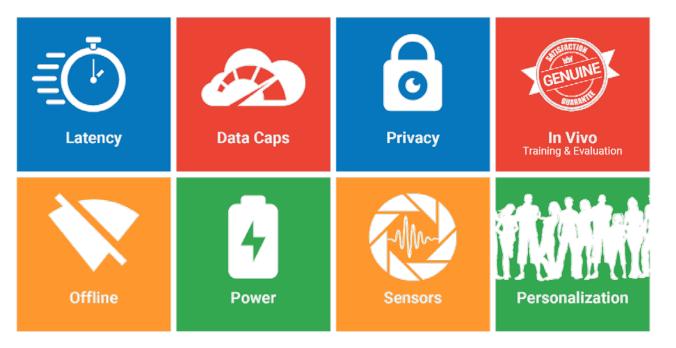
No Autonomous Modeling and Decision
Interpretability of Model Decisions
Users'Flight for Data to be Forgotten
Data Privacy By Design
Explicit Consent for Data Usage

privacy

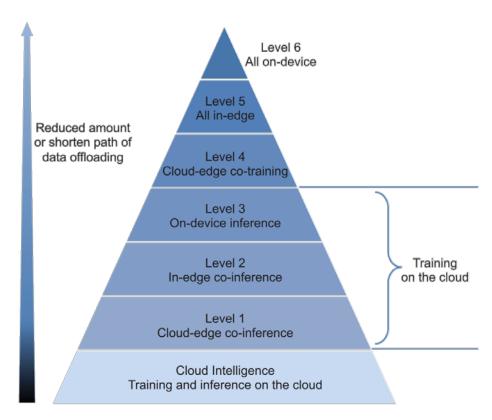
energy

Solution: mobile edge Al

Processing at "edge" instead of "cloud"



Levels of edge AI



Six levels of edge Al based on the path of data offloading: cloud-edgedevice coordination via data offloading

Fig. credit: Zhou

This talk

Part I: mathematics in edge AI

- Provable guarantees for nonconvex machine learning
- Communication-efficient distributed machine learning

Part II: edge inference process

- Communication-efficient on-device distributed inference
- Energy-efficient edge cooperative inference
- Part III: edge training process
 - Over-the-air computation for federated learning
 - Intelligent reflecting surface empowered federated learning

Mobile Edge Artificial Intelligence: Opportunities and Challenges Part I:Theory

Yuanming Shi

ShanghaiTech University

上海科技大学 ShanghaiTech University

Outline

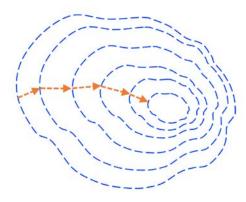
Motivations

- Taming nonconvexity in statistical machine learning
- Communication challenges in distributed machine learning

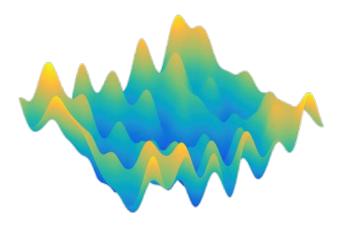
Two Vignettes:

- Provable guarantees for nonconvex machine learning
 - Why nonconvex optimization?
 - Blind demixing via implicitly regularized Wirtinger flow
- Communication-efficient distributed machine learning
 - Why gradient quantization?
 - Learning polynomial neural networks via quantized SGD

Vignettes A: Provable guarantees for nonconvex machine learning



Why nonconvex optimization?



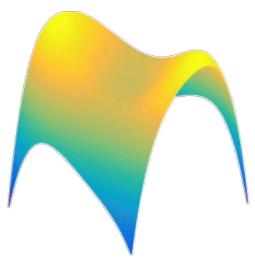
Nonconvex problems are everywhere

Empirical risk minimization is usually nonconvex

 $\underset{\boldsymbol{x}}{\text{minimize}} \quad f(\boldsymbol{x}; \boldsymbol{\theta})$

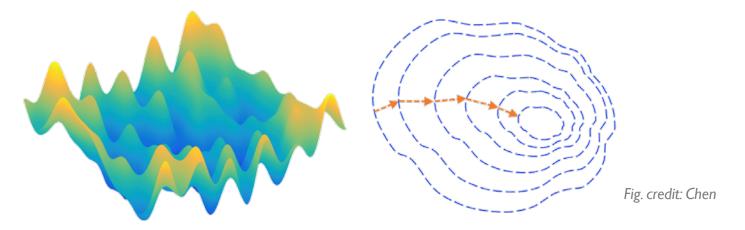
- Iow-rank matrix completion
- blind deconvolution/demixing
- dictionary learning
- phase retrieval
- mixture models
- deep learning

▶ ...



Nonconvex optimization may be super scary

• Challenges: saddle points, local optima, bumps,...

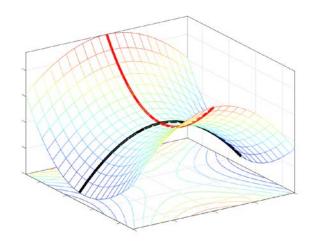


 Fact: they are usually solved on a daily basis via simple algorithms like (stochastic) gradient descent

Sometimes they are much nicer than we think

 Under certain statistical models, we see benign global geometry: no spurious local optima

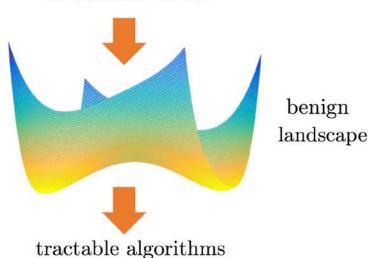




global minimum

Statistical models come to rescue

 Blessings: when data are generated by certain statistical models, problems are often much nicer than worst-case instances



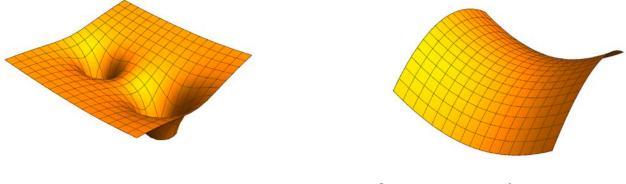
statistical models

Fig. credit: Chen

First-order stationary points

Saddle points and local minima:

 $\lambda_{\min}(\nabla^2 f(\boldsymbol{z})) \begin{cases} > 0 & \text{local minimum} \\ = 0 & \text{local minimum or saddle point} \\ < 0 & \text{strict saddle point} \end{cases}$

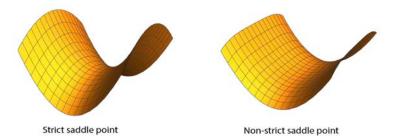


Local minima

Saddle points/local maxima

First-order stationary points

- **Applications:** PCA, matrix completion, dictionary learning etc.
 - Local minima: either all local minima are global minima or all local minima as good as global minima
 - Saddle points: very poor compared to global minima; several such points



Bottomline: local minima much more desirable than saddle points

How to escape saddle points efficiently?

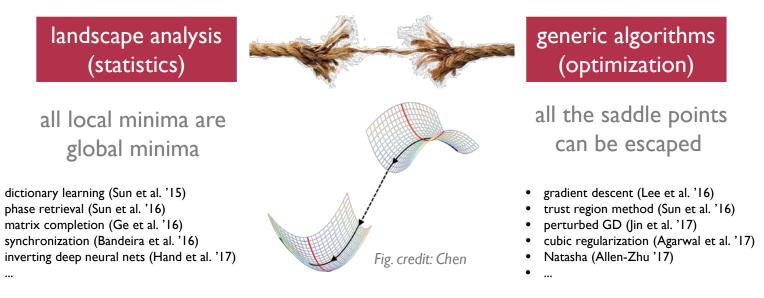
Statistics meets optimization

٠

٠

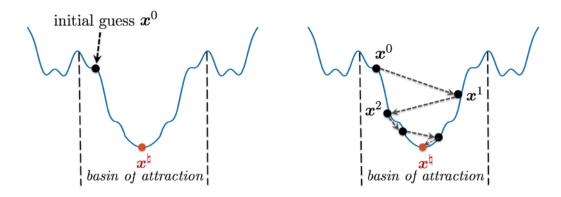
٠

Proposal: separation of landscape analysis and generic algorithm design



Issue: conservative computational guarantees for specific problems (e.g., phase retrieval, blind deconvolution, matrix completion)

Blind demixing via implicitly regularized Wirtinger flow



Solution: blending landscape and convergence analysis

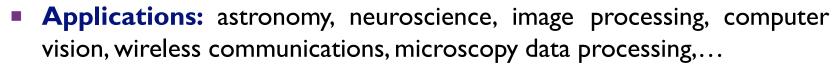
Case study: blind deconvolution

In many science and engineering problems, the observed signal can be modeled as:

$$z(t) = f(t) * g(t)$$

where * is the convolution operator

- \succ f(t) is a physical signal of interest
- \succ g(t) is the impulse response of the sensory system

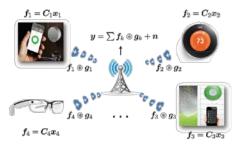


Blind deconvolution: estimate f(t) and g(t) given z(t)

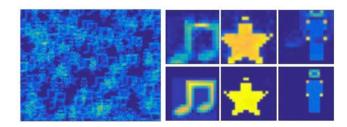
Case study: blind demixing

The received measurement consists of the sum of all convolved signals

$$z(t) = \sum_{i=1}^{s} f_i(t) * g_i(t)$$



low-latency communication for IoT



convolutional dictionary learning (multi kernel)

- Applications: IoT, dictionary learning, neural spike sorting,...
- Blind demixing: estimate $\{f_i(t)\}$ and $\{g_i(t)\}$ given z(t)

Bilinear model

Translate into the frequency domain...

$$oldsymbol{z} = \sum_{i=1}^s oldsymbol{f}_i \odot oldsymbol{g}_i \in \mathbb{C}^m$$

Subspace assumptions: f_i and g_i lie in some known low-dimensional subspaces

$$oldsymbol{f}_i = oldsymbol{A}_i oldsymbol{x}_i^{arphi} \in \mathbb{C}^m \qquad oldsymbol{g}_i = oldsymbol{B}oldsymbol{h}_i^{arphi} \in \mathbb{C}^m$$

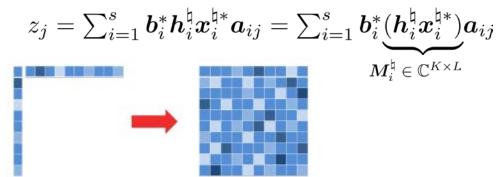
where $A_i = [a_{i1}, \cdots, a_{im}]^* \in \mathbb{C}^{m \times L}$, $B = [b_1, \cdots, b_m]^* \in \mathbb{C}^{m \times K}$ and $L, K \ll m$ $a_{ij} \stackrel{\text{i.i.d.}}{\sim} C\mathcal{N}(\mathbf{0}, I) \qquad \{b_j\}$: partial Fourier basis

Demixing from bilinear measurements:

find
$$\{\boldsymbol{x}_i\}, \{\boldsymbol{h}_i\}$$
 subject to $z_j = \sum_{i=1}^s \boldsymbol{b}_j^* \boldsymbol{h}_i \boldsymbol{x}_i^* \boldsymbol{a}_{ij}, 1 \le j \le m$

An equivalent view: low-rank factorization

• Lifting: introduce $M_k^{\natural} = h_k^{\natural} x_k^{\natural*}$ to linearize constraints



Low-rank matrix optimization problem

find
$$\{M_i\}$$

subject to $z_j = \sum_{i=1}^s \boldsymbol{b}_i^* \boldsymbol{M}_i \boldsymbol{a}_{ij}, \quad j = 1, \cdots, m$
rank $(\boldsymbol{M}_i) = 1, \ i = 1, \cdots, s,$

16

Convex relaxation

Ling and Strohmer (TIT'2017) proposed to solve the nuclear norm minimization problem:

$$\begin{array}{ll} \text{minimize} & \sum_{k=1}^{s} \|\boldsymbol{M}_{k}\|_{*} & \boldsymbol{a}_{kj} \stackrel{\text{i.i.d.}}{\sim} \mathcal{CN}(\boldsymbol{0}, \boldsymbol{I}) \\ \text{subject to} & z_{j} = \sum_{k=1}^{s} \boldsymbol{b}_{k}^{*} \boldsymbol{M}_{k} \boldsymbol{a}_{kj}, \quad j = 1, \cdots, m \quad \{\boldsymbol{b}_{j}\} \text{: partial Fourier basis} \end{array}$$

> Sample-efficient: $m \gtrsim s^2 \max\{K, L\} \log^2 m$ samples for exact recovery if $\{b_j\}$ is incoherent w.r.t. $\{h_k^{\natural}\}$

Computational-expensive: SDP in the lifting space

Can we solve the nonconvex matrix optimization problem directly?

