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Why 6G?
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What will 6G be?

 6G networks: from “connected things” to “connected intelligence”
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6G: connected intelligence 5G: connected things 

[Ref] K. B. Letaief, W. Chen, Y. Shi, J. Zhang, and Y. Zhang, “The roadmap to 6G - AI empowered
wireless networks,” IEEE Commun. Mag., vol. 57, no. 8, pp. 84-90, Aug. 2019.



Connected intelligence via AI

 Make networks full of AI: embed intelligence across whole network
to provide greater level of automation and adaptiveness
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Success of modern AI

 Two secrets of AI’s success: computing power and big data

 Computing power: Intel i386, Intel i486, Intel Pentium Intel Core, Nvidia GPU,

Google TPU, Google quantum supremacy,…

 Big data: the world’s most valuable resource

is no longer oil, but data
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Challenges of modern AI
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Solution: mobile edge AI

 Processing at “edge” instead of “cloud”
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Levels of edge AI
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Six levels of edge AI 
based on the path of data 

offloading: cloud-edge-
device coordination via 

data offloading

Fig. credit: Zhou



This talk

 Part I: mathematics in edge AI
 Provable guarantees for nonconvex machine learning

 Communication-efficient distributed machine learning

 Part II: edge inference process
 Communication-efficient on-device distributed inference

 Energy-efficient edge cooperative inference

 Part III: edge training process
 Over-the-air computation for federated learning

 Intelligent reflecting surface empowered federated learning
10
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Outline

 Motivations
 Taming nonconvexity in statistical machine learning

 Communication challenges in distributed machine learning

 TwoVignettes:
 Provable guarantees for nonconvex machine learning
 Why nonconvex optimization?

 Blind demixing via implicitly regularized Wirtinger flow

 Communication-efficient distributed machine learning
 Why gradient quantization?

 Learning polynomial neural networks via quantized SGD
2
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Vignettes A: Provable guarantees for
nonconvex machine learning



Why nonconvex optimization?

4



Nonconvex problems are everywhere

 Empirical risk minimization is usually nonconvex

 low-rank matrix completion

 blind deconvolution/demixing

 dictionary learning

 phase retrieval

 mixture models

 deep learning

 …
5



Nonconvex optimization may be super scary

 Challenges: saddle points, local optima, bumps,…

 Fact: they are usually solved on a daily basis via simple algorithms like
(stochastic) gradient descent
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Fig. credit: Chen



Sometimes they are much nicer than we think

 Under certain statistical models, we see benign global geometry: no
spurious local optima
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global minimum saddle point



Statistical models come to rescue

 Blessings: when data are generated by certain statistical models,
problems are often much nicer than worst-case instances

8

Fig. credit: Chen



First-order stationary points

 Saddle points and local minima:

9Local minima Saddle points/local maxima



First-order stationary points

 Applications: PCA, matrix completion, dictionary learning etc.

 Local minima: either all local minima are global minima or all local minima
as good as global minima

 Saddle points: very poor compared to global minima; several such points

 Bottomline: local minima much more desirable than saddle points

10
How to escape saddle points efficiently?



Statistics meets optimization

 Proposal: separation of landscape analysis and generic algorithm design

11

landscape analysis 
(statistics)

generic algorithms 
(optimization)

all local minima are 
global minima 

all the saddle points
can be escaped 

• dictionary learning (Sun et al. ’15)
• phase retrieval (Sun et al. ’16)
• matrix completion (Ge et al. ’16)
• synchronization (Bandeira et al. ’16)
• inverting deep neural nets (Hand et al. ’17)
• ...

• gradient descent (Lee et al. ’16)
• trust region method (Sun et al. ’16)
• perturbed GD (Jin et al. ’17)
• cubic regularization (Agarwal et al. ’17)
• Natasha (Allen-Zhu ’17)
• ...