A natural least-squares formulation

• **Goal:** demixing from bilinear measurements

$$\begin{array}{ll} \text{Given:} \quad y_j = \sum_{i=1}^s \boldsymbol{b}_j^* \boldsymbol{h}_i^{\natural} \boldsymbol{x}_i^{\natural*} \boldsymbol{a}_{ij}, & 1 \leq j \leq m \\ \\ \underset{\{\boldsymbol{h}_k\}, \{\boldsymbol{x}_k\}}{\text{minimize}} \quad f(\boldsymbol{h}, \boldsymbol{x}) := \sum_{j=1}^m \sum_{k=1}^s \left(\boldsymbol{b}_j^* \boldsymbol{h}_k \boldsymbol{x}_k^* \boldsymbol{a}_{kj} - y_j \right)^2 \end{array}$$

Pros: computational-efficient in the natural parameter space
 Cons: f(·) is nonconvex: bilinear constraint, scaling ambiguity

Wirtinger flow

Least-square minimization via Wirtinger flow (Candes, Li, Soltanolkotabi '14)

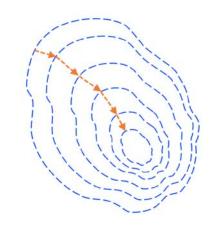
$$\underset{\{\boldsymbol{h}_k\},\{\boldsymbol{x}_k\}}{\text{minimize}} f(\boldsymbol{h}, \boldsymbol{x}) := \sum_{j=1}^m \sum_{k=1}^s \left(\boldsymbol{b}_j^* \boldsymbol{h}_k \boldsymbol{x}_k^* \boldsymbol{a}_{kj} - y_j \right)^2$$

> Spectral initialization by top eigenvector of

$$oldsymbol{M}_k := \sum_{j=1}^m oldsymbol{y}_j oldsymbol{b}_j oldsymbol{a}_{kj}^*, \quad k=1,\cdots,s$$

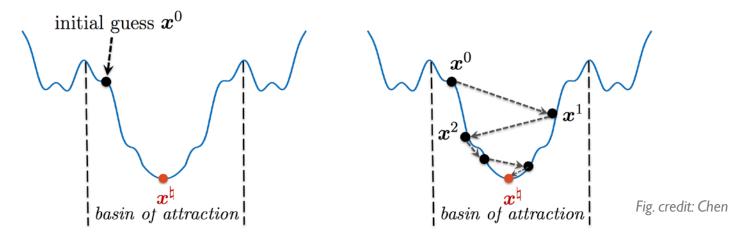
Gradient iterations

$$h_{k}^{t+1} = h_{k}^{t} - \eta \frac{1}{\|\boldsymbol{x}_{k}^{t}\|_{2}^{2}} \nabla_{\boldsymbol{h}_{k}} f(\boldsymbol{h}^{t}, \boldsymbol{x}^{t})$$
$$\boldsymbol{x}_{k}^{t+1} = \boldsymbol{x}_{k}^{t} - \eta \frac{1}{\|\boldsymbol{h}_{k}^{t}\|_{2}^{2}} \nabla_{\boldsymbol{x}_{k}} f(\boldsymbol{h}^{t}, \boldsymbol{x}^{t})$$



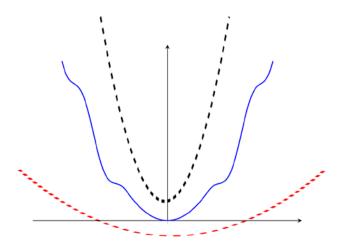
Two-stage approach

- Initialize within local basin sufficiently close to ground-truth (i.e., strongly convex, no saddle points/ local minima)
- Iterative refinement via some iterative optimization algorithms



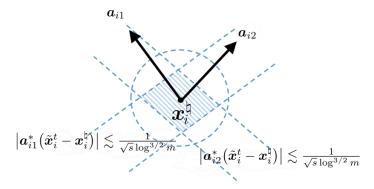
Gradient descent theory

- Two standard conditions that enable geometric convergence of GD
 - > (local) restricted strong convexity
 - > (local) smoothness



Gradient descent theory

Question: which region enjoys both strong convexity and smoothness?



 $\succ x$ is not far away from x^{\natural} (convexity)

 $\succ x$ is incoherent w.r.t. sampling vectors (incoherence region for smoothness)

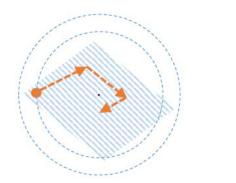
Prior works suggest enforcing *regularization* (e.g., regularized loss [Ling & Strohmer'17]) to promote incoherence

Our finding:WF is implicitly regularized

WF (GD) implicitly forces iterates to remain incoherent with {a_{ij}}

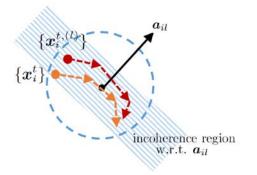
$$\max_{1 \le i \le s, 1 \le j \le m} \left| \boldsymbol{a}_{ij}^* \left(\alpha_i^t \boldsymbol{x}_i^t - \boldsymbol{x}_i^{\natural} \right) \right| \lesssim \frac{1}{\sqrt{s \log^{3/2} m}} \| \boldsymbol{x}_i^{\natural} \|_2$$

- cannot be derived from generic optimization theory
- > relies on finer statistical analysis for entire trajectory of GD



region of local strong convexity and smoothness

Key proof idea: leave-one-out analysis



- introduce leave-one-out iterates $x_i^{t,(l)}$ by running WF without *l*-th sample
- leave-one-out iterate $x_i^{t,(l)}$ is independent of a_{il}
- leave-one-out iterate $x_i^{t,(l)} pprox$ true iterate x_i^t
- x_i^t is nearly independent of (i.e., nearly orthogonal to) a_{il}

Theoretical guarantees

- With i.i.d. Gaussian design, WF (regularization-free) achieves
 - Incoherence

$$\max_{1 \le i \le s, 1 \le j \le m} \left| \boldsymbol{a}_{ij}^* \left(\alpha_i^t \boldsymbol{x}_i^t - \boldsymbol{x}_i^{\natural} \right) \right| \lesssim \frac{1}{\sqrt{s \log^{3/2} m}} \| \boldsymbol{x}_i^{\natural} \|_2$$

Near-linear convergence rate

$$\operatorname{dist}(\boldsymbol{z}^t, \boldsymbol{z}^{\natural}) \lesssim \left(1 - \frac{\eta}{16\kappa}\right)^t \frac{1}{\log^2 m}$$

• Summary:

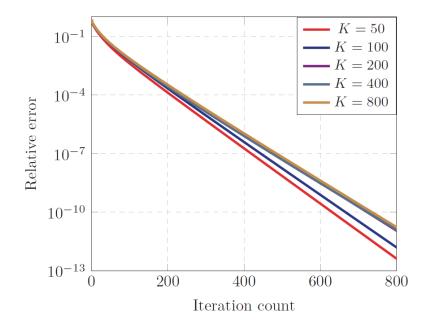
- ▷ Sample size: $m \gtrsim s^2 \max\{K, L\}$ poly log m
- > Stepsize: $\eta \asymp s^{-1}$ vs. $\eta \precsim (sm)^{-1}$ [Ling & Strohmer'17]

> Computational complexity: $\mathcal{O}(s \log \frac{1}{\epsilon})$ vs. $\mathcal{O}(sm \log \frac{1}{\epsilon})$ [Ling & Strohmer'17]

[Ref] J. Dong and Y. Shi, "Nonconvex demixing from bilinear measurements," *IEEE Trans. Signalss Process.*, vol. 66, no. 19, pp. 5152-5166, Oct., 2018.

Numerical results

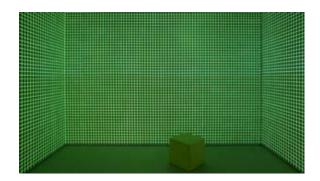
- stepsize: $\eta = 0.1$
- number of users: s = 10
- sample size: m = 50K



linear convergence: WF attains \mathcal{E} - accuracy within $\mathcal{O}(s\log \frac{1}{\varepsilon})$ iterations

Vignettes B: Communication-efficient distributed machine learning

Why gradient quantization?



The practical problem

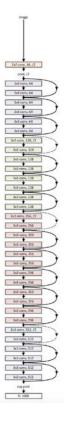
Goal: training large-scale machine learning models efficiently

Large datasets:

- ImageNet: I.6 million images (~300GB)
- NIST2000 Switchboard dataset: 2000 hours

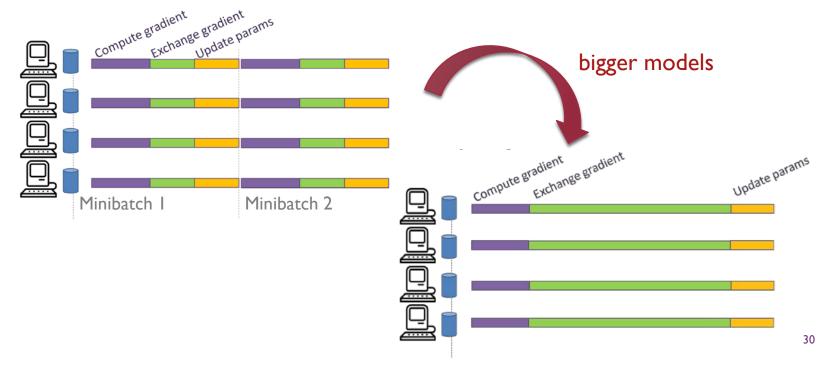
Large models:

- ResNet-152 [He et al. 2015]: 152 layers, 60 million parameters
- LACEA [Yu et al. 2016]: 22 layers, 65 million parameters



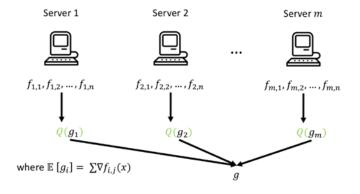
Data parallel stochastic gradient descent

• Challenge: communication is a bottleneck to scalability for large model



Quantized SGD

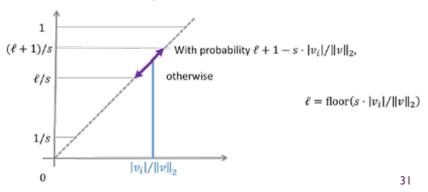
Idea: stochastically quantize each coordinate



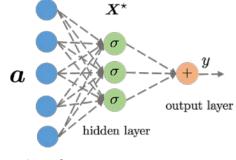
Update: $x_{t+1} \leftarrow x_t - \eta \cdot g$ Question: how to provide optimality guarantees of quantized SGD for nonconvex machine learning? Q is a quantization function which can be communicated with fewer bits

 $Q[v;s] = \|v\|_2 \cdot \operatorname{sgn}(v_i) \cdot \xi_i(v,s)$

 ξ_i is defined by



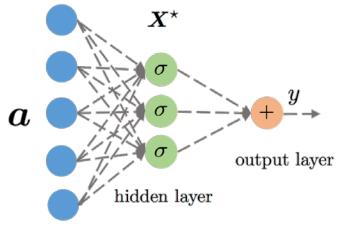
Learning polynomial neural networks via quantized SGD



input layer

Polynomial neural networks

Learning neural networks with quadratic activation



input features: a

weights:
$$oldsymbol{X}^{\star} = [oldsymbol{x}_1^{\star}, \cdots, oldsymbol{x}_r^{\star}]$$

output:

$$y = \sum_{i=1}^{r} \sigma(\boldsymbol{a}^{T} \boldsymbol{x}^{\star}) \stackrel{\sigma(z)=z^{2}}{:=} \sum_{i=1}^{r} (\boldsymbol{a}^{T} \boldsymbol{x}_{i}^{\star})^{2}$$

input layer

Quantized stochastic gradient descent

Mini-batch SGD

$$oldsymbol{W}_{t+1} = oldsymbol{W}_t - \mu rac{1}{m} \sum_{j=1}^m
abla \mathcal{L}_{i_t^{(j)}}\left(oldsymbol{W}_t
ight)$$

> sample indices $i_t^{(j)}$ uniformly with replacement from $\{1, 2, 3, ..., n\}$

the generalized gradient of the loss function

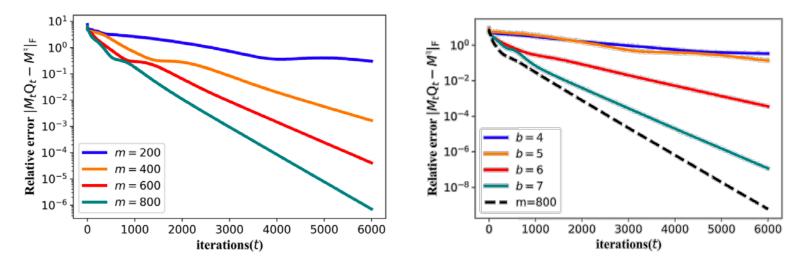
$$abla \mathcal{L}_i\left(oldsymbol{W}
ight) = (\left\| oldsymbol{x}_i^T oldsymbol{W}_t
ight\|_2^2 - y_i) oldsymbol{x}_i oldsymbol{x}_i^T oldsymbol{W}$$

Quantized SGD

$$\boldsymbol{W}_{t+1} = \boldsymbol{W}_t - \boldsymbol{\mu} \cdot \frac{1}{K} \sum_{k=1}^{K} Q_s \left(\nabla \left\{ \frac{1}{m_k} \sum_{j=1}^{m_k} \mathcal{L}_{i_t^{(j)}} \left(\boldsymbol{W}_t \right) \right\} \right)$$

Provable guarantees for QSGD

- Theorem 1:SGD converges at linear rate to the globally optimal solution
- Theorem 2: QSGD provably maintains similar convergence rate of SGD



Concluding remarks

Implicitly regularized Wirtinger flow

- Implicit regularization: vanilla gradient descent automatically forces iterates to stay incoherent
- Even simplest nonconvex methods are remarkably efficient under suitable statistical models

Communication-efficient quantized SGD

- QSGD provably maintains the similar convergence rate of SGD to a globally optimal solution
- Significantly reduce the communication cost: tradeoffs between computation and communication

Future directions

Deep and machine learning with provable guarantees

information theory, random matrix theory, interpretability,...

Communication-efficient learning algorithms

vector quantization schemes, decentralized algorithms, zero-order algorithms, second-order algorithms, federated optimization, ADMM, ...

Mobile Edge Artificial Intelligence: Opportunities and Challenges Part II: Inference

Yuanming Shi

ShanghaiTech University

上海科技大学 ShanghaiTech University

Outline

Motivations

- Latency, power, storage
- Two vignettes:
 - Communication-efficient on-device distributed inference
 - Why on-device inference?
 - Data shuffling via generalized interference alignment
 - Energy-efficient edge cooperative inference
 - Why inference at network edge?
 - Edge inference via wireless cooperative transmission

Why edge inference?

Al is changing our lives

self-driving car



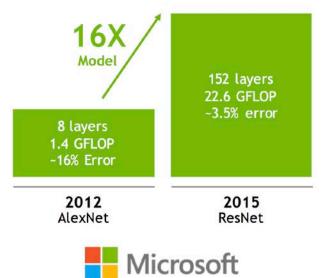
machine translation

smart robots

AlphaGo

Models are getting larger

image recognition



speech recognition

Fig. credit: Dally

The first challenge: model size

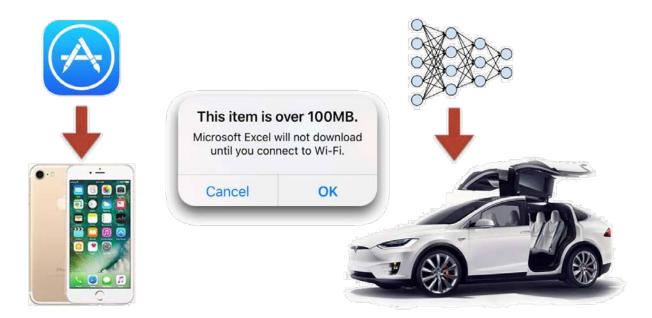


Fig. credit: Han

difficult to distribute large models through over-the-air update

The second challenging: speed

Error rate
10.76%
7.02%
6.21%
6.16%

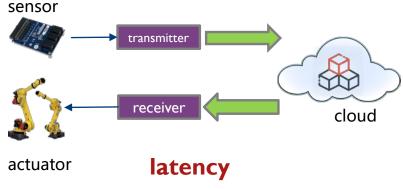
long training time limits

ML researcher's

productivity

Training time 2.5 days 5 days 1 week 1.5 weeks Ŧ

communication



processing at "Edge" instead of the "Cloud"

The third challenge: energy

AlphaGo: 1920 CPUs and 280 GPUs, \$3000 electric bill per game

on mobile: drains battery on data-center: increases TCO

larger model-more memory reference-more energy

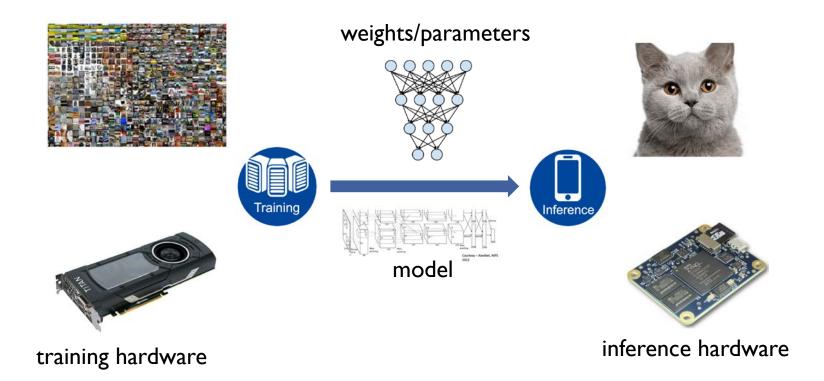
How to make deep learning more efficient?

low latency, low power

Vignettes A: On-device distributed inference

low latency

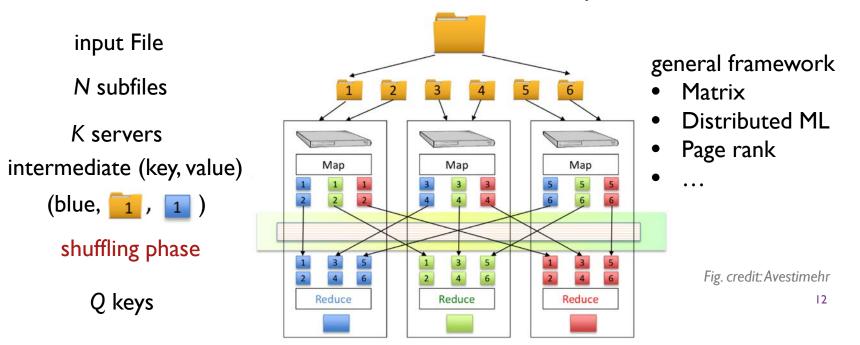
On-device inference: the setup



MapReduce: a general computing framework

• Active research area: how to fit different jobs into this framework

N subfiles, K servers, Q keys



Wireless MapReduce: computation model

- **Goal:** low-latency (communication-efficient) on-device inference
- Challenges: the dataset is too large to be stored in a single mobile device (e.g., a feature library of objects)
- Solution: stored N files $\{f_1, \cdots, f_N\}$ across devices, each can only store up to μ files, supported by distributed computing framework MapReduce

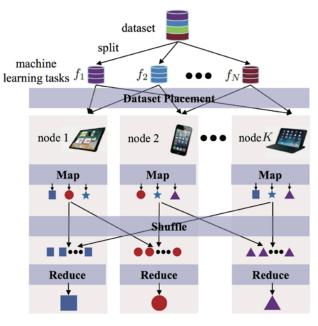
 $\phi_k(d_k; f_1, \cdots, f_N) = h_k(g_{k,1}(d_k; f_1), \cdots, g_{k,N}(d_k; f_N))$

- > Map function: $w_{k,t} = g_{k,t}(d_k; f_t)$ (d_k input data)
- > **Reduce** function: $h_k(w_{k,1}, \dots, w_{k,N})$ ($w_{k,t}$ intermediate values)

Wireless MapReduce: computation model

- Dataset placement phase: determine the index set of files stored at each node *F_k* ⊆ [*N*]
- Map phase: compute intermediate values locally $\{w_{s,t} : s \in [K], t \in \mathcal{F}_k\}$
- Shuffle phase: exchange intermediate values wirelessly among nodes
- Reduce phase: construct the output value using the reduce function

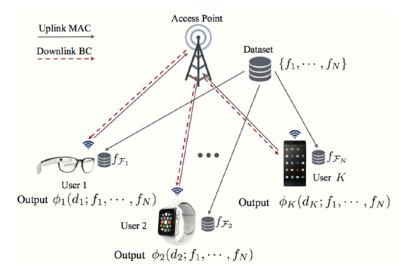
 $h_k(w_{k,1},\cdots,w_{k,N})$



on-device distributed inference via wireless MapReduce

Wireless MapReduce: communication model

- Goal: K users (each with L antennas) exchange intermediate values via a wireless access point (Mantennas)
 - > entire set of messages (intermediate values) $\{W_1, \cdots, W_T\}, T = KN$
 - ➢ index set of messages (computed locally) available at user $k : T_k ⊆ [T]$
 - index set of messages required by user k: $\mathcal{R}_k \subseteq [T]$



wireless distributed computing system

message delivery problem with side information

Wireless MapReduce: communication model

Uplink multiple access stage:

$$oldsymbol{y} = \sum_{k=1}^{K} (oldsymbol{H}_k^u \otimes oldsymbol{I}_r) oldsymbol{x}_k + oldsymbol{n}^u$$

 \succ $y \in \mathbb{C}^{Mr}$: received at the AP; $x_k \in \mathbb{C}^{Lr}$: transmitted by user k; r: channel uses

Downlink broadcasting stage:

 $oldsymbol{z}_k = (oldsymbol{H}_k^d \otimes oldsymbol{I}_r)oldsymbol{y} + oldsymbol{n}_k^d$

 $\succ \mathbf{z}_k \in \mathbb{C}^{Lr}$: received by mobile user k

Overall input-output relationship from mobile user to mobile user

$$oldsymbol{z}_k = \sum_{i=1}^K (oldsymbol{H}_{ki} \otimes oldsymbol{I}_r) oldsymbol{x}_i + oldsymbol{n}_k \qquad egin{array}{c} oldsymbol{H}_{ki} = oldsymbol{H}_k^d oldsymbol{H}_i^u \in \mathbb{C}^{L imes L} \ oldsymbol{n}_k = (oldsymbol{H}_k^d \otimes oldsymbol{I}_r) oldsymbol{n}^u + oldsymbol{n}_k^d \ oldsymbol{n}_k = (oldsymbol{H}_k^d \otimes oldsymbol{I}_r) oldsymbol{n}^u + oldsymbol{n}_k^d \ oldsymbol{n}_k = (oldsymbol{H}_k^d \otimes oldsymbol{I}_r) oldsymbol{n}^u + oldsymbol{n}_k^d \ oldsymbol{n}_k = (oldsymbol{H}_k^d \otimes oldsymbol{I}_r) oldsymbol{n}^u + oldsymbol{n}_k^d \ oldsymbol{n}_k = (oldsymbol{H}_k^d \otimes oldsymbol{I}_r) oldsymbol{n}^u + oldsymbol{n}_k^d \ oldsymbol{n}_k = (oldsymbol{H}_k^d \otimes oldsymbol{I}_r) oldsymbol{n}^u + oldsymbol{n}_k^d \ oldsymbol{n}_k = (oldsymbol{n}_k^d \otimes oldsymbol{I}_r) oldsymbol{n}^u + oldsymbol{n}_k^d \ oldsymbol{n}_k = (oldsymbol{n}_k^d \otimes oldsymbol{I}_r) oldsymbol{n}^u + oldsymbol{n}_k^d \ oldsymbol{n}_k = (oldsymbol{n}_k^d \otimes oldsymbol{I}_r) oldsymbol{n}^u + oldsymbol{n}_k^d \ oldsymbol{n}_k = (oldsymbol{n}_k^d \otimes oldsymbol{I}_r) oldsymbol{n}^u + oldsymbol{n}_k^d \ oldsymbol{n}_k = (oldsymbol{n}_k^d \otimes oldsymbol{I}_r) oldsymbol{n}^u + oldsymbol{n}_k^d \ oldsymbol{n}_k = (oldsymbol{n}_k^d \otimes oldsymbol{I}_r) oldsymbol{n}^u + oldsymbol{n}_k^d \ oldsymbol{n}_k = (oldsymbol{n}_k^d \otimes oldsymbol{I}_r) oldsymbol{n}^u + oldsymbol{n}_k^d \ oldsymbol{n}_r = (oldsymbol{n}_r) oldsymbol{n}^d oldsymbol{n}_r + oldsymbol{n}_r \ oldsymbol{n}_r = (oldsymbol{n}_r) oldsymbol{n}^d oldsymbol{n}_r = (oldsymbol{n}_r) oldsymbol{n}_r \ oldsymbol{n}_r = oldsymbol{n}^d oldsymbol{n}_r oldsymbol{n}_r \ ol$$

Interference alignment conditions

• Precoding matrix:
$$V_{kj} \in \mathbb{C}^{Lr imes d}, \, m{x}_k = \sum_{j \in \mathcal{T}_k} m{V}_{kj} m{s}_j$$

• Decoding matrix: $oldsymbol{U}_{kl} \in \mathbb{C}^{d imes Lr}$

$$\begin{split} ilde{oldsymbol{z}}_{kl} &= oldsymbol{U}_{kl} oldsymbol{z}_k = oldsymbol{\mathcal{I}}_{l} oldsymbol{(j \in \mathcal{I}_k)} + oldsymbol{\mathcal{I}}_{l} = oldsymbol{\mathcal{I}}_{l} + oldsymbol{\mathcal{I}}_{l} = oldsymbol{\mathcal{I}}_{l} + oldsymbol{\mathcal{I}}_{l} = oldsymbol{\mathcal{I}}_{l} + oldsy$$

Interference alignment conditions

$$\det\left(\sum_{i:l\in\mathcal{T}_i} \boldsymbol{U}_{kl}(\boldsymbol{H}_{ki}\otimes\boldsymbol{I}_r)\boldsymbol{V}_{il}\right)\neq 0,$$
$$\sum_{i:j\in\mathcal{T}_i} \boldsymbol{U}_{kl}(\boldsymbol{H}_{ki}\otimes\boldsymbol{I}_r)\boldsymbol{V}_{ij}=\boldsymbol{0}, \ j\notin\mathcal{T}_k\cup\{l\}$$

w.l.o.g. $\sum_{i:l \in T_i} U_{kl} (H_{ki} \otimes I_r) V_{il} = I$ symmetric DoF: $DoF_{sym} = d/r$

Generalized low-rank optimization

Low-rank optimization for interference alignment

 $\mathscr{P}: \underset{\boldsymbol{X} \in \mathbb{C}^{D \times D}}{\operatorname{minimize}} \operatorname{rank}(\boldsymbol{X})$ subject to $\mathcal{A}(\boldsymbol{X}) = \boldsymbol{b}$

▶ the affine constraint encodes the interference alignment conditions $\sum_{i:l\in\mathcal{T}_i}\sum_{m=1}^{L}\sum_{n=1}^{L}H_{ki}[m,n]\boldsymbol{X}_{k,l,i,l}[m,n]=\boldsymbol{I},$ $\sum_{i:j\in\mathcal{T}_i}\sum_{m=1}^{L}\sum_{n=1}^{L}H_{ki}[m,n]\boldsymbol{X}_{k,l,i,j}[m,n]=\boldsymbol{0}, \ j\notin\mathcal{T}_k\cup\{l\}$ ▶ where rank(\boldsymbol{X}) = $r, \boldsymbol{X} \in \mathbb{C}^{LdKT \times LdKT}, D = LdKT$ $\boldsymbol{X}_{k,l,i,j} = [\boldsymbol{X}_{k,l,i,j}[m,n]] = [\boldsymbol{U}_{kl}[m]\boldsymbol{V}_{ij}[n]]$

Nuclear norm fails

• Convex relaxation fails: yields poor performance due to the poor structure of \mathcal{A}

▶ example:
$$K = N = 2, \mu = d = L = M = 1$$

minimize
$$\|\boldsymbol{X}\|_{*}$$

subject to $\boldsymbol{X} = \begin{bmatrix} \star & \star & 1/H_{12} & 0\\ 0 & 1/H_{21} & \star & \star \end{bmatrix}$

the nuclear norm approach always returns full rank solution while the optimal rank is one

Difference-of-convex programming approach

- Ky Fan k-norm [Watson, 1993]: the sum of largest- k singular values $\|X\|_k = \sum_{i=1}^k \sigma_i(X)$
 - The DC representation for rank function

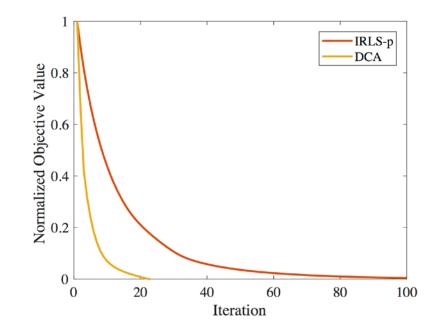
 $\operatorname{rank}(\boldsymbol{X}) = \min\{k: \|\boldsymbol{X}\|_* - \|\!|\boldsymbol{X}\|\!|_k = 0, k \le \min\{m, n\}\}$

- Low-rank optimization via DC programming
 - Find the minimum k such that the optimal objective value is zero $\underset{\boldsymbol{X} \in \mathbb{C}^{D \times D}}{\operatorname{minimize}} \|\boldsymbol{X}\|_{*} - \|\boldsymbol{X}\|_{k}, \quad \text{subject to} \quad \mathcal{A}(\boldsymbol{X}) = \boldsymbol{b}$
 - Apply the majorization-minimization (MM) algorithm to iteratively solve a convex approximation subproblem

 $\min_{\boldsymbol{X} \in \mathbb{C}^{D \times D}} \|\boldsymbol{X}\|_* - \operatorname{Tr}(\partial \| \boldsymbol{X}_t \| _k^{\mathsf{H}} \boldsymbol{X}), \quad \text{subject to} \quad \mathcal{A}(\boldsymbol{X}) = \boldsymbol{b}$