Issue:  conservative computational guarantees for specific problems 
(e.g., phase retrieval, blind deconvolution, matrix completion)

Fig. credit: Chen



Blind demixing via implicitly regularized Wirtinger flow

12

Solution: blending landscape and convergence analysis



Case study: blind deconvolution

 In many science and engineering problems, the observed signal can be
modeled as:

where is the convolution operator

 is a physical signal of interest

 is the impulse response of the sensory system

 Applications: astronomy, neuroscience, image processing, computer
vision, wireless communications, microscopy data processing,…

 Blind deconvolution: estimate and given
13



Case study: blind demixing

 The received measurement consists of the sum of all convolved signals

 Applications: IoT, dictionary learning, neural spike sorting,…

 Blind demixing: estimate and given
14

low-latency communication for IoT convolutional dictionary learning (multi kernel)



Bilinear model

 Translate into the frequency domain…

 Subspace assumptions: and lie in some known low-dimensional
subspaces

where , and

 Demixing from bilinear measurements:
15

: partial Fourier basis



An equivalent view: low-rank factorization

 Lifting: introduce to linearize constraints

 Low-rank matrix optimization problem

16
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Convex relaxation

 Ling and Strohmer (TIT’2017) proposed to solve the nuclear norm
minimization problem:

 Sample-efficient: samples for exact recovery if
is incoherent w.r.t.

 Computational-expensive: SDP in the lifting space

17

Can we solve the nonconvex matrix optimization problem directly?

: partial Fourier basis



A natural least-squares formulation

 Goal: demixing from bilinear measurements

 Pros: computational-efficient in the natural parameter space

 Cons: is nonconvex: bilinear constraint, scaling ambiguity

18

Given:



Wirtinger flow   

 Least-square minimization via Wirtinger flow (Candes, Li, Soltanolkotabi ’14)

 Spectral initialization by top eigenvector of

 Gradient iterations

19



Two-stage approach

 Initialize within local basin sufficiently close to ground-truth (i.e.,
strongly convex, no saddle points/ local minima)

 Iterative refinement via some iterative optimization algorithms

20

Fig. credit: Chen



Gradient descent theory

 Two standard conditions that enable geometric convergence of GD

 (local) restricted strong convexity

 (local) smoothness

21



Gradient descent theory

 Question: which region enjoys both strong convexity and smoothness?

 is not far away from (convexity)

 is incoherent w.r.t. sampling vectors (incoherence region for smoothness)

22

Prior works suggest enforcing regularization (e.g., regularized 
loss [Ling & Strohmer’17]) to promote incoherence



Our finding: WF is implicitly regularized

 WF (GD) implicitly forces iterates to remain incoherent with

 cannot be derived from generic optimization theory

 relies on finer statistical analysis for entire trajectory of GD

23

region of local strong 
convexity and smoothness



Key proof idea: leave-one-out analysis

 introduce leave-one-out iterates by runningWF without l-th sample

 leave-one-out iterate is independent of

 leave-one-out iterate true iterate

 is nearly independent of (i.e., nearly orthogonal to)
24



Theoretical guarantees

 With i.i.d. Gaussian design,WF (regularization-free) achieves

 Incoherence

 Near-linear convergence rate

 Summary:
 Sample size:

 Stepsize: vs. [Ling & Strohmer’17]

 Computational complexity: vs. [Ling & Strohmer’17]

25[Ref] J. Dong and Y. Shi, “Nonconvex demixing from bilinear measurements,” IEEE Trans. Signal
Process., vol. 66, no. 19, pp. 5152-5166, Oct., 2018.



Numerical results

 stepsize:

 number of users:

 sample size:

26

linear convergence:
WF attains    - accuracy within             iterations



Vignettes B: Communication-efficient distributed machine 
learning

27



Why gradient quantization?

28



The practical problem

 Goal: training large-scale machine learning models efficiently

 Large datasets:

 ImageNet: 1.6 million images (~300GB)

 NIST2000 Switchboard dataset: 2000 hours

 Large models:

 ResNet-152 [He et al. 2015]: 152 layers, 60 million parameters

 LACEA [Yu et al. 2016]: 22 layers, 65 million parameters

29



Data parallel stochastic gradient descent

 Challenge: communication is a bottleneck to scalability for large model

30

bigger models

Minibatch 1 Minibatch 2



Quantized SGD

 Idea: stochastically quantize each coordinate

31

Update:

is a quantization function which can be 
communicated with fewer bits

is defined by

Question: how to provide optimality 
guarantees of quantized SGD for 

nonconvex machine learning?