Numerical results

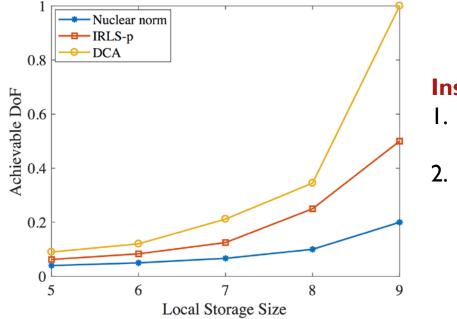
Convergence results



IRLS-p: iterative reweighted least square algorithm

Numerical results

Maximum achievable symmetric DoF over local storage size of each user

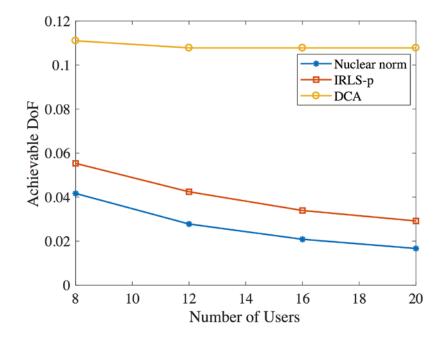


Insights on DC framework:

- I. DC function provides a tight approximation for rank function
- 2. DC algorithm finds better solution for rank minimization problem

Numerical results

A scalable framework for on-device distributed inference



Insights on more devices:

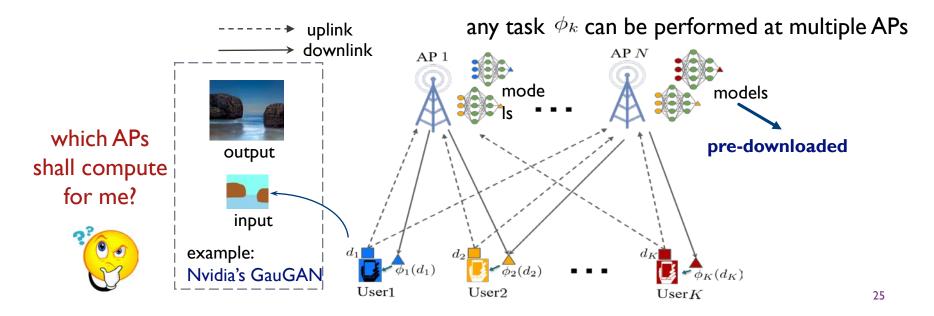
- I. More messages are requested
- 2. Each file is stored at more devices
- 3. Opportunities of collaboration for mobile users increase

Vignettes B: Edge cooperative inference

low power

Edge inference for deep neural networks

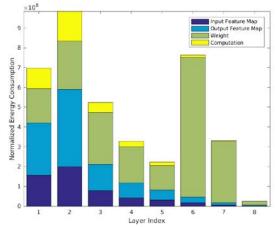
 Goal: energy-efficient edge processing framework to execute deep learning inference tasks at the edge computing nodes



Computation power consumption

- Goal: estimate the power consumption for deep model inference
- Example: power consumption estimation for AlexNet [Sze' CVPR 17]

- Cooperative inference tasks at multiple APs:
 - Computation replication: high compute power
 - Cooperative transmission: low transmit power
- Solution:



Signal model

- Proposal: group sparse beamforming for total power minimization
 - > received signal at *l*-th mobile user: $y_l = \sum_{n=1}^{N} \sum_{k=1}^{K} h_{nl}^{\mathsf{H}} v_{nk} s_k + z_l = \sum_{k=1}^{K} h_{l}^{\mathsf{H}} v_k s_k + z_l$.
 - \succ beamforming vector for $\phi_k(d_k)$ at the n-th AP: $m{v}_{nk} \in \mathbb{C}^L$
 - \$\sigma\$ group sparse aggregative beamforming vector
 \$v = [v_{11}^{\mathsf{H}}, \cdots, v_{N1}^{\mathsf{H}}, \cdots, v_{1k}^{\mathsf{H}}, \cdots, v_{Nk}^{\mathsf{H}}, \cdots, v_{NK}^{\mathsf{H}}]^{\mathsf{H}}, \ \mathcal{T}(v) = \{(n,k) | v_{nk} \neq \mathbf{0}\}
 \$\sigma\$ if \$v_{nk}\$ is set as zero, task \$\phi_k(d_k)\$ will not be performed at the \$n\$-th AP
 - > the signal-to-interference-plus-noise-ratio (SINR) for users

$$ext{SINR}_k(oldsymbol{v};oldsymbol{h}_k) = rac{|oldsymbol{h}_k^{\mathsf{H}}oldsymbol{v}_k|^2}{\sum_{l
eq k}|oldsymbol{h}_k^{\mathsf{H}}oldsymbol{v}_l|^2 + \sigma_k^2}$$

Probabilistic group sparse beamforming

Goal: total power consumption under probabilistic QoS constraints

$$\begin{aligned} \mathscr{P} : \min_{\boldsymbol{v} \in \mathbb{C}^{NKL}} & \sum_{n,k} \frac{1}{\eta_n} \|\boldsymbol{v}_{nk}\|_2^2 + \sum_{n,k} P_{nk}^c I_{(n,k) \in \mathcal{T}(\boldsymbol{v})}^c & \text{transmission and computation} \\ \text{s.t.} & \text{Pr}\left(\text{SINR}_k(\boldsymbol{v};\boldsymbol{h}_k) \ge \gamma_k\right) \ge 1 - \zeta, k \in [K] \\ & \sum_{k=1}^K \|\boldsymbol{v}_{nk}\|_2^2 \le P_n^{\text{Tx}}, n \in [N]. \end{aligned}$$

- Channel state information (CSI) uncertainty
 - \succ Additive error: $m{h}_k = \hat{m{h}}_k + m{e}_k$, $\mathbb{E}[m{e}_k] = m{0}$
 - Limited precision of feedback, delays in CSI acquisition...
- Challenges: I) group sparse objective function; 2) probabilistic QoS constraints

Probabilistic QoS constraints

• General idea: obtaining D independent samples of the random channel coefficient vector h_k ; find a solution such that the confidence level of

 $\Pr(\operatorname{SINR}_k(\boldsymbol{v};\boldsymbol{h}_k) \ge \gamma_k) \ge 1 - \epsilon$

is no less than $1-\delta$.

- Limitations of existing methods:
 - Scenario generation (SG):
 - \clubsuit too conservative, performance deteriorates when samples size D increases
 - * required sample size $\sum_{i=1}^{NKL-1} {D \choose i} \epsilon^i (1-\epsilon)^{D-i} \leq \delta$

Stochastic Programming:

- High computation cost, increasing linearly with sample size D
- No available statistical guarantee

Statistical learning for robust optimization

- Proposal: statistical learning based robust optimization approximation
 - > constructing a high probability region U_k such that

 $\Pr(\mathbf{h}_k \in \mathcal{U}_k) \ge 1 - \epsilon$ with confidence at least $1 - \delta$

- → imposing target SINR constraints for all elements in high probability region $SINR_k(v; h_k) \ge \gamma_k, h_k \in U_k$
- Statistical learning method for constructing U_k
 - $\succ \text{ ellipsoidal uncertainty sets } \mathcal{U}_k = \{ \boldsymbol{h}_k : (\boldsymbol{h}_k \hat{\boldsymbol{h}}_k)^T \boldsymbol{\Sigma}_k^{-1} (\boldsymbol{h}_k \hat{\boldsymbol{h}}_k) \leq s_k \}$
 - $\blacktriangleright \text{ split dataset into two parts } \mathcal{D}^1 = \{\tilde{h}^{(1)}, \cdots, \tilde{h}^{(D_1)}\} \ \mathcal{D}^2 = \{\tilde{h}^{(D_1+1)}, \cdots, \tilde{h}^{(D)}\}$
 - > Shape learning: \hat{h}_k sample mean and Σ_k sample variance of \mathcal{D}^1 (omitting the correlation between h_{kn} , Σ_k becomes block diagonal)

Statistical learning for robust optimization

- Statistical learning method for constructing U_k
 - \succ size calibration via quantile estimation for s_k
 - $\succ \text{ compute the function value } \mathcal{G}(\xi) = (\xi \hat{h}_k)^T \Sigma_k^{-1} (\xi \hat{h}_k) \text{ with respect to each sample in } \mathcal{D}^2 = \{ \tilde{h}^{(D_1+1)}, \cdots, \tilde{h}^{(D)} \}, \text{ set } s_k \text{ as the } j^* \text{-th largest value} \\ j^* = \min_{1 \le j \le D D_1} \left\{ j : \sum_{k=0}^{j-1} {D D_1 \choose k} (1 \epsilon)^k \epsilon^{D D_1 k} \ge 1 \delta \right\}$
 - ▶ required sample size: $D > \log \delta / \log(1 \epsilon)$

Tractable reformulation

$$\Pr\left(\operatorname{SINR}_{k}(\boldsymbol{v};\boldsymbol{h}_{k}) \geq \gamma_{k}\right) \geq 1 - \zeta \longrightarrow \boldsymbol{H}_{k}^{\mathsf{H}} \left(\frac{1}{\gamma_{k}} \boldsymbol{v}_{k} \boldsymbol{v}_{k}^{\mathsf{H}} - \sum_{l \neq k} \boldsymbol{v}_{l} \boldsymbol{v}_{l}^{\mathsf{H}}\right) \boldsymbol{H}_{k} \succeq \boldsymbol{Q}_{k}, \lambda_{k} \geq 0$$
$$\boldsymbol{H}_{k} = \begin{bmatrix} \hat{\boldsymbol{h}}_{k} \ \sqrt{s_{k}} \boldsymbol{\Delta}_{k} \end{bmatrix}, \boldsymbol{\Sigma}_{k} = \boldsymbol{\Delta}_{k} \boldsymbol{\Delta}_{k}^{\mathsf{H}} \qquad \boldsymbol{Q}_{k} = \begin{bmatrix} \lambda_{k} + \sigma_{k}^{2} & \boldsymbol{0} \\ \boldsymbol{0} & -\lambda_{k} \boldsymbol{I}_{NL} \end{bmatrix}$$

Robust optimization reformulation

Tractable reformulation for robust optimization with S-Lemma

$$\begin{aligned} \mathscr{P}_{\text{RGS}} &: \underset{\boldsymbol{v} \in \mathbb{C}^{NKL}, \boldsymbol{\lambda} \in \mathbb{R}^{K}}{\text{minimize}} \sum_{n,l} \frac{1}{\eta_{n}} \|\boldsymbol{v}_{nl}\|_{2}^{2} + \sum_{n,l} P_{nl}^{c} I_{(n,l) \in \mathcal{T}(\boldsymbol{v})} \\ \text{subject to} \qquad \boldsymbol{H}_{k}^{\mathsf{H}} \left(\frac{1}{\gamma_{k}} \boldsymbol{v}_{k} \boldsymbol{v}_{k}^{\mathsf{H}} - \sum_{l \neq k} \boldsymbol{v}_{l} \boldsymbol{v}_{l}^{\mathsf{H}} \right) \boldsymbol{H}_{k} \succeq \boldsymbol{Q}_{k}, \lambda_{k} \geq 0, \forall k \in [K] \\ \sum_{l=1}^{K} \|\boldsymbol{v}_{nl}\|_{2}^{2} \leq P_{n}^{\mathrm{Tx}}, \forall n \in [N]. \end{aligned}$$

Challenges

- group sparse objective function
- nonconvex quadratic constraints

Low-rank matrix optimization

Idea: matrix lifting for nonconvex quadratic constraints

$$\boldsymbol{V}_{ij} = \begin{bmatrix} \boldsymbol{V}_{ij}[1,1] & \cdots & \boldsymbol{V}_{ij}[1,N] \\ \vdots & \ddots & \vdots \\ \boldsymbol{V}_{ij}[N,1] & \cdots & \boldsymbol{V}_{ij}[N,N] \end{bmatrix} = \boldsymbol{v}_{i}\boldsymbol{v}_{j}^{\mathsf{H}} \in \mathbb{C}^{NL \times NL}, \quad \boldsymbol{V} = \boldsymbol{v}\boldsymbol{v}^{\mathsf{H}} = \begin{bmatrix} \boldsymbol{V}_{11} & \cdots & \boldsymbol{V}_{1K} \\ \vdots & \ddots & \vdots \\ \boldsymbol{V}_{K1} & \cdots & \boldsymbol{V}_{KK} \end{bmatrix} \in \mathbb{S}_{+}^{NKL}$$

Matrix optimization with rank-one constraint

$$\begin{aligned} \underset{\mathbf{V}, \boldsymbol{\lambda}}{\text{minimize}} \quad & \sum_{n, l} \left(\frac{1}{\eta_n} \operatorname{Tr}(\mathbf{V}_{ll}[n, n]) + P_{nl}^{\mathrm{c}} I_{\operatorname{Tr}(\mathbf{V}_{ll}[n, n]) \neq 0} \right) \\ \text{subject to} \quad & \mathbf{H}_k^{\mathsf{H}} \left(\frac{1}{\gamma_k} \mathbf{V}_{kk} - \sum_{l \neq k} \mathbf{V}_{ll} \right) \mathbf{H}_k \succeq \mathbf{Q}_k, \lambda_k \geq 0, \forall k \in [K] \\ & \sum_{l=1}^{K} \operatorname{Tr}(\mathbf{V}_{ll}[n, n]) \leq P_n^{\operatorname{Tx}}, \forall n \in [N] \\ & \mathbf{V} \succeq \mathbf{0}, \operatorname{rank}(\mathbf{V}) = 1. \end{aligned}$$

Reweighted power minimization approach

- **Sparsity:** reweighted ℓ_1 -minimization for inducing group sparsity
 - ▶ Approximation: $I_{\text{Tr}(V_{ll}[n,n])\neq 0} \approx w_{nl} \text{Tr}(V_{ll}[n,n])$, $w_{nl} = \frac{c}{\text{Tr}(V_{ll}[n,n])+\tau}$
 - > Alternatively optimizing V and updating weights w_{nl}

 Low-rankness: DC representation for rank-one positive semidefinite matrix

$$\operatorname{rank}(\boldsymbol{M}) = 1 \Leftrightarrow \operatorname{Tr}(\boldsymbol{M}) - \|\boldsymbol{M}\|_2 = 0$$

> where
$$\operatorname{Tr}(\boldsymbol{M}) = \sum_{i=1}^{N} \sigma_i(\boldsymbol{M})$$
 and $\|\boldsymbol{M}\|_2 = \sigma_1(\boldsymbol{M})$

Reweighted power minimization approach

Updating V

$$\mathcal{P}_{\mathrm{DC}}: \underset{\mathbf{V}, \boldsymbol{\lambda}}{\operatorname{minimize}} \quad \sum_{n, l} \left(\frac{1}{\eta_n} + w_{nl}^{[j]} P_{nl}^{\mathrm{c}} \right) \operatorname{Tr}(\mathbf{V}_{ll}[n, n]) + \mu(\operatorname{Tr}(\mathbf{V}) - \|\mathbf{V}\|_2)$$

subject to $\boldsymbol{H}_k^{\mathsf{H}} \left(\frac{1}{\gamma_k} \boldsymbol{V}_{kk} - \sum_{l \neq k} \boldsymbol{V}_{ll} \right) \boldsymbol{H}_k \succeq \boldsymbol{Q}_k, \lambda_k \ge 0, \forall k \in [K]$
 $\sum_{l=1}^{K} \operatorname{Tr}(\boldsymbol{V}_{ll}[n, n]) \le P_n^{\mathrm{Tx}}, \forall n \in [N]$
 $\boldsymbol{V} \succeq \mathbf{0},$

updating
$$w_{nl}$$

$$w_{nl} = \frac{c}{\operatorname{Tr}(V_{ll}[n,n]) + \tau}$$

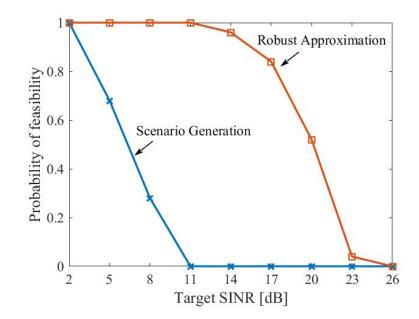
The DC algorithm via iteratively linearizing the concave part

$$-\|oldsymbol{V}\|_2 \longrightarrow -\langle \partial \|oldsymbol{V}\|_2, oldsymbol{V}
angle, \partial \|oldsymbol{V}\|_2 = oldsymbol{u}_1oldsymbol{u}_1^\mathsf{H}$$

 $\succ u_1$: the eigenvector corresponding to the largest eigenvalue of V

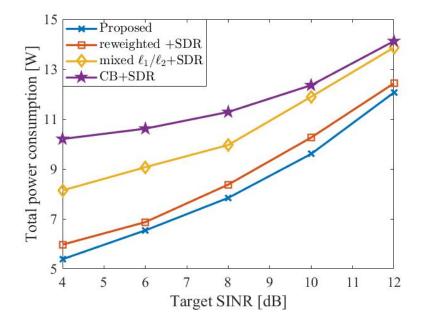
Numerical results

Performance of our robust optimization approximation approach and scenario generation



Numerical results

 Energy-efficient processing and robust wireless cooperative transmission for executing inference tasks at possibly multiple edge computing nodes



Insights on edge inference:

- Selecting the optimal set of access points for each inference task via group sparse beamforming
- 2. A robust optimization approach for joint chance constraints via statistical learning to learn CSI uncertainty set

Concluding remarks

- Machine learning model inference over wireless networks
 - > On-device inference via wireless distributed computing
 - Edge inference via computation replication and cooperative transmission

Sparse and low-rank optimization framework

- Inference alignment for data shuffling in wireless MapReduce
- > Joint inference tasking and downlink beamforming for edge inference

Nonconvex optimization frameworks

- > DC algorithm for generalized low-rank matrix optimization
- Statistical learning for stochastic robust optimization

Future directions

On-device distributed inference

> model compression, energy efficient inference, full duplex,...

Edge cooperative inference

hierarchical inference over cloud-edge-device, low-latency, ...

Nonconvex optimization via DC and learning approaches

optimality, scalability, applicability, ...

Mobile Edge Artificial Intelligence: Opportunities and Challenges Part III: Training

Yuanming Shi

ShanghaiTech University

Outline

Motivations

- Privacy, federated learning
- Two vignettes:
 - Over-the-air computation for federated learning
 - Why over-the-air computation?
 - Joint device selection and beamforming design
 - Intelligent reflecting surface empowered federated learning
 - Why intelligent reflecting surface?
 - Joint phase shifts and transceiver design

Intelligent IoT ecosystem

Develop computation, communication & AI technologies: enable smart IoT applications to make low-latency decision on streaming data

Internet of Things

(Internet of Skills) Tactile Internet

Intelligent IoT applications

Autonomous vehicles

Smart health

Smart home

Smart agriculture

Smart city

Smart drones

Challenges

Retrieve or infer information from high-dimensional/large-scale data

limited processing ability (computation, storage, ...)

2.5 exabytes of data are generated every day (2012)

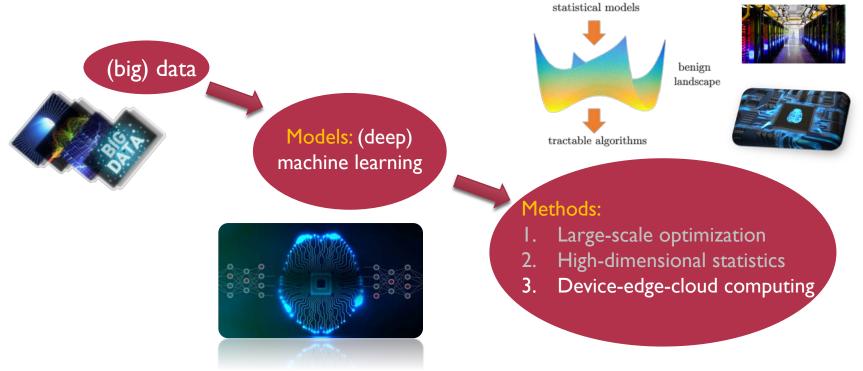
exabyte \rightarrow zettabyte \rightarrow yottabyte...??

We're interested in the *information* rather than the data

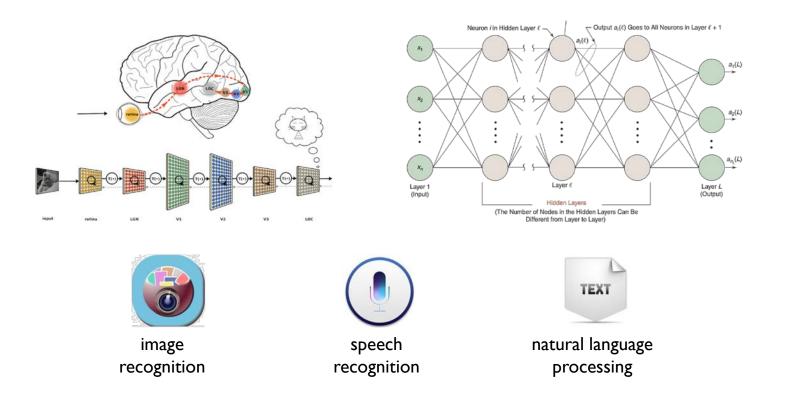
Challenges:

- High computational cost
- Only limited memory is available
- ✤ Do NOT want to compromise statistical accuracy

High-dimensional data analysis

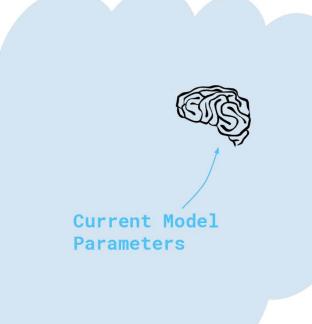


Deep learning: next wave of Al

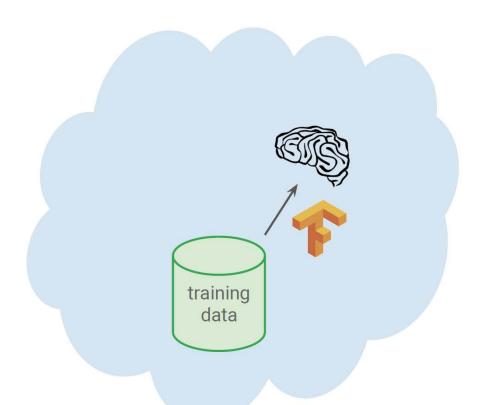


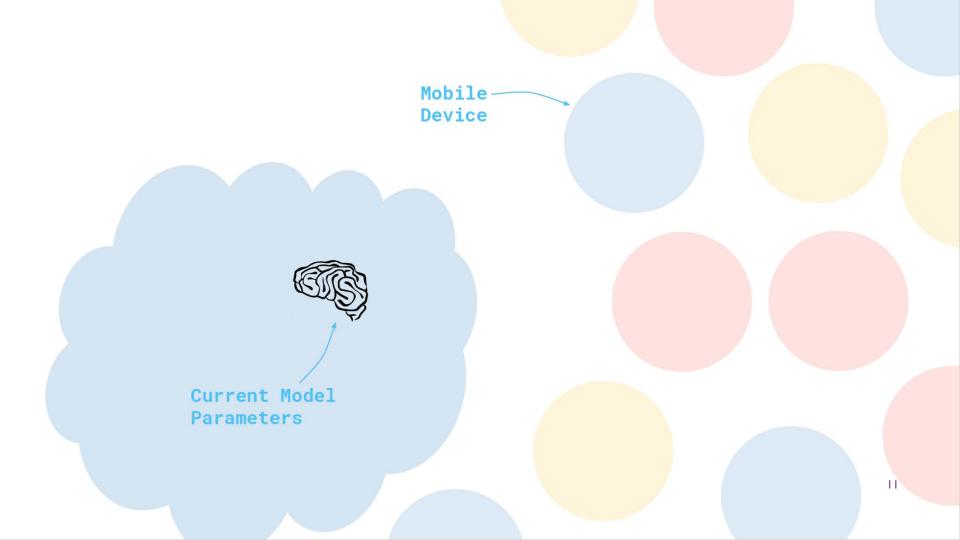
<u>Cloud-centric machine learning</u>

The model lives in the cloud



We train models in the cloud





Make predictions in the cloud

request

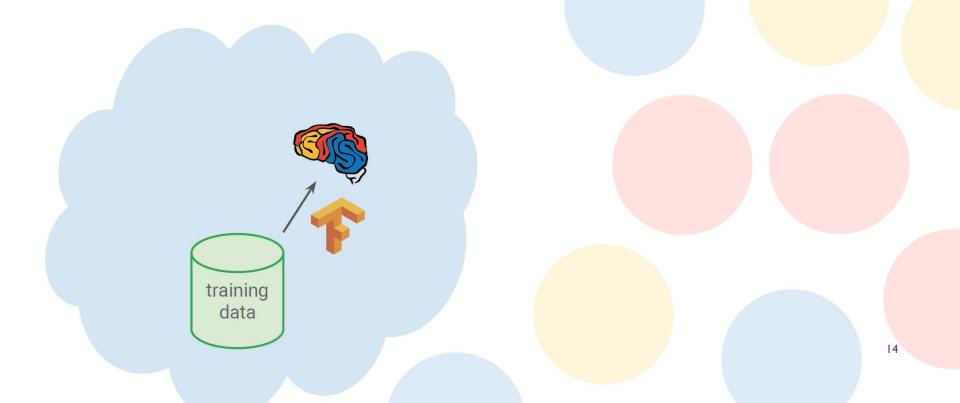
prediction

Gather training data in the cloud

training data request

prediction

And make the models better



Why edge machine learning?

Challenges to modern Al

Challenges: data privacy and confidentiality; small data and fragmented data; data quality and limited labels

Facebook's data privacy scandal

the general data protection regulation (GDPR)

Learning on the edge

The emerging high-stake AI applications: low-latency, privacy,...

phones

drones

robots

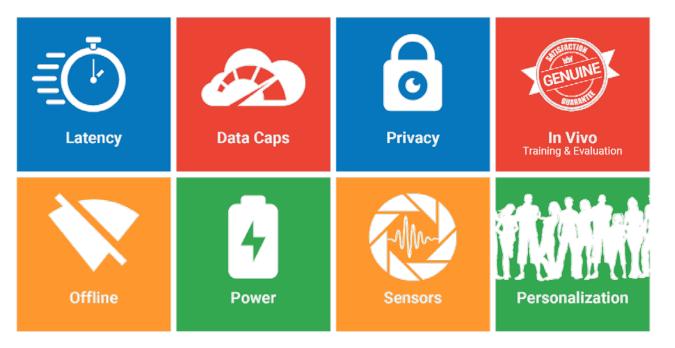
glasses

self driving cars

where to compute?

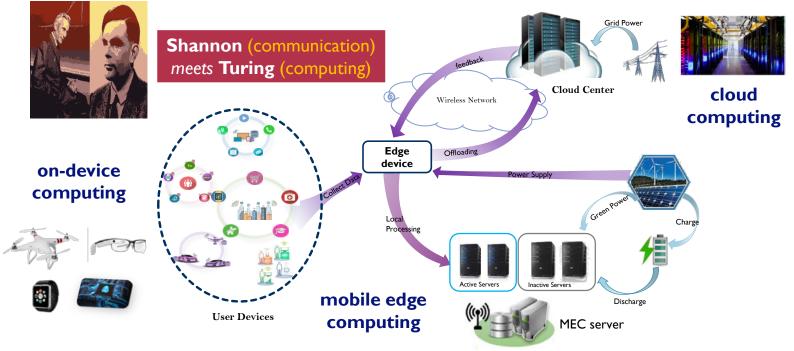
Mobile edge Al

Processing at "edge" instead of "cloud"



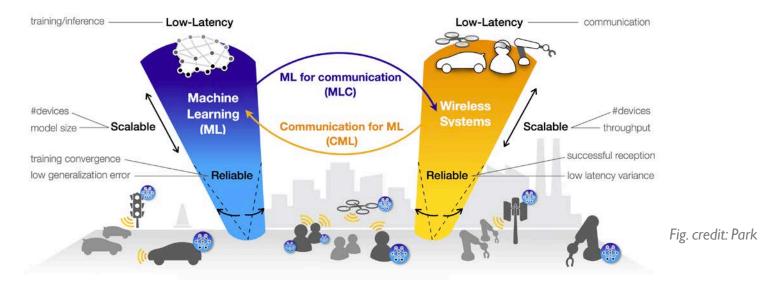
Edge computing ecosystem

"Device-edge-cloud" computing system for mobile AI applications

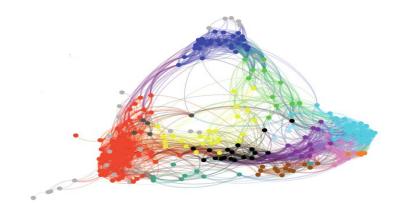


Edge machine learning

Edge ML: both ML inference and training processes are pushed down into the network edge (bottom)