Learning polynomial neural networks via quantized SGD

32



Polynomial neural networks

 Learning neural networks with quadratic activation

33

input features: 

weights:

output:



Quantized stochastic gradient descent

 Mini-batch SGD

 sample indices uniformly with replacement from

 the generalized gradient of the loss function

 Quantized SGD

34



Provable guarantees for QSGD

 Theorem 1: SGD converges at linear rate to the globally optimal solution

 Theorem 2: QSGD provably maintains similar convergence rate of SGD

35



Concluding remarks

 Implicitly regularized Wirtinger flow
 Implicit regularization: vanilla gradient descent automatically forces iterates to

stay incoherent

 Even simplest nonconvex methods are remarkably efficient under suitable
statistical models

 Communication-efficient quantized SGD
 QSGD provably maintains the similar convergence rate of SGD to a globally

optimal solution

 Significantly reduce the communication cost: tradeoffs between computation and
communication

36



Future directions

 Deep and machine learning with provable guarantees

 information theory, random matrix theory, interpretability,…

 Communication-efficient learning algorithms

 vector quantization schemes, decentralized algorithms, zero-order algorithms,
second-order algorithms, federated optimization,ADMM, …

37
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Outline

 Motivations

 Latency, power, storage

 Two vignettes:

 Communication-efficient on-device distributed inference

 Why on-device inference?

 Data shuffling via generalized interference alignment

 Energy-efficient edge cooperative inference

 Why inference at network edge?

 Edge inference via wireless cooperative transmission
2



Why edge inference?

3



AI is changing our lives

4

self-driving car smart robots

machine translation AlphaGo



Models are getting larger

5

image recognition speech recognition

Fig. credit: Dally



The first challenge: model size

6difficult to distribute large models through over-the-air update

Fig. credit: Han



The second challenging: speed

7

sensor

接收
器 cloud

transmitter

receiver

communication

latencyactuator

long training time limits 
ML researcher’s 

productivity

processing at “Edge” instead of the “Cloud”



The third challenge: energy
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AlphaGo: 1920 CPUs and 280 GPUs, 

$3000 electric bill per game

on mobile: drains battery
on data-center: increases TCO

larger model-more memory reference-more energy



How to make deep learning more efficient?

9

low latency, low power



Vignettes A: On-device distributed inference

10

low latency



On-device inference: the setup

11

weights/parameters

model

training hardware inference hardware



MapReduce: a general computing framework

 Active research area: how to fit different jobs into this framework

12

N subfiles, K servers, Q keys

input File

N subfiles

K servers
intermediate (key, value)

shuffling phase

Q keys

(blue,               )

general framework
• Matrix
• Distributed ML
• Page rank
• …

Fig. credit: Avestimehr



Wireless MapReduce: computation model

 Goal: low-latency (communication-efficient) on-device inference

 Challenges: the dataset is too large to be stored in a single mobile
device (e.g., a feature library of objects)

 Solution: stored files across devices, each can only store
up to files, supported by distributed computing framework MapReduce

 Map function: ( input data)

 Reduce function: ( intermediate values)

13



Wireless MapReduce: computation model

14

 Dataset placement phase: determine
the index set of files stored at each
node

 Map phase: compute intermediate
values locally

 Shuffle phase: exchange intermediate
values wirelessly among nodes

 Reduce phase: construct the output
value using the reduce function

on-device distributed inference via 
wireless MapReduce



Wireless MapReduce: communication model

15

 Goal: users (each with antennas)
exchange intermediate values via a
wireless access point ( antennas)

 entire set of messages (intermediate
values)

 index set of messages (computed
locally) available at user

 index set of messages required by
user wireless distributed computing system

message delivery problem with side information



Wireless MapReduce: communication model

 Uplink multiple access stage:

 : received at the AP; : transmitted by user ; : channel uses

 Downlink broadcasting stage:

 : received by mobile user

 Overall input-output relationship from mobile user to mobile user

16



Interference alignment conditions

 Precoding matrix:

 Decoding matrix:

 Interference alignment conditions

17

symmetric DoF:

w.l.o.g.