Vignettes A: Over-the-air computation for federated learning

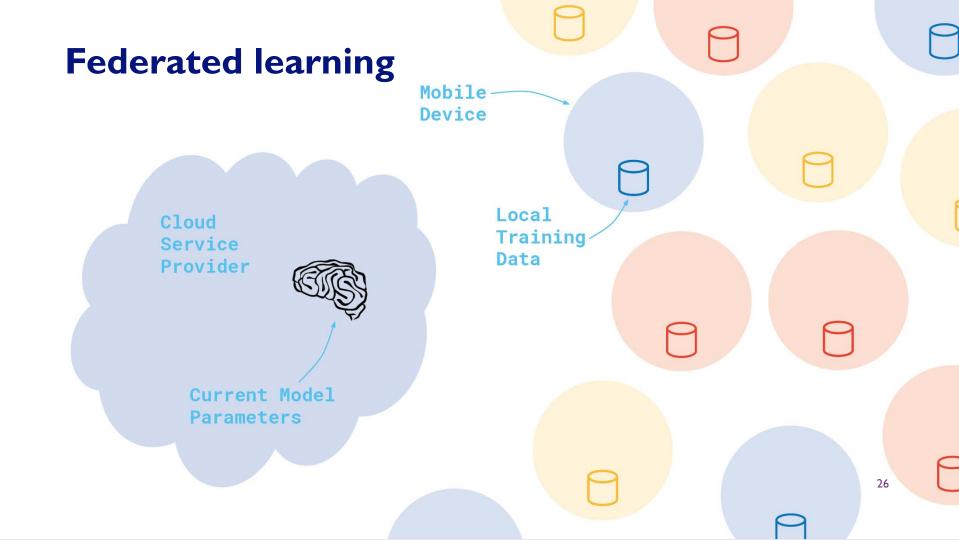


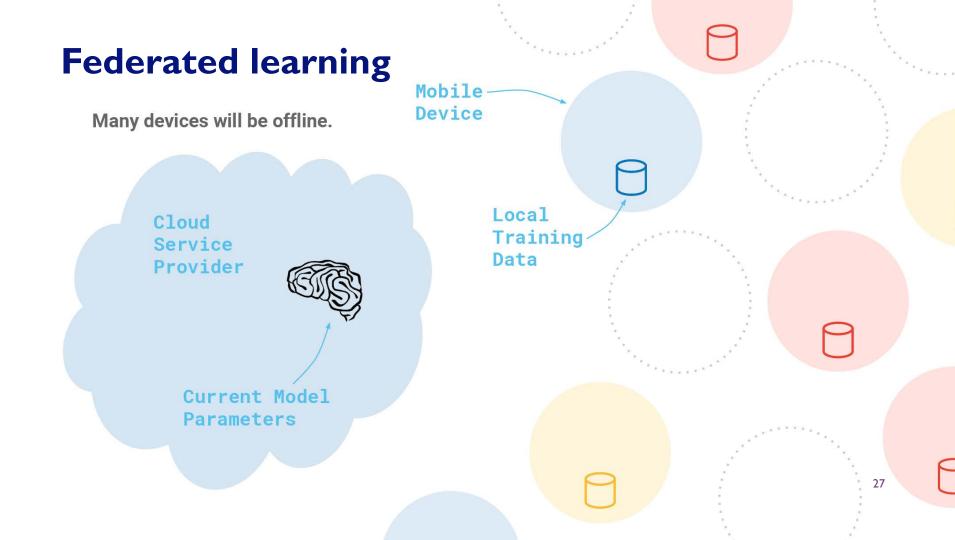
Federated computation and learning

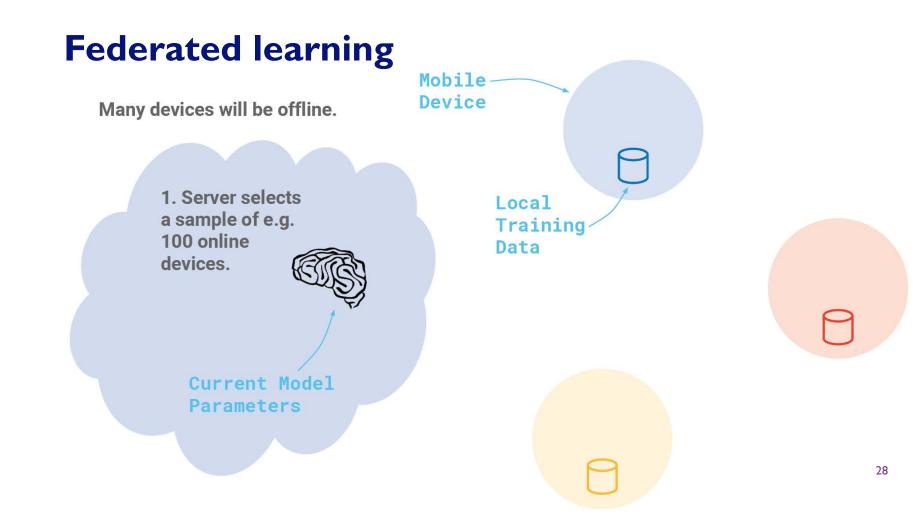
Goal: imbue mobile devices with state of the art machine learning systems without centralizing data and with privacy by default

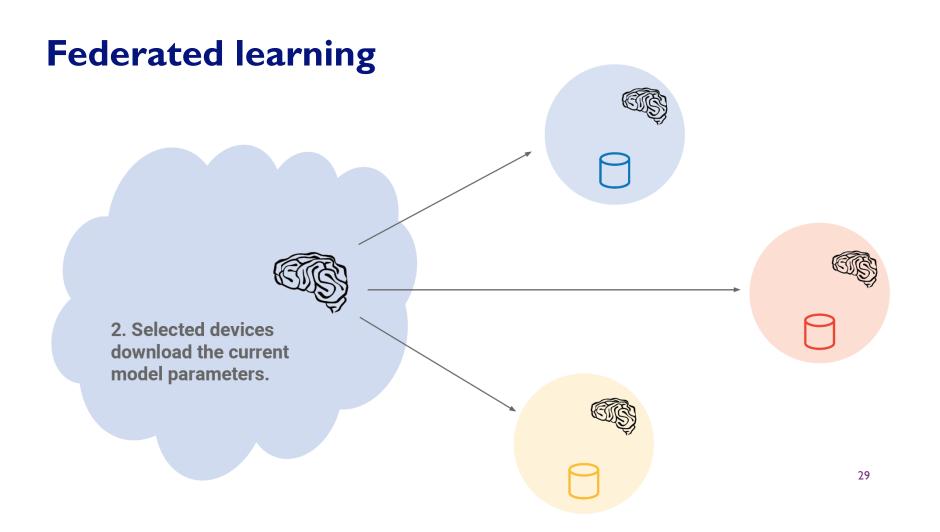
 Federated computation: a server coordinates a fleet of participating devices to compute aggregations of devices' private data

Federated learning: a shared global model is trained via federated computation



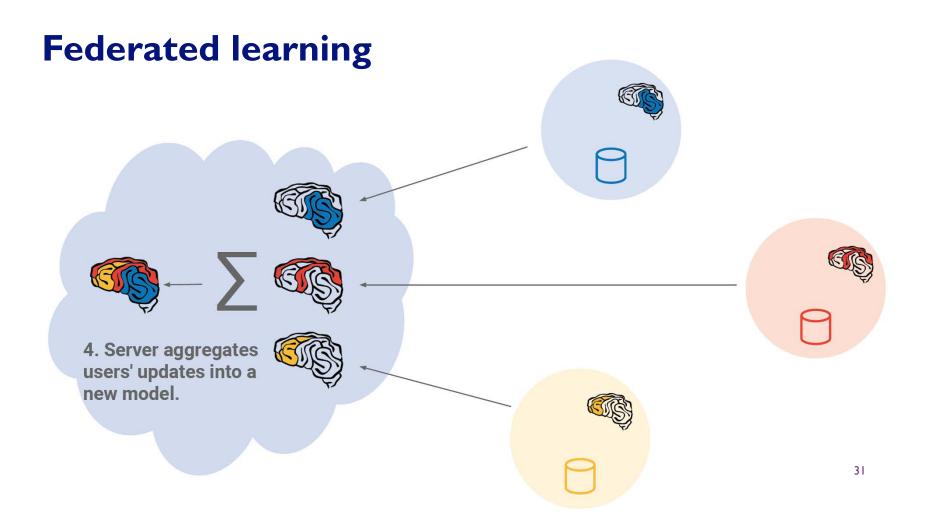


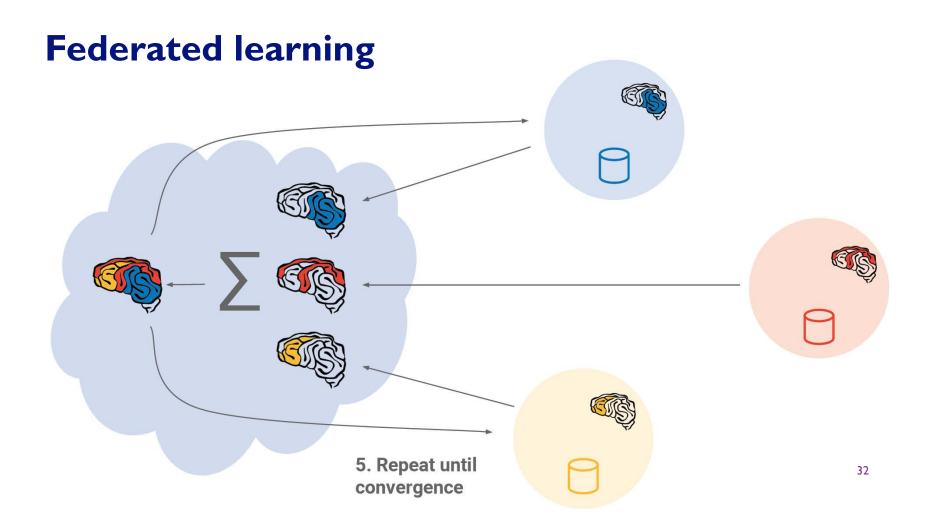




Federated learning

3. Devices compute an update using local training data



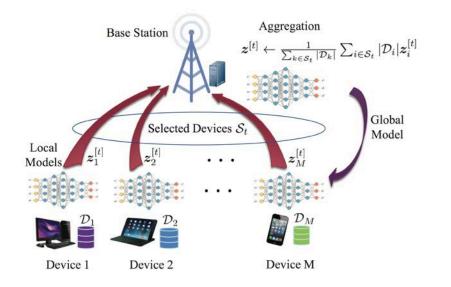


Federated learning: applications

Applications: where the data is generated at the mobile devices and is undesirable/infeasible to be transmitted to centralized servers

Federated learning over wireless networks

• Goal: train a shared global model via wireless federated computation



on-device distributed federated learning system

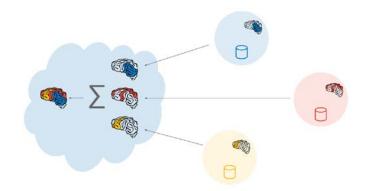
System challenges

- Massively distributed
- Node heterogeneity

Statistical challenges

- Unbalanced
- Non-IID
- Underlying structure

How to efficiently aggregate models over wireless networks?

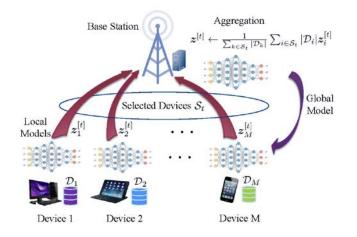


Model aggregation via over-the-air computation

 Aggregating local updates from mobile devices

$$oldsymbol{z} \leftarrow rac{1}{\sum_{k \in \mathcal{S}} |\mathcal{D}_k|} \sum_{k \in \mathcal{S}} |\mathcal{D}_k| oldsymbol{z}_k$$

- weighted sum of messages
- M mobile devices and one N-antenna base station
- $\succ \mathcal{S} \subseteq \{1, \cdots, M\}$ is the set of selected devices
- $\succ \ |\mathcal{D}_k|$ is the data size at device k



Over-the-air computation: explore signal superposition of a wireless multiple-access channel for model aggregation

Over-the-air computation

The estimated value before post-processing at the BS

$$\hat{g} = \frac{1}{\sqrt{\eta}} \boldsymbol{m}^{\mathsf{H}} \boldsymbol{y} = \frac{1}{\sqrt{\eta}} \boldsymbol{m}^{\mathsf{H}} \sum_{i \in \mathcal{S}} \boldsymbol{h}_i b_i z_i + \frac{\boldsymbol{m}^{\mathsf{H}} \boldsymbol{n}}{\sqrt{\eta}}$$

- > b_i is the transmitter scalar, $m{m}$ is the received beamforming vector, η is a normalizing factor
- \succ target function to be estimated: $g = \sum_{i \in S} |\mathcal{D}_i| z_i$
- > recovered aggregation vector entry via post-processing: $\hat{z} = \frac{1}{\sum_{i \in S} |\mathcal{D}_i|} \hat{g}$
- Model aggregation error:

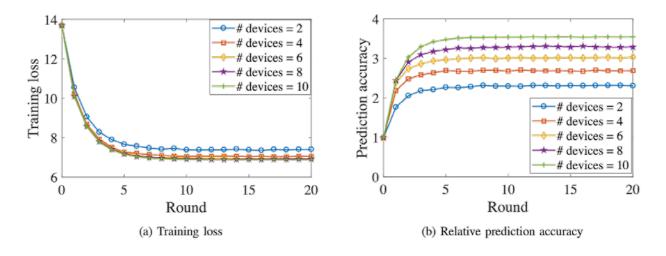
$$\mathsf{MSE}(\hat{g}, g; \mathcal{S}, \boldsymbol{m}) = \frac{\|\boldsymbol{m}\|^2 \sigma^2}{\eta} = \frac{\sigma^2}{P_0} \max_{i \in \mathcal{S}} |\mathcal{D}_i|^2 \frac{\|\boldsymbol{m}\|^2}{\|\boldsymbol{m}^{\mathsf{H}} \boldsymbol{h}_i\|^2}$$

> Optimal transmitter scalar: $b_i = \sqrt{\eta} |\mathcal{D}_i| \frac{(\mathbf{m}^{\mathsf{H}} \mathbf{h}_i)^{\mathsf{H}}}{\|\mathbf{m}^{\mathsf{H}} \mathbf{h}_i\|^2}$

Problem formulation

• Key observations:

- More selected devices yield fast convergence rate of the training process
- > Aggregation error leads to the deterioration of model prediction accuracy



Problem formulation

Goal: maximize the number of selected devices under target MSE constraint

$$\underset{\mathcal{S}, \boldsymbol{m} \in \mathbb{C}^N}{\operatorname{maximize}} |\mathcal{S}| \quad \text{subject to } \left(\max_{i \in \mathcal{S}} |\mathcal{D}_i|^2 \frac{\|\boldsymbol{m}\|^2}{\|\boldsymbol{m}^{\mathsf{H}} \boldsymbol{h}_i\|^2} \right) \leq \gamma$$