Generalized low-rank optimization

 Low-rank optimization for interference alignment

 the affine constraint encodes the interference alignment conditions

 where

18



Nuclear norm fails

 Convex relaxation fails: yields poor performance due to the poor
structure of

 example:

 the nuclear norm approach always returns full rank solution while the
optimal rank is one

19



Difference-of-convex programming approach

 Ky Fan norm [Watson, 1993]: the sum of largest- singular values

 The DC representation for rank function

 Low-rank optimization via DC programming

 Find the minimum such that the optimal objective value is zero

 Apply the majorization-minimization (MM) algorithm to iteratively solve a
convex approximation subproblem

20



Numerical results

 Convergence results

21

IRLS-p: iterative reweighted 
least square algorithm



Numerical results

 Maximum achievable symmetric DoF over local storage size of each user

22

Insights on DC framework:
1. DC function provides a tight 

approximation for rank function
2. DC algorithm finds better solution 

for rank minimization problem 



Numerical results

 A scalable framework for on-device distributed inference

23

Insights on more devices:
1. More messages are requested
2. Each file is stored at more devices
3. Opportunities of collaboration for 

mobile users increase 



Vignettes B: Edge cooperative inference 

24

low power



Edge inference for deep neural networks

 Goal: energy-efficient edge processing framework to execute deep
learning inference tasks at the edge computing nodes

25

modelsmode
ls

input

output

example: 
Nvidia’s GauGAN

uplink
downlink

any task      can be performed at multiple APs

pre-downloadedwhich APs 
shall compute 

for me?



Computation power consumption

 Goal: estimate the power consumption for deep model inference

 Example: power consumption estimation for AlexNet

 Cooperative inference tasks at multiple APs:

 Computation replication: high compute power

 Cooperative transmission: low transmit power

 Solution:

 minimize the sum of computation and transmission power consumption

26

[Sze’ CVPR 17]



Signal model

 Proposal: group sparse beamforming for total power minimization

 received signal at -th mobile user:

 beamforming vector for at the -th AP:

 group sparse aggregative beamforming vector

 if is set as zero, task will not be performed at the -th AP

 the signal-to-interference-plus-noise-ratio (SINR) for users

27



Probabilistic group sparse beamforming

 Goal: total power consumption under probabilistic QoS constraints

 Channel state information (CSI) uncertainty

 Additive error: ,

 Limited precision of feedback, delays in CSI acquisition...

 Challenges: 1) group sparse objective function; 2) probabilistic QoS
constraints 28

(maximum transmit power)

transmission and computation 
power consumption



Probabilistic QoS constraints
 General idea: obtaining independent samples of the random channel

coefficient vector ; find a solution such that the confidence level of

is no less than .

 Limitations of existing methods:
 Scenario generation (SG):
 too conservative, performance deteriorates when samples size increases

 required sample size

 Stochastic Programming:
 High computation cost, increasing linearly with sample size

 No available statistical guarantee 29



Statistical learning for robust optimization

 Proposal: statistical learning based robust optimization approximation

 constructing a high probability region such that

with confidence at least

 imposing target SINR constraints for all elements in high probability region

 Statistical learning method for constructing
 ellipsoidal uncertainty sets

 split dataset into two parts

 Shape learning: sample mean and sample variance of

(omitting the correlation between , becomes block diagonal) 30



Statistical learning for robust optimization
 Statistical learning method for constructing

 size calibration via quantile estimation for

 compute the function value with respect to each
sample in , set as the -th largest value

 required sample size:

 Tractable reformulation

31



Robust optimization reformulation

 Tractable reformulation for robust optimization with S-Lemma

 Challenges

 group sparse objective function

 nonconvex quadratic constraints
32



Low-rank matrix optimization

 Idea: matrix lifting for nonconvex quadratic constraints

 Matrix optimization with rank-one constraint

33



Reweighted power minimization approach

 Sparsity: reweighted -minimization for inducing group sparsity

 Approximation: ,

 Alternatively optimizing and updating weights

 Low-rankness: DC representation for rank-one positive semidefinite
matrix

 where
34



Reweighted power minimization approach

 Updating updating

 The DC algorithm via iteratively linearizing the concave part

 : the eigenvector corresponding to the largest eigenvalue of 35



Numerical results

36

 Performance of our robust optimization approximation approach and
scenario generation



Numerical results

37

 Energy-efficient processing and robust wireless cooperative transmission
for executing inference tasks at possibly multiple edge computing nodes

Insights on edge inference:
1. Selecting the optimal set of access 

points for each inference task via 
group sparse beamforming

2. A robust optimization approach for 
joint chance constraints via statistical 
learning to learn CSI uncertainty set



Concluding remarks

 Machine learning model inference over wireless networks
 On-device inference via wireless distributed computing

 Edge inference via computation replication and cooperative transmission

 Sparse and low-rank optimization framework
 Inference alignment for data shuffling in wireless MapReduce

 Joint inference tasking and downlink beamforming for edge inference

 Nonconvex optimization frameworks
 DC algorithm for generalized low-rank matrix optimization

 Statistical learning for stochastic robust optimization
38



Future directions

 On-device distributed inference

 model compression, energy efficient inference, full duplex,…

 Edge cooperative inference

 hierarchical inference over cloud-edge-device, low-latency, …

 Nonconvex optimization via DC and learning approaches

 optimality, scalability, applicability, …

39
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Outline

 Motivations

 Privacy, federated learning

 Two vignettes:

 Over-the-air computation for federated learning

 Why over-the-air computation?

 Joint device selection and beamforming design

 Intelligent reflecting surface empowered federated learning

 Why intelligent reflecting surface?

 Joint phase shifts and transceiver design
2



Intelligent IoT ecosystem

3

Internet of  Things

Mobile Internet

Tactile Internet

Develop computation, 
communication & AI technologies: 
enable smart IoT applications to make 

low-latency decision on streaming data

(Internet of Skills)



Intelligent IoT applications

4

Autonomous vehicles

Smart health Smart agriculture

Smart home Smart city

Smart drones



Challenges

 Retrieve or infer information from high-dimensional/large-scale data

5

limited processing ability 
(computation, storage, ...)

2.5 exabytes of data
are generated every day (2012)

exabyte zettabyte      yottabyte...??

We’re interested in the information rather 
than the data

Challenges:
 High computational cost
 Only limited memory is available
 Do NOT want to compromise statistical accuracy



High-dimensional data analysis

6

(big) data

Models: (deep) 
machine learning

Methods:
1. Large-scale optimization
2. High-dimensional statistics
3. Device-edge-cloud computing



Deep learning: next wave of AI

7

image 
recognition

speech 
recognition

natural language
processing



Cloud-centric machine learning

8
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The model lives in the cloud
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We train models in the cloud



11
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Make predictions in the cloud



13

Gather training data in the cloud
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And make the models better



Why edge machine learning?

15



Challenges to modern AI

 Challenges: data privacy and confidentiality; small data and fragmented
data; data quality and limited labels

16

Facebook’s data privacy scandal the general data protection regulation (GDPR)



Learning on the edge

 The emerging high-stake AI applications: low-latency, privacy,…

17

phones drones robots

glasses self driving cars

where to compute?



Mobile edge AI

 Processing at “edge” instead of “cloud”

18



Edge computing ecosystem

 “Device-edge-cloud” computing system for mobile AI applications

Grid Power

Local 
Processing

Power Supply 

Discharge

Wireless Network

Active Servers Inactive Servers

Cloud Center

User Devices

Edge 
device

Charge

on-device 
computing

mobile edge 
computing

cloud 
computing

MEC server

Shannon (communication)
meets Turing (computing)

18



Edge machine learning

 Edge ML: both ML inference and training processes are pushed down
into the network edge (bottom)

20

Fig. credit: Park



Vignettes A: Over-the-air computation for 
federated learning 

21



Federated computation and learning

 Goal: imbue mobile devices with state of the art machine learning
systems without centralizing data and with privacy by default

 Federated computation: a server coordinates a fleet of participating
devices to compute aggregations of devices’ private data

 Federated learning: a shared global model is trained via federated
computation

22



Federated learning

26



2
4

Federated learning

27



2
5

Federated learning

28



2
6

Federated learning
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2
7

Federated learning

30



2
8

Federated learning

31



2
9

Federated learning

32



Federated learning: applications

 Applications: where the data is generated at the mobile devices and is 
undesirable/infeasible to be transmitted to centralized servers

30

financial services smart retail smart healthcarekeyboard prediction



Federated learning over wireless networks

 Goal: train a shared global model via wireless federated computation

31

System challenges
 Massively distributed
 Node heterogeneity

Statistical challenges
 Unbalanced
 Non-IID
 Underlying structure

on-device distributed federated learning system



How to efficiently aggregate models over wireless networks?