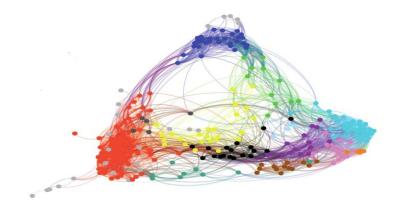
- Joint device selection and received beamforming vector design
- Improve convergence rate in the training process, guarantee prediction accuracy in the inference process
- Mixed combinatorial optimization problem

Sparse and low-rank optimization

Sparse and low-rank optimization for on-device federated learning

$$\begin{array}{c|c} \underset{\mathcal{S}, m \in \mathbb{C}^{N}}{\operatorname{maximize}} & |\mathcal{S}| \\ \text{subject to} & \left(\underset{i \in \mathcal{S}}{\max} |\mathcal{D}_{i}|^{2} \frac{\|\boldsymbol{m}\|^{2}}{\|\boldsymbol{m}^{\mathsf{H}}\boldsymbol{h}_{i}\|^{2}} \right) \leq \gamma \end{array} \xrightarrow{\mathsf{multicasting}} \begin{array}{c} \underset{\mathcal{S}, m \in \mathbb{C}^{N}}{\operatorname{maximize}} & |\mathcal{S}| \\ \text{subject to} & \|\boldsymbol{m}\|^{2} - \gamma_{i}\|\boldsymbol{m}^{\mathsf{H}}\boldsymbol{h}_{i}\|^{2} \leq 0, i \in \mathcal{S} \\ & \|\boldsymbol{m}\|^{2} \geq 1 \end{array} \\ \begin{array}{c} \mathcal{P}: \underset{x \in \mathbb{R}^{M}_{+}, M \in \mathbb{C}^{N \times N}}{\operatorname{maximize}} & \|\boldsymbol{x}\|_{0} \\ \text{subject to} & \operatorname{Tr}(\boldsymbol{M}) - \gamma_{i}\boldsymbol{h}_{i}^{\mathsf{H}}\boldsymbol{M}\boldsymbol{h}_{i} \leq x_{i}, \\ & \boldsymbol{M} \geq \mathbf{0}, \operatorname{Tr}(\boldsymbol{M}) \geq 1 \\ & \operatorname{rank}(\boldsymbol{M}) = 1 \end{array} \xrightarrow{\mathsf{M}} \begin{array}{c} \mathcal{M} = \boldsymbol{m}\boldsymbol{m}^{\mathsf{H}} \underset{x \in \mathbb{R}^{M}_{+}, m \in \mathbb{C}^{N}}{\operatorname{maximize}} & \|\boldsymbol{x}\|_{0} \\ \text{subject to} & \|\boldsymbol{m}\|^{2} - \gamma_{i}\|\boldsymbol{m}^{\mathsf{H}}\boldsymbol{h}_{i}\|^{2} \leq x_{i}, \forall i \end{array} \end{array}$$

Sparse and low-rank optimization



Problem analysis

Goal: induce sparsity while satisfying fixed-rank constraint

$$\begin{split} \mathscr{P}_{\substack{\boldsymbol{x} \in \mathbb{R}^{M}_{+}, \boldsymbol{M} \in \mathbb{C}^{N \times N} \\ \text{subject to}} & \|\boldsymbol{x}\|_{0} \\ \text{subject to} & \operatorname{Tr}(\boldsymbol{M}) - \gamma_{i} \boldsymbol{h}_{i}^{\mathsf{H}} \boldsymbol{M} \boldsymbol{h}_{i} \leq x_{i}, \forall i \\ & \boldsymbol{M} \succeq \boldsymbol{0}, \operatorname{Tr}(\boldsymbol{M}) \geq 1 \\ & \operatorname{rank}(\boldsymbol{M}) = 1 \end{split}$$

- Limitations of existing methods
 - > Sparse optimization: iterative reweighted algorithms are parameters sensitive
 - Low-rank optimization: semidefinite relaxation (SDR) approach (i.e., drop rank-one constraint) has the poor capability of returning rank-one solution

Difference-of-convex functions representation

• Ky Fan k-norm [Fan, PNAS'1951]: the sum of largest-k absolute values

$$\| \boldsymbol{x} \|_{k} = \sum_{i=1}^{k} |x_{\pi(i)}|$$

 $\succ \pi$ is a permutation of $\{1, \dots, M\}$, where $|x_{\pi(1)}| \geq \dots \geq |x_{\pi(M)}|$

MAXIMUM PROPERTIES AND INEQUALITIES FOR THE EIGENVALUES OF COMPLETELY CONTINUOUS OPERATORS*

By Ky Fan

PNAS'1951

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NOTRE DAME

Communicated by John von Neumann, September 8, 1951

Difference-of-convex functions representation

DC representation for sparsity function

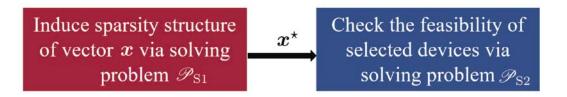
$$\|\boldsymbol{x}\|_{0} = \min\{k : \|\boldsymbol{x}\|_{1} - \|\boldsymbol{x}\|_{k} = 0, 0 \le k \le M\}$$

DC representation for rank-one positive semidefinite matrix rank(M) = 1 ⇔ Tr(M) - ||M||₂ = 0
 > where Tr(M) = ∑^N_{i=1} σ_i(M) and ||M||₂ = σ₁(M)

[**Ref**] J.-y. Gotoh, A. Takeda, and K. Tono, "DC formulations and algorithms for sparse optimization problems," *Math. Program.*, vol. 169, pp. 141–176, May 2018.

A DC representation framework

A two-step framework for device selection



Step 1: obtain the sparse solution such that the objective value achieves zero through increasing k from 0 to M

$$\begin{split} \mathscr{P}_{\mathrm{S1}} : \underset{\boldsymbol{x}, \boldsymbol{M}}{\operatorname{minimize}} & \|\boldsymbol{x}\|_{1} - \|\boldsymbol{x}\|_{k} + \operatorname{Tr}(\boldsymbol{M}) - \|\boldsymbol{M}\|_{2} \\ \text{subject to} & \operatorname{Tr}(\boldsymbol{M}) - \gamma_{i} \boldsymbol{h}_{i}^{\mathsf{H}} \boldsymbol{M} \boldsymbol{h}_{i} \leq x_{i}, \forall i = 1, \cdots, M \\ & \boldsymbol{M} \succeq \boldsymbol{0}, \quad \operatorname{Tr}(\boldsymbol{M}) \geq 1, \boldsymbol{x} \succeq \boldsymbol{0} \end{split}$$

A DC representation framework

Step II: feasibility detection

- > Ordering \boldsymbol{x} in descending order as $x_{\pi(1)} \geq \cdots \geq x_{\pi(M)}$
- > Increasing k from 1 to M, choosing $S^{[k]}$ as $\{\pi(k), \pi(k+1), \cdots, \pi(M)\}$
- Feasibility detection via DC programming

find
$$M$$

subject to $\operatorname{Tr}(M) - \gamma_i h_i^{\mathsf{H}} M h_i \leq 0, \forall i \in \mathcal{S}^{[k]}$
 $M \succeq \mathbf{0}, \operatorname{Tr}(M) \geq 1, \operatorname{rank}(M) = 1$
 $\mathscr{P}_{S2} : \operatorname{minimize}_M \operatorname{Tr}(M) - \|M\|_2$
subject to $\operatorname{Tr}(M) - \gamma_i h_i^{\mathsf{H}} M h_i \leq 0, \forall i \in \mathcal{S}^{[k]}$
 $M \succeq \mathbf{0}, \quad \operatorname{Tr}(M) \geq 1$

DC algorithm with convergence guarantees

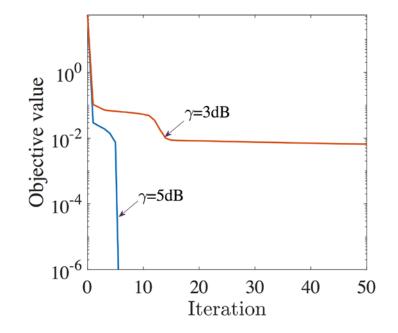
• \mathscr{P}_{S1} and \mathscr{P}_{S2} : minimize the difference of two strongly convex functions $\begin{array}{l} \min_{\mathbf{X} \in \mathbb{C}^{m \times n}} \quad f(\mathbf{X}) = g(\mathbf{X}) - h(\mathbf{X}) \end{array}$

 $\blacktriangleright \text{ e.g., } g = \operatorname{Tr}(\boldsymbol{M}) + I_{\mathcal{C}_2}(\boldsymbol{M}) + \frac{\alpha}{2} \|\boldsymbol{M}\|_F^2 \text{ and } h = \|\boldsymbol{M}\|_2 + \frac{\alpha}{2} \|\boldsymbol{M}\|_F^2$

• The DC algorithm via linearizing the concave part $X^{[t+1]} = \operatorname{arg\,inf}_{X \in \mathcal{X}} g(X) - [h(X^{[t]}) + \langle X - X^{[t]}, \partial_{X^{[t]}}h \rangle]$

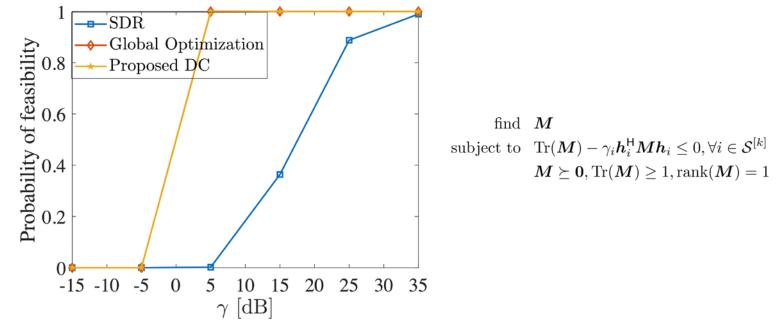
 \triangleright converge to a critical point with speed $\mathcal{O}(1/t)$

• Convergence of the proposed DC algorithm for problem \mathscr{P}_{S2}

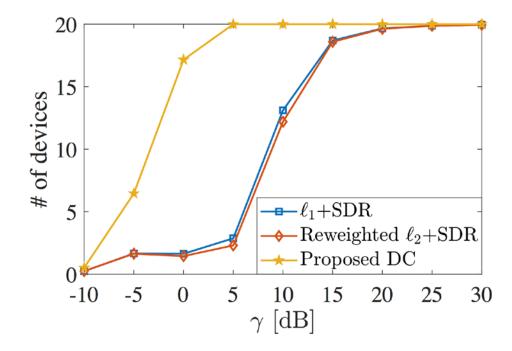


$$\begin{split} \mathscr{P}_{S2} &: \underset{\boldsymbol{M}}{\operatorname{minimize}} \quad \operatorname{Tr}(\boldsymbol{M}) - \|\boldsymbol{M}\|_{2} \\ &\text{subject to} \quad \operatorname{Tr}(\boldsymbol{M}) - \gamma_{i} \boldsymbol{h}_{i}^{\mathsf{H}} \boldsymbol{M} \boldsymbol{h}_{i} \leq 0, \\ &\boldsymbol{M} \succeq \boldsymbol{0}, \quad \operatorname{Tr}(\boldsymbol{M}) \geq 1 \end{split}$$

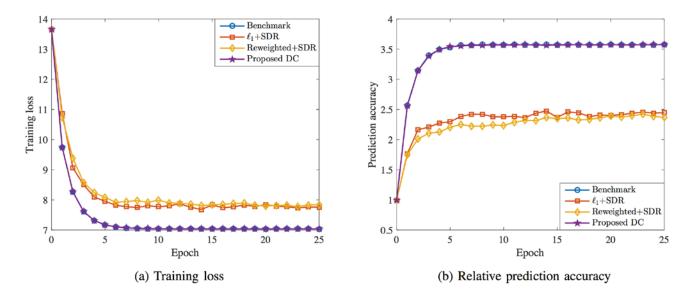
Probability of feasibility with different algorithms



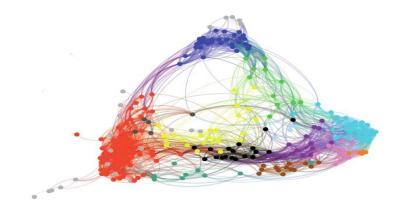
Average number of selected devices with different algorithms



- Performance of proposed fast model aggregation in federated learning
 - Training an SVM classifier on CIFAR-10 dataset



Vignettes B: Intelligent reflecting surface empowered federated learning

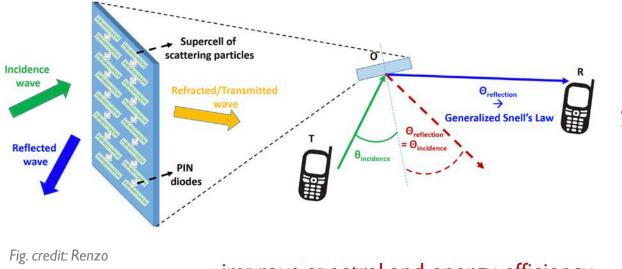


Smart radio environments

- Current wireless networks: no control of radio waves
 - > Perceive the environment as an "unintentional adversary" to communication
 - Optimize only the end-points of the communication network
 - > No control of the environment, which is viewed as a passive spectator
- Smart radio environments: reconfigure the wireless propagations
 "dumb" wireless
 "smart" wireless
 "fig. credit: Renzo

Intelligent reflecting surface

Working principle of intelligent reflecting surface (IRS): different elements of an IRS can reflect the incident signal by controlling its amplitude and/or phase for directional signal enhancement or nulling

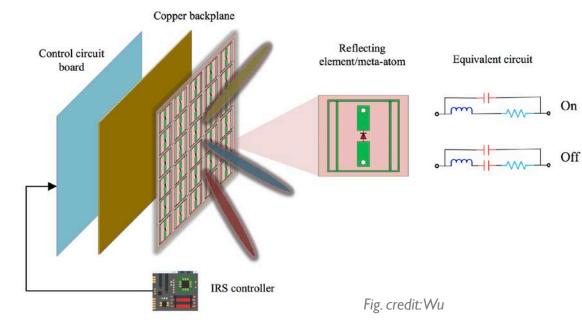


 no any active transmit module
 operate in fullduplex mode

improve spectral and energy efficiency

Intelligent reflecting surface

Architecture of intelligent reflecting surface

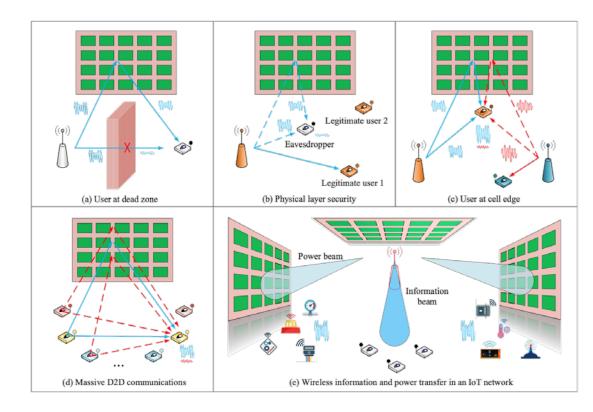


I. Outer layer: a large number of metallic patches (elements) are printed on a dielectric substrate to directly interact with incident signals.