32



Model aggregation via over-the-air computation

 Aggregating local updates from 
mobile devices

 weighted sum of messages

 mobile devices and one     antenna 
base station

 is the set of 
selected devices

 is the data size at device 33

Over-the-air computation: 
explore signal superposition of 

a wireless multiple-access 
channel for model aggregation



Over-the-air computation

 The estimated value before post-processing at the BS

 is the transmitter scalar,      is the received beamforming vector,    is a 
normalizing factor

 target function to be estimated: 

 recovered aggregation vector entry via post-processing:                  

 Model aggregation error:

 Optimal transmitter scalar: 
34



Problem formulation

 Key observations:

 More selected devices yield fast convergence rate of the training process

 Aggregation error leads to the deterioration of model prediction accuracy

35



Problem formulation

 Goal: maximize the number of selected devices under target MSE 
constraint

 Joint device selection and received beamforming vector design

 Improve convergence rate in the training process, guarantee prediction 
accuracy in the inference process

 Mixed combinatorial optimization problem

36



Sparse and low-rank optimization

 Sparse and low-rank optimization for on-device federated learning

37

multicasting 
duality

sum of feasibilities

matrix lifting



Sparse and low-rank optimization

38



Problem analysis

 Goal: induce sparsity while satisfying fixed-rank constraint

 Limitations of existing methods

 Sparse optimization: iterative reweighted algorithms are parameters sensitive

 Low-rank optimization: semidefinite relaxation (SDR) approach (i.e., drop
rank-one constraint) has the poor capability of returning rank-one solution

39



Difference-of-convex functions representation

 Ky Fan norm [Fan, PNAS’1951]: the sum of largest- absolute values

 is a permutation of ,where

40

PNAS’1951



Difference-of-convex functions representation

 DC representation for sparsity function

 DC representation for rank-one positive semidefinite matrix

 where

[Ref] J.-y. Gotoh, A. Takeda, and K. Tono, “DC formulations and algorithms for sparse optimization
problems,” Math. Program., vol. 169, pp. 141– 176, May 2018.

41



A DC representation framework

 A two-step framework for device selection

 Step 1: obtain the sparse solution such that the objective value achieves
zero through increasing from to

42



A DC representation framework

 Step II: feasibility detection

 Ordering in descending order as

 Increasing from to , choosing as

 Feasibility detection via DC programming

43



DC algorithm with convergence guarantees

 and : minimize the difference of two strongly convex functions

 e.g., and

 The DC algorithm via linearizing the concave part

 converge to a critical point with speed

44



Numerical results

 Convergence of the proposed DC algorithm for problem

45



Numerical results

 Probability of feasibility with different algorithms

46



Numerical results

 Average number of selected devices with different algorithms

47



Numerical results

 Performance of proposed fast model aggregation in federated learning

 Training an SVM classifier on CIFAR-10 dataset

48



Vignettes B: Intelligent reflecting surface empowered
federated learning 

49



Smart radio environments

 Current wireless networks: no control of radio waves

 Perceive the environment as an “unintentional adversary” to communication

 Optimize only the end-points of the communication network

 No control of the environment, which is viewed as a passive spectator

 Smart radio environments: reconfigure the wireless propagations

50

“dumb” wireless “smart” wireless

Fig. credit: Renzo



Intelligent reflecting surface

 Working principle of intelligent reflecting surface (IRS): different
elements of an IRS can reflect the incident signal by controlling its
amplitude and/or phase for directional signal enhancement or nulling

51
Fig. credit: Renzo

improve spectral and energy efficiency

1. no any active 
transmit module

2. operate in full-
duplex mode



Intelligent reflecting surface

 Architecture of intelligent reflecting surface

52
Fig. credit: Wu

1. Outer layer: a large number of 
metallic patches (elements) are 
printed on a dielectric substrate 
to directly interact with incident 
signals. 

2. Second layer: a copper plate is 
used to avoid the signal energy 
leakage. 

3. Inner layer: a control circuit 
board for adjusting the reflection 
amplitude/phase shift of each 
element, triggered by a smart 
controller attached to the IRS.



Intelligent reflecting surface meet wireless networks

53Fig. credit: Wu

intelligent reflecting surface 
meets wireless network: 
• over-the-air computation
• edge computing/caching
• wireless power transfer
• D2D communications
• massive MIMO
• NOMA
• mmWave
• …



IRS empowered AirComp

 Intelligent reflecting surface (IRS):

 overcoming unfavorable signal 
propagation conditions

 improving spectrum and energy 
efficiency

 tuning phase shifts with     passive 
elements
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IRS aided AirComp system: 
build controllable wireless environments 

to boost received signal power 
w.l.o.g. assuming 



Problem formulation

 Received signal at the AP:

w.l.o.g. suppose target function:

 Aggregation error:

 optimal transmitter scalar: 

 Proposal: joint design for AirComp transceivers and IRS phase shifts 

55

received beamforming vector



Nonconvex bi-quadratic programming

 Nonconvex bi-quadratic programming problem

 Challenges:

 nonconvex quadratic constraints with respect to       and    

 Solution:

 Alternating minimization for      and

 Matrix lifting to alternatively linearize nonconvex bi-quadratic constraints 56



An alternating DC framework



57

Goal: updating receiver beamforming vector     with fixed IRS phase shifts  

matrix lifting
DC programming

DC representation



An alternating DC framework


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Goal: updating phase shifts with fixed beamformer

matrix liftingDC programming

denoting

DC representation



Numerical results

 Convergence behaviors of the proposed alternating DC algorithm
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layout of AP, IRS and users



Numerical results

 Performance of different algorithms with different network settings
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Numerical results

 The power of IRS for AirComp
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Insights: deploying IRS in AirComp 
system can significantly enhance the 

MSE performance for data 
aggregation 



IRS empowered federated learning system

 The power of IRS for federated learning

62training loss prediction accuracy



Concluding remarks

 Federated learning over “intelligent” wireless networks

 Federated learning via over-the-air computation

 Over-the-air computation empowered by intelligent reflecting surface

 Sparse and low-rank optimization framework

 Joint device selection and beamforming design for over-the-air computation

 Joint phase shifts and transceiver design for IRS empowered AirComp

 A unified DC programming framework

 DC representation for sparse and low-rank functions
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Future directions

 Federated learning

 stragglers, security, provable guarantees, …

 Over-the-air computation

 channel uncertainty, synchronization, security, …

 Sparse and low-rank optimization via DC programming

 optimality, scalability,…
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To learn more…
 Web: http://shiyuanming.github.io/publicationstopic.html

 Papers:
 K. B. Letaief, W. Chen, Y. Shi, J. Zhang, and Y. Zhang, “The roadmap to 6G - AI empowered wireless networks,” IEEE Commun.

Mag., vol. 57, no. 8, pp. 84-90, Aug. 2019.

 J. Dong and Y. Shi, “Nonconvex demixing from bilinear measurements,” IEEE Trans. Signal Process., vol. 66, no. 19, pp. 5152-5166,
Oct., 2018.

 M. C. Tsakiris, L. Peng, A. Conca, L. Kneip, Y. Shi, and H. Choi, “An algebraic-geometric approach to shuffled linear regression,”
IEEE Trans. Inf. Theory., under major revision, 2019. https://arxiv.org/abs/1810.05440

 K. Yang, Y. Shi, and Z. Ding, “Data shuffling in wireless distributed computing via low-rank optimization,” IEEE Trans. Signal Process.,
vol. 67, no. 12, pp. 3087-3099, Jun., 2019.

 K. Yang, Y. Shi, W. Yu, and Z. Ding, “Energy-efficient processing and robust wireless cooperative transmission for edge
inference,” submitted. https://arxiv.org/abs/1907.12475

 S. Hua, Y. Zhou, K. Yang, and Y. Shi, “Reconfigurable intelligent surface for green edge inference,” submitted.
https://arxiv.org/abs/1912.00820

 K. Yang, T. Jiang, Y. Shi, and Z. Ding, “Federated learning via over-the-air computation,” IEEE Trans. Wireless Commun., under minor
revision, 2019. https://arxiv.org/abs/1812.11750

 T. Jiang and Y. Shi, “Over-the-air computation via intelligent reflecting surfaces,” in Proc. IEEE Global Commun. Conf. (Globecom),
Waikoloa, Hawaii, USA, Dec. 2019. https://arxiv.org/abs/1904.12475
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Thanks
http://shiyuanming.github.io/home.html
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