2. Second layer: a copper plate is used to avoid the signal energy leakage.

3. Inner layer: a control circuit board for adjusting the reflection amplitude/phase shift of each element, triggered by a smart controller attached to the IRS.

Intelligent reflecting surface meet wireless networks



intelligent reflecting surface meets wireless network:

- over-the-air computation
- edge computing/caching
- wireless power transfer
- D2D communications
- massive MIMO
- NOMA
- mmWave

•••

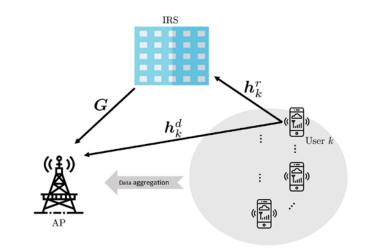
Fig. credit:Wu

IRS empowered AirComp

- Intelligent reflecting surface (IRS):
 - overcoming unfavorable signal propagation conditions
 - improving spectrum and energy efficiency
 - tuning phase shifts with M passive elements

$$\Theta = \operatorname{diag}(\beta e^{j\theta_1}, \cdots, \beta e^{j\theta_M})$$

w.l.o.g. assuming $\beta = 1$



IRS aided AirComp system: build controllable wireless environments to boost received signal power

Problem formulation

• Received signal at the AP: $y = \sum_{k=1}^{K} (G\Theta h_k^r + h_k^d) b_k s_k + n$

w.l.o.g. suppose target function: $s := \sum_{k=1}^{K} s_k$

Aggregation error:

 $\mathsf{MSE}(\boldsymbol{m}) = \frac{\sigma^2}{P_0} \max_{\boldsymbol{k}} \frac{\|\boldsymbol{m}\|^2}{\|\boldsymbol{m}^{\mathsf{H}}(\boldsymbol{G}\boldsymbol{\Theta}\boldsymbol{h}_r^r + \boldsymbol{h}_r^d)\|^2} \qquad \boldsymbol{m} \text{ received beamforming vector}$

- > optimal transmitter scalar: $b_k = \sqrt{\eta} \frac{(\boldsymbol{m}^{\mathsf{H}}(\boldsymbol{G} \Theta \boldsymbol{h}_k^r + \boldsymbol{h}_k^d))^{\mathsf{H}}}{\|\boldsymbol{m}^{\mathsf{H}}(\boldsymbol{G} \Theta \boldsymbol{h}_k^r + \boldsymbol{h}_k^d)\|^2}$
- **Proposal:** joint design for AirComp transceivers and IRS phase shifts

$$\begin{array}{l} \underset{\boldsymbol{m},\boldsymbol{\Theta}}{\text{minimize}} \left(\max_{k} \frac{\|\boldsymbol{m}\|^{2}}{\|\boldsymbol{m}^{\mathsf{H}}(\boldsymbol{G}\boldsymbol{\Theta}\boldsymbol{h}_{k}^{r} + \boldsymbol{h}_{k}^{d})\|^{2}} \right) \\ \text{subject to} \quad 0 \leq \theta_{n} \leq 2\pi, \forall n = 1, \cdots, N. \end{array} \xrightarrow{\mathscr{P}} \begin{array}{l} \underset{\boldsymbol{m},\boldsymbol{\Theta}}{\text{minimize}} & \|\boldsymbol{m}\|^{2} \\ \text{subject to} & \|\boldsymbol{m}^{\mathsf{H}}(\boldsymbol{G}\boldsymbol{\Theta}\boldsymbol{h}_{k}^{r} + \boldsymbol{h}_{k}^{d})\|^{2} \geq 1, \forall k, \\ & 0 \leq \theta_{n} \leq 2\pi, \forall n = 1, \cdots, N. \end{array}$$

Nonconvex bi-quadratic programming

Nonconvex bi-quadratic programming problem

$$\begin{split} \mathscr{P}: & \underset{\boldsymbol{m},\boldsymbol{\Theta}}{\text{minimize}} & \|\boldsymbol{m}\|^2 \\ & \text{subject to} & \|\boldsymbol{m}^{\mathsf{H}}(\boldsymbol{G}\boldsymbol{\Theta}\boldsymbol{h}_k^r + \boldsymbol{h}_k^d)\|^2 \geq 1, \forall k, \\ & 0 \leq \theta_n \leq 2\pi, \forall n = 1, \cdots, N. \end{split}$$

Challenges:

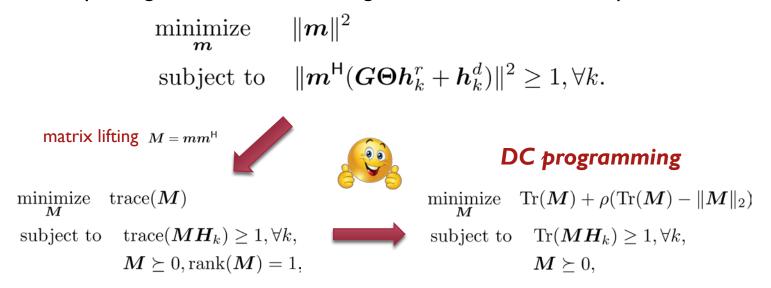
 \succ nonconvex quadratic constraints with respect to m and Θ

Solution:

- \succ Alternating minimization for m and Θ
- > Matrix lifting to alternatively linearize nonconvex bi-quadratic constraints ⁵⁶

An alternating DC framework

• Goal: updating receiver beamforming vector m with fixed IRS phase shifts Θ



DC representation $\operatorname{rank}(\boldsymbol{M}) = 1 \Leftrightarrow \operatorname{Tr}(\boldsymbol{M}) - \|\boldsymbol{M}\|_2 = 0$

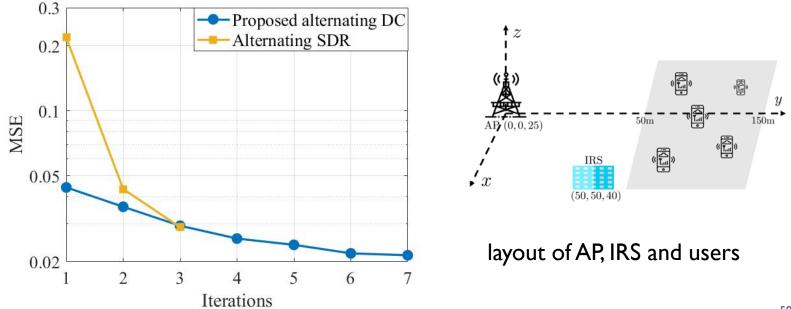
An alternating DC framework

Goal: updating phase shifts with fixed beamformer $v = \text{diag}(\Theta) = [e^{j\theta_1}, \cdots, e^{j\theta_M}]^T$

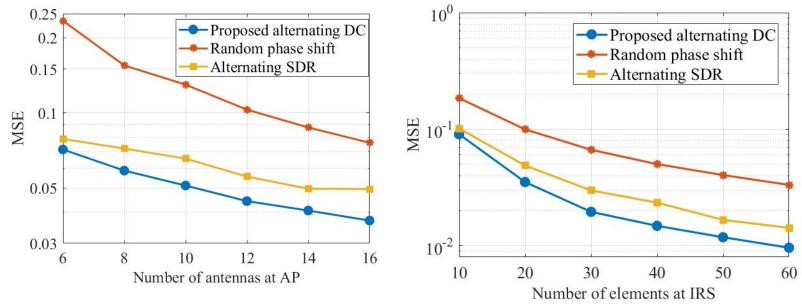
denoting
$$\mathbf{R}_k = \begin{bmatrix} \mathbf{a}_k \mathbf{a}_k^{\mathsf{H}}, & \mathbf{a}_k c_k \\ c_k^{\mathsf{H}} \mathbf{a}_k^{\mathsf{H}}, & 0 \end{bmatrix}, \tilde{\mathbf{v}} = \begin{bmatrix} \mathbf{v} \\ t \end{bmatrix}, \mathbf{a}_k^{\mathsf{H}} = \mathbf{m}^{\mathsf{H}} \mathbf{G} \operatorname{diag}(\mathbf{h}_k^r), c_k = \mathbf{m}^{\mathsf{H}} \mathbf{h}_k^d$$

find vfind vsubject to $\tilde{\boldsymbol{v}}^{\mathsf{H}} \boldsymbol{R}_k \tilde{\boldsymbol{v}} + |c_k|^2 \geq 1, \forall k$. subject to $|\boldsymbol{m}^{\mathsf{H}}(\boldsymbol{G}\operatorname{diag}(\boldsymbol{h}_{k}^{r})\boldsymbol{v}+\boldsymbol{h}_{k}^{d})|^{2} \geq 1, \forall k.$ $|v_n|^2 = 1, \forall v = 1, \cdots, N,$ $|v_n|^2 = 1, \forall v = 1, \cdots, N.$ matrix lifting $\, oldsymbol{V} = ilde{oldsymbol{v}}\, oldsymbol{ extsf{w}}^{\mathsf{H}} \,$ DC programming minimize $\operatorname{Tr}(V) - \|V\|_2$ find Vsubject to $\operatorname{Tr}(\boldsymbol{R}_k \boldsymbol{V}) + |c_k|^2 \geq 1, \forall k$. subject to $\operatorname{Tr}(\boldsymbol{R}_k \boldsymbol{V}) + |c_k|^2 \ge 1, \forall k$. $V_{n,n} = 1, \forall n = 1, \cdots, N,$ $V_{n,n} = 1, \forall n = 1, \cdots, N,$ **DC** representation $V \succeq 0$, rank(V) = 1. 58 $V \succeq 0.$

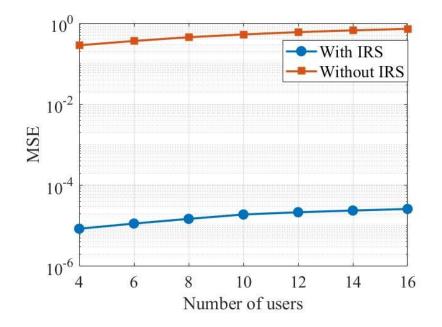
Convergence behaviors of the proposed alternating DC algorithm



Performance of different algorithms with different network settings



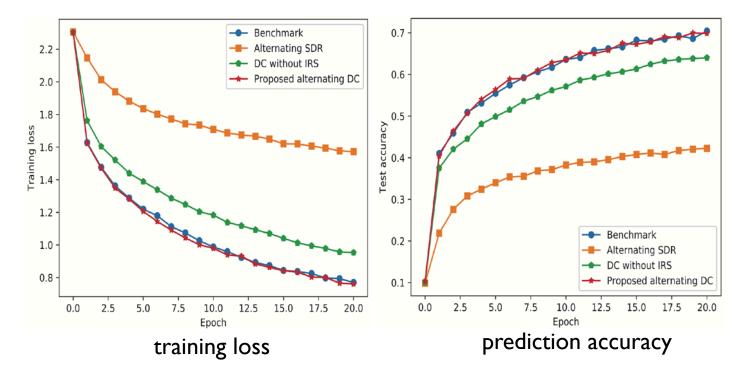
The power of IRS for AirComp



Insights: deploying IRS in AirComp system can significantly enhance the MSE performance for data aggregation

IRS empowered federated learning system

The power of IRS for federated learning



Concluding remarks

Federated learning over "intelligent" wireless networks

- Federated learning via over-the-air computation
- > Over-the-air computation empowered by intelligent reflecting surface

Sparse and low-rank optimization framework

- > Joint device selection and beamforming design for over-the-air computation
- Joint phase shifts and transceiver design for IRS empowered AirComp
- A unified DC programming framework
 - DC representation for sparse and low-rank functions

Future directions

Federated learning

stragglers, security, provable guarantees, ...

Over-the-air computation

channel uncertainty, synchronization, security, ...

Sparse and low-rank optimization via DC programming

> optimality, scalability,...

To learn more...

- Web: <u>http://shiyuanming.github.io/publicationstopic.html</u>
- Papers:
- K. B. Letaief, W. Chen, Y. Shi, J. Zhang, and Y. Zhang, "The roadmap to 6G AI empowered wireless networks," *IEEE Commun. Mag.*, vol. 57, no. 8, pp. 84-90, Aug. 2019.
- J. Dong and Y. Shi, "Nonconvex demixing from bilinear measurements," IEEE Trans. Signal Process., vol. 66, no. 19, pp. 5152-5166, Oct., 2018.
- M. C. Tsakiris, L. Peng, A. Conca, L. Kneip, Y. Shi, and H. Choi, "An algebraic-geometric approach to shuffled linear regression," IEEE Trans. Inf. Theory., under major revision, 2019. <u>https://arxiv.org/abs/1810.05440</u>
- K. Yang, Y. Shi, and Z. Ding, "Data shuffling in wireless distributed computing via low-rank optimization," *IEEE Trans. Signal Process.*, vol. 67, no. 12, pp. 3087-3099, Jun., 2019.
- K. Yang, Y. Shi, W. Yu, and Z. Ding, "Energy-efficient processing and robust wireless cooperative transmission for edge inference," submitted. <u>https://arxiv.org/abs/1907.12475</u>
- S. Hua, Y. Zhou, K. Yang, and Y. Shi, "Reconfigurable intelligent surface for green edge inference," submitted. https://arxiv.org/abs/1912.00820
- K. Yang, T. Jiang, Y. Shi, and Z. Ding, "Federated learning via over-the-air computation," IEEE Trans. Wireless Commun., under minor revision, 2019. <u>https://arxiv.org/abs/1812.11750</u>
- T. Jiang and Y. Shi, "Over-the-air computation via intelligent reflecting surfaces," in Proc. IEEE Global Commun. Conf. (Globecom), Waikoloa, Hawaii, USA, Dec. 2019. <u>https://arxiv.org/abs/1904.12475</u>

http://shiyuanming.github.io/home.